共查询到20条相似文献,搜索用时 0 毫秒
1.
While prion infection of the lymphoreticular system (LRS) is necessary for neuroinvasion in many prion diseases, in bovine spongiform encephalopathy and atypical cases of sheep scrapie there is evidence to challenge that LRS infection is required for neuroinvasion. Here we investigated the role of prion infection of LRS tissues in neuroinvasion following extraneural inoculation with the HY and DY strains of the transmissible mink encephalopathy (TME) agent. DY TME agent infectivity was not detected in spleen or lymph nodes following intraperitoneal inoculation and clinical disease was not observed following inoculation into the peritoneum or lymph nodes, or after oral ingestion. In contrast, inoculation of the HY TME agent by each of these peripheral routes resulted in replication in the spleen and lymph nodes and induced clinical disease. To clarify the role of the LRS in neuroinvasion, the HY and DY TME agents were also inoculated into the tongue because it is densely innervated and lesions on the tongue, which are common in ruminants, increase the susceptibility of hamsters to experimental prion disease. Following intratongue inoculation, the DY TME agent caused prion disease and was detected in both the tongue and brainstem nuclei that innervate the tongue, but the prion protein PrP(Sc) was not detected in the spleen or lymph nodes. These findings indicate that the DY TME agent can spread from the tongue to the brain along cranial nerves and neuroinvasion does not require agent replication in the LRS. These studies provide support for prion neuroinvasion from highly innervated peripheral tissues in the absence of LRS infection in natural prion diseases of livestock. 相似文献
2.
Nicotera P 《Neuron》2001,31(3):345-348
The astonishing recognition that self-propagating changes in protein structure may be at the basis of spongiform encephalopathies is changing our views of transmissible diseases. Infectious agents consisting of abnormally folded proteins (i.e., the prion) can propagate in host organisms using previously unrecognized routes and invade the brain after a dangerous liaison with the immune system. The identification of the nodal points of neuroinvasion and new techniques to amplify minute amounts of misfolded proteins may open the possibility for post exposure prophylaxis. 相似文献
3.
Klingeborn M Race B Meade-White KD Rosenke R Striebel JF Chesebro B 《Journal of virology》2011,85(4):1484-1494
In nature prion diseases are usually transmitted by extracerebral prion infection, but clinical disease results only after invasion of the central nervous system (CNS). Prion protein (PrP), a host-encoded glycosylphosphatidylinositol (GPI)-anchored membrane glycoprotein, is necessary for prion infection and disease. Here, we investigated the role of the anchoring of PrP on prion neuroinvasion by studying various inoculation routes in mice expressing either anchored or anchorless PrP. In control mice with anchored PrP, intracerebral or sciatic nerve inoculation resulted in rapid CNS neuroinvasion and clinical disease (154 to 156 days), and after tongue, ocular, intravenous, or intraperitoneal inoculation, CNS neuroinvasion was only slightly slower (193 to 231 days). In contrast, in anchorless PrP mice, these routes resulted in slow and infrequent CNS neuroinvasion. Only intracerebral inoculation caused brain PrPres, a protease-resistant isoform of PrP, and disease in both types of mice. Thus, anchored PrP was an essential component for the rapid neural spread and CNS neuroinvasion of prion infection. 相似文献
4.
RepC is rate limiting for pT181 plasmid replication 总被引:13,自引:0,他引:13
The effect on pT181 plasmid replication of the concentration of the plasmid-coded initiator protein, RepC, has been analyzed. In one type of experiment, plasmid replication was found to stop immediately after the addition of an inhibitory concentration of chloramphenicol (Cm) to growing cultures. Chromosomal replication showed the slow turnoff that is usual for Cm inhibition. Because plasmid replication rate is determined autogenously, no host factor can be rate limiting, suggesting that the specific factor affected is Rep C. In another type of experiment, we constructed a translational fusion between the repC coding sequence and a translationally inducible Cm-acetylase gene, cat-86, using pUB110 as the carrier replicon. The fusion plasmid showed an eightfold amplification of its own copy number and a similar amplification of a co-resident pT181 plasmid upon Cm induction. The amplified plasmids did not show autocatalytic runaway replication but rather established stable elevated copy numbers, indicating the existence of a secondary level of regulation. These results suggest that RepC is rate limiting for pT181 replication and support the hypothesis that pT181 replication is regulated at the level of RepC synthesis. The nature of the secondary regulation is unknown. 相似文献
5.
The dissection of nerves and ganglia anatomically related to the pelvic organs revealed one inferior mesenteric ganglion, two testicular ganglia, two hypogastric nerves, two pelvic ganglia and two pelvic nerves. The histochemical demonstration of catecholamines by a glyoxylic acid fluorescence method revealed a rich sympathetic innervation in the ductus deferens, in the three segments of the prostate and in the convoluted ductuli efferentes. The testis, epididymis and all three pairs of bulbourethral glands presented fluorescent nerve fibers only around blood vessels. Removal of the inferior mesenteric and testicular ganglia, and hypogastric neurectomy with our without ligature and sectioning of testicular arteries, had no effect on the density of the nonvascular fluorescent fibers. Removal of the periprostatic tissue caused complete denervation of the prostate and marked denervation of the ductuli efferentes and ductus deferens. Small ganglia containing fluorescent nerve cell bodies were found close to the capsule of the prostate. The results indicate that short adrenergic neurons are responsible for the sympathetic innervation of the reproductive organs of the male opossum. 相似文献
6.
7.
8.
9.
Fusion pore opening and expansion are considered the most energy-demanding steps in viral fusion. Whether this also applies to soluble N-ethyl-maleimide sensitive fusion protein attachment protein receptor (SNARE)- and Rab-dependent fusion events has been unknown. We have addressed the problem by characterizing the effects of lysophosphatidylcholine (LPC) and other late-stage inhibitors on lipid mixing and pore opening during vacuole fusion. LPC inhibits fusion by inducing positive curvature in the bilayer and changing its biophysical properties. The LPC block reversibly prevented formation of the hemifusion intermediate that allows lipid, but not content, mixing. Transition from hemifusion to pore opening was sensitive to guanosine-5'-(gamma-thio)triphosphate. It required the vacuolar adenosine triphosphatase V0 sector and coincided with its transformation. Pore opening was rate limiting for the reaction. As with viral fusion, opening the fusion pore may be the most energy-demanding step for intracellular, SNARE-dependent fusion reactions, suggesting that fundamental aspects of lipid mixing and pore opening are related for both systems. 相似文献
10.
A M Krasnov 《Ontogenez》1987,18(2):221-224
Search for a factor limiting the growth rate is described the salmon fry taken as an example. A simple dependence between the specific growth rate and DNA content (of the nuclei) in muscles was found. Age changes in the growth rate are due to the fact that the appearance of new nuclei lags behind the growth of muscle cells. A few models were proposed on this basis which correspond to various growth types. 相似文献
11.
J Müllberg H Schooltink T Stoyan P C Heinrich S Rose-John 《Biochemical and biophysical research communications》1992,189(2):794-800
An analysis of the mechanism of generation of the soluble interleukin-6 receptor (IL-6R) has been performed. The membrane-bound receptor is proteolytically cleaved to release a soluble receptor form which retained its ligand binding capacity. Furthermore, the soluble IL-6R is unique in its ability to induce a biological signal in complex with the ligand interleukin-6 (IL-6) on cells which by themselves do not bind IL-6. Shedding of the IL-6R is strongly activated by PMA and can be inhibited by the protein kinase inhibitor staurosporine. The generation of the IL-6R is not dependent on protein synthesis. The inactive PMA analogue 4-alpha-phorbol-12,13-didecanoate fails to induce shedding of the IL-6R. Transfection of a protein kinase C expression plasmid into IL-6R expressing cells leads to enhanced shedding of the receptor. These experiments clearly show that protein kinase C regulates shedding of the IL-6R. 相似文献
12.
ADP release is rate limiting in steady-state turnover by the dynein adenosinetriphosphatase 总被引:2,自引:0,他引:2
The kinetics of the product release steps in the pathway of ATP hydrolysis by dynein were investigated by examining the rate and partition coefficient of phosphate-water 18O exchange under equilibrium and steady-state conditions. Dynein catalyzed both medium and intermediate phosphate-water oxygen exchange with a partition coefficient of 0.30. The dependence of the rate of loss of the fully labeled phosphate species on the concentration of ADP was hyperbolic, with an apparent Kd for the binding of ADP to dynein of 0.085 mM. The apparent second-order rate constant for phosphate binding to the dynein-ADP complex was 8000 M-1 s-1. The time course of medium phosphate-water oxygen exchange during net ATP hydrolysis was examined in the presence of an ATP regeneration system. The observed rate of loss of P18O4 was comparable to the rate observed at saturating ADP which implies that ADP release is rate limiting for dynein in the steady state. Product inhibition of the dynein ATPase was also examined. ADP inhibited the enzyme competitively with a Ki of 0.4 mM. Phosphate was a linear noncompetitive mixed-type inhibitor with a Ki of 11 mM. These data were fit to a model in which phosphate release is fast and is followed by rate-limiting release of ADP, allowing us to define each rate constant in the pathway. A discrepancy between the total free energy calculated compared to the known free energy of ATP hydrolysis suggests that there is an additional step in the pathway, perhaps involving a change in conformation of the enzyme-ADP state preceding ADP release. 相似文献
13.
J Kunes R M Reidler G R Leont'eva J Zicha J Jelínek V A Govyrin 《Physiologia Bohemoslovaca》1988,37(1):27-31
The adrenergic innervation of blood vessel wall was studied in various vascular beds of adult rats with experimental hypertension induced by the constriction of the aorta between the origins of both renal arteries. A moderate expansion of body fluids was demonstrated in this hypertensive model. The decrease of the density of adrenergic plexus in the vessel wall as well as the diminished catecholamine fluorescence were found only in renal vessels. These changes were pronounced in the left renal artery and vein even if the left kidney was not subjected to elevated blood pressure. Thus the alteration of vascular adrenergic innervation in hypertensive rats is not a consequence of high blood pressure but it seems to be a part of neurohumoral pathogenetic mechanisms. 相似文献
14.
Phosphite dehydrogenase (PTDH) is a unique NAD-dependent enzyme that catalyzes the oxidation of inorganic phosphite to phosphate. The enzyme has great potential for cofactor regeneration, and mechanistic studies have provided some insight into the residues that are important for catalysis. In this investigation, pre-steady-state studies were performed on the His6-tagged wild-type (WT) enzyme, several active site mutants, a thermostable mutant (12X-PTDH), and a thermostable mutant with dual cofactor specificity (NADP-12X-PTDH). Stopped-flow kinetic experiments indicate that slow steps after hydride transfer do not significantly limit the rate of reaction for the WT enzyme, the active site mutants, or the thermostable mutant. Pre-steady-state kinetic isotope effects (KIEs) and single-turnover experiments further confirm that slow steps after the chemical step do not significantly limit the rate of reaction for any of these proteins. Collectively, these results suggest that the hydride transfer step is fully rate determining in PTDH and that the observed KIE on kcat is the intrinsic effect in WT PTDH and the mutants examined. In contrast, a slow step after catalysis may partially limit the rate of phosphite oxidation by NADP-12X-PTDH with NADP as the cofactor. Finally, site-directed mutagenesis of Asp79 indicates that this residue is important in orienting Arg237 for proper interaction with phosphite. 相似文献
15.
Deborah L. Capes Marcel P. Goldschen-Ohm Manoel Arcisio-Miranda Francisco Bezanilla Baron Chanda 《The Journal of general physiology》2013,142(2):101-112
Voltage-gated sodium channels are critical for the generation and propagation of electrical signals in most excitable cells. Activation of Na+ channels initiates an action potential, and fast inactivation facilitates repolarization of the membrane by the outward K+ current. Fast inactivation is also the main determinant of the refractory period between successive electrical impulses. Although the voltage sensor of domain IV (DIV) has been implicated in fast inactivation, it remains unclear whether the activation of DIV alone is sufficient for fast inactivation to occur. Here, we functionally neutralize each specific voltage sensor by mutating several critical arginines in the S4 segment to glutamines. We assess the individual role of each voltage-sensing domain in the voltage dependence and kinetics of fast inactivation upon its specific inhibition. We show that movement of the DIV voltage sensor is the rate-limiting step for both development and recovery from fast inactivation. Our data suggest that activation of the DIV voltage sensor alone is sufficient for fast inactivation to occur, and that activation of DIV before channel opening is the molecular mechanism for closed-state inactivation. We propose a kinetic model of sodium channel gating that can account for our major findings over a wide voltage range by postulating that DIV movement is both necessary and sufficient for fast inactivation. 相似文献
16.
17.
Cytosolic prion protein toxicity is independent of cellular prion protein expression and prion propagation 下载免费PDF全文
Norstrom EM Ciaccio MF Rassbach B Wollmann R Mastrianni JA 《Journal of virology》2007,81(6):2831-2837
Prion diseases are transmissible neurodegenerative diseases caused by a conformational isoform of the prion protein (PrP), a host-encoded cell surface sialoglycoprotein. Recent evidence suggests a cytosolic fraction of PrP (cyPrP) functions either as an initiating factor or toxic element of prion disease. When expressed in cultured cells, cyPrP acquires properties of the infectious conformation of PrP (PrP(Sc)), including insolubility, protease resistance, aggregation, and toxicity. Transgenic mice (2D1 and 1D4 lines) that coexpress cyPrP and PrP(C) exhibit focal cerebellar atrophy, scratching behavior, and gait abnormalities suggestive of prion disease, although they lack protease-resistant PrP. To determine if the coexpression of PrP(C) is necessary or inhibitory to the phenotype of these mice, we crossed Tg1D4(Prnp(+/+)) mice with PrP-ablated mice (TgPrnp(o/o)) to generate Tg1D4(Prnp(o/o)) mice and followed the development of disease and pathological phenotype. We found no difference in the onset of symptoms or the clinical or pathological phenotype of disease between Tg1D4(Prnp(+/+)) and Tg1D4(Prnp(o/o)) mice, suggesting that cyPrP and PrP(C) function independently in the disease state. Additionally, Tg1D4(Prnp(o/o)) mice were resistant to challenge with mouse-adapted scrapie (RML), suggesting cyPrP is inaccessible to PrP(Sc). We conclude that disease phenotype and cellular toxicity associated with the expression of cyPrP are independent of PrP(C) and the generation of typical prion disease. 相似文献
18.
Glucose phosphorylation is not rate limiting for accumulation of glycogen from glucose in perfused livers from fasted rats 总被引:1,自引:0,他引:1
Incorporation of Glc and Fru into glycogen was measured in perfused livers from 24-h fasted rats using [6-3H]Glc and [U-14C]Fru. For the initial 20 min, livers were perfused with low Glc (2 mM) to deplete hepatic glycogen and were perfused for the following 30 min with various combinations of Glc and Fru. With constant Fru (2 mM), increasing perfusate Glc increased the relative contribution of Glc carbons to glycogen (7.2 +/- 0.4, 34.9 +/- 2.8, and 59.1 +/- 2.7% at 2, 10, and 20 mM Glc, respectively; n = 5 for each). During perfusion with substrate levels seen during refeeding (10 mM Glc, 1.8 mumol/g/min gluconeogenic flux from 2 mM Fru), Fru provided 54.7 +/- 2.7% of the carbons for glycogen, while Glc provided only 34.9 +/- 2.8%, consistent with in vivo estimations. However, the estimated rate of Glc phosphorylation was at least 1.10 +/- 0.11 mumol/g/min, which exceeded by at least 4-fold the glycogen accumulation rate (0.28 +/- 0.04 mumol of glucose/g/min). The total rate of glucose 6-phosphate supply via Glc phosphorylation and gluconeogenesis (2.9 mumol/g/min) exceeded reported in vivo rates of glycogen accumulation during refeeding. Thus, in perfused livers of 24-h fasted rats there is an apparent redundancy in glucose 6-phosphate supply. These results suggest that the rate-limiting step for hepatic glycogen accumulation during refeeding is located between glucose 6-phosphate and glycogen, rather than at the step of Glc phosphorylation or in the gluconeogenic pathway. 相似文献
19.
Bowers RR Festuccia WT Song CK Shi H Migliorini RH Bartness TJ 《American journal of physiology. Regulatory, integrative and comparative physiology》2004,286(6):R1167-R1175
White adipose tissue (WAT) is innervated by the sympathetic nervous system (SNS), and the central origins of this innervation have been demonstrated for inguinal and epididymal WAT (iWAT and eWAT, respectively) using a viral transneuronal tract tracer, the pseudorabies virus (PRV). Although the more established role of this sympathetic innervation of WAT is as a major stimulator of lipid mobilization, this innervation also inhibits WAT fat cell number (FCN); thus, local denervation of WAT leads to marked increases in WAT mass and FCN. The purpose of this study was to extend our understanding of the SNS regulation of FCN using neuroanatomical and functional analyses. Therefore, we injected PRV into retroperitoneal WAT (rWAT) to compare the SNS outflow to this pad from what already is known for iWAT and eWAT. In addition, we tested the ability of local unilateral denervation of rWAT or iWAT to promote increases in WAT mass and FCN vs. their contralateral neurally intact counterparts. Although the overall pattern of innervation was more similar than different for rWAT vs. iWAT or eWAT, its SNS outflow appeared to involve more neurons in the suprachiasmatic and solitary tract nuclei. Denervation produced significant increases in WAT mass and FCN for both iWAT and rWAT, but FCN was increased significantly more in iWAT than in rWAT. These data suggest differences in origins of the sympathetic outflow to WAT and functional differences in the WAT SNS innervation that could contribute to the differential propensity for fat cell proliferation across WAT depots in vivo. 相似文献