首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Compared to basic fibroblast growth factor (bFGF), a widely distributed, broad spectrum mitogen and mesoderm inducer, acidic fibroblast growth factor (aFGF) is reported to have an essentially neural distribution and to be undetectable in the early embryo. In the present investigation, we used immunoblotting and immunochemistry to assess the cellular and tissue distributions of aFGF and bFGF in 11-20-d rat embryos. Immunoblotting of crude and heparin-bound embryo extracts revealed faint bands at the expected 17-18-kD and predominant bands at an apparent molecular mass of 26 to 28-kD (despite reducing conditions) using multiple specific antibodies for aFGF and bFGF. Pretreatment with 8 M urea yielded 18-20-kD aFGF and bFGF and some 24-26-kD bFGF. Immunoreactivity for both aFGF and bFGF was positive and similar in the cytoplasm, nuclei, and extracellular matrix of cells of neuroectodermal and mesodermal origin, while it was negative in endoderm-derived cells. The distribution of immunoreactive aFGF and bFGF also showed changes during development that were associated with the process of cellular and tissue differentiation. For example, intensity and extent of immunoreactivity for both peptides progressively increased in the middle layer of the spinal cord with increasing differentiation of the neural cells. The immunostaining patterns were very similar for aFGF and bFGF for each organ and at each stage. In conclusion, high molecular mass forms of immunoreactive aFGF and bFGF are present in the rat embryo. Acidic FGF and bFGF are both widely distributed in tissues of neuroectodermal and mesodermal origin, and their distribution was very similar.  相似文献   

2.
3.
Although the retinal angiogenic and mitogenic factors have been identified to be acidic and basic fibroblast growth factors (aFGF and bFGF), little information has so far been available about the cells producing them and their function in retinal tissues. We found, by in situ hybridization, that the expression pattern of the aFGF gene differed remarkably from that of the bFGF gene in adult rat eyes. Our results demonstrated that the aFGF gene was produced by photoreceptor visual cells, neuronal cells in the inner nuclear layer and ganglion cells of the retina, in addition to pigment epithelial cells of the choroid, iris and ciliary body, and epithelial cells of the cornea, conjunctiva and lens, while bFGF was synthesized solely by the photoreceptor visual cells.  相似文献   

4.
Tissue culture technology applied to ophtalmology has produced an extensive knowledge of ocular cell physiology. In this work, we review the various factors known to control proliferation and differentiation in lens epithelial cells and corneal endothelial cells. We discuss the role of a new ocular growth factor that we discovered in the retina and whose ubiquitous distribution suggests that it could be involved in tissue-tissue interactions.  相似文献   

5.
Endothelial cell growth factor activity purified from bovine kidney by heparin-Sepharose affinity chromatography was previously identified as basic fibroblast growth factor [Baird, A., Esch, F., B?hlen, P., Ling, N., & Gospodarowicz, D. (1985) Regul. Pept. 12, 202-213]. We now show that a major mitogenic fraction, isolated from heparin-Sepharose-purified material by Mono-S cation-exchange chromatography and reverse-phase high-performance liquid chromatography, is related to acidic fibroblast growth factor (aFGF). Sequence analysis showed the amino-terminal sequence to be Tyr-Lys-Lys-Pro-Lys-Leu-Leu-Tyr-X-Ser-Asn-Gly-Gly-Tyr-Phe-Leu-Arg-Ile-Le u-Pro- Asp-Gly-Thr-Val-Asp-. The molecular mass of the protein, as determined by polyacrylamide gel electrophoresis, was 15.5 kDa. In combination, those data strongly suggest that this mitogen is amino terminally truncated acidic fibroblast growth factor. So far, aFGF has only been found in neural tissues, i.e., in the brain and retina. Our results strongly suggest that this mitogen also occurs in extraneural tissue.  相似文献   

6.
Rabbit polyclonal antibodies were raised against ovalbumin conjugates of purified bovine brain acidic fibroblast growth factor (aFGF) and a synthetic peptide containing the N alpha-terminal 1-24 amino acid sequence of bovine basic fibroblast growth factor (bFGF). These antibodies were used to specifically detect 1-ng quantities of aFGF and bFGF by using enzyme-linked immunosorbent assay (ELISA) and Western immunoblot procedures. Antibodies raised against aFGF recognized bovine brain aFGF and bovine recombinant aFGF but very poorly recognized recombinant bFGF or purified porcine or bovine pituitary bFGF with ELISA and Western immunoblot procedures. Antibodies raised against bFGF (1-24) recognized purified bovine, porcine, and recombinant human bFGF but only very poorly recognized aFGF with ELISA and Western immunoblot procedures. In vitro addition of anti-bFGF antibodies was able to partially neutralize bFGF-stimulated 3H-thymidine incorporation by COMMA-D mouse mammary epithelial cells while having no effect on aFGF or epidermal growth factor (EGF) stimulation. In vitro addition of anti-aFGF antibodies had no effect on bFGF- or EGF-stimulated 3H-thymidine incorporation, but surprisingly, had a potentiating effect on aFGF stimulation. Antibodies against aFGF immobilized on protein A-Sepharose were able to specifically and completely remove mitogenic activity from solutions containing aFGF but had no effect on removal of mitogenic activity from control solutions containing bFGF or EGF. Similarly, immobilized anti-bFGF antibodies completely removed mitogenic activity from solutions of bFGF, but not aFGF or EGF controls. These antibodies have been useful for the identification and characterization of growth factors from tissue and recombinant sources.  相似文献   

7.
Recent in vitro studies have indicated that the proliferation of satellite cells, which are involved in muscular regeneration in vivo, is stimulated by exogenous addition of fibroblast growth factor (FGF). We present evidence that satellite cell cultures produce acidic, but not basic FGF. Acidic or basic FGF content was measured by enzyme immunoassay on cellular extracts after partial purification by heparin-Sepharose chromatography. During maximal cell proliferation, the level of acidic fibroblast growth factor (aFGF) was increased over fivefold from the values obtained before plating. aFGF content drastically dropped at the postmitotic stage to almost the threshold of detection, and remained weak as differentiation was completed. The immunolocalization of aFGF using highly purified anti-aFGF antibodies confirmed these results and indicated that aFGF was cytoplasma- or membrane-associated. Our work suggests that an endogenous production of aFGF by satellite cells may trigger cell proliferation by an intra- or autocrine mechanism, and therefore play an important role in muscular regeneration.  相似文献   

8.
We have purified acidic and basic fibroblast growth factors (c-aFGF, c-bFGF) from 11 day-old chick embryo brain, retina and vitreous by heparin-Sepharose chromatography and reverse phase HPLC. The analysis of their biological activity as well as their molecular weight indicates that they were analogous to basic or acidic human and bovine FGF. The ratio of c-aFGF to c-bFGF activity depended of the tissue. In brain c-aFGF represented 66% of the total mitogenic activity retained on the heparin-sepharose column and c-bFGF 34% while retina contained 16% of c-aFGF and 84% of c-bFGF; vitreous 78% of c-aFGF and 22% of c-bFGF. Like human aFGF, Heparin stimulated purified c-aFGF mitogenic activity in the absence of serum but inhibited the activity of the retina acid soluble extract, in the presence of foetal calf serum (FCS). Thus, chick embryo and adult human acidic and basic FGF respectively share the same biochemical properties. Since there are no blood vessels in chick retina or vitreous, their presence in these tissues suggests that angiogenesis is not the only role of these growth factors.  相似文献   

9.
It has been shown that lens regeneration from the iris of the newt Notophthalmus viridescens is dependent on the presence of neural retinal tissue in organ culture and in vivo. The recent discovery of various eye-derived growth factors (EDGFs) in the bovine retina [14] prompted us to investigate whether one of these factors may be involved in the stimulation of lens regeneration. Dorsal irises were cultured for 20 days in serum-supplemented diluted Eagle's medium. Growth factors from bovine retina of various degrees of purification were added. Lens regeneration was assessed on the basis of morphological lens-regeneration stages and by immunofluorescent detection of a lens-specific marker protein, alpha-crystallin. Crude isotonic retinal extract at 80-800 micrograms/ml significantly augmented lens regeneration. Very similar results were obtained when EDGF III, the nonretained retinal factor after heparin-affinity chromatography, was present at 2-20 micrograms/ml. Lens regeneration was also significantly increased when EDGF II, the retinal form of acidic fibroblast growth factor (aFGF) at 50-500 ng/ml was added to the cultures. On the other hand, EDGF I at 4-40 ng/ml and brain basic FGF at 5-50 ng/ml did not seem to significantly stimulate lens regeneration under the conditions used. Our results suggest that at least two retina-derived growth factors (EDGF II and III) can stimulate lens regeneration. These growth factors may be the putative signal that is naturally produced by the retina during lens regeneration in the newt.  相似文献   

10.
Nature of the interaction of growth factors with suramin.   总被引:5,自引:0,他引:5  
Suramin inhibits the binding of a variety of growth factors to their cell surface receptors. The direct interaction of suramin with acidic fibroblast growth factor has been detected by the enhancement of the drug's fluorescence in the presence of the protein with the maximum effect occurring at a molar ratio of suramin to aFGF of 2:1. This interaction stabilizes aFGF to thermal denaturation and partially protects a free thiol in its polyanion binding site from oxidation. The binding of suramin to aFGF also induces aggregation of the growth factor to at least a hexameric state as detected by static and dynamic light scattering as well as by gel filtration studies. Both CD and amide I' FTIR spectra of aFGF in the presence and absence of suramin suggest that the drug may also be causing a small conformational change in the growth factor. Suramin produces an even greater aggregation of bFGF and PDGF but not of EGF or IGF-1. Evidence for a suramin-induced conformational change in IGF-1 but not EGF is found by CD, however. It is concluded that suramin binds to many growth factors and that this induces microaggregation and, in some cases, conformational changes. In the case of aFGF, suramin interacts at or near its heparin binding site. The relationship between these phenomena and the anti-growth factor activity of suramin remains to be clearly elucidated.  相似文献   

11.
The neural retina and retinal pigment epithelium (RPE) diverge from the optic vesicle during early embryonic development. They originate from different portions of the optic vesicle, the more distal part developing as the neural retina and the proximal part as RPE. As the distal part appears to make contact with the epidermis and the proximal part faces mesenchymal tissues, these two portions would encounter different environmental signals. In the present study, an attempt has been made to investigate the significance of interactions between the RPE and mesenchymal tissues that derive from neural crest cells, using a unique quail mutant silver (B/B) as the experimental model. The silver mutation is considered to affect neural crest-derived tissues, including the epidermal melanocytes. The homozygotes of the silver mutation have abnormal eyes, with double neural retinal layers, as a result of aberrant differentation of RPE to form a new neural retina. Retinal pigment epithelium was removed from early embryonic eyes (before the process began) and cultured to see whether it expressed any phenotype characteristic of neural retinal cells. When RPE of the B/B mutant was cultured with surrounding mesenchymal tissue, neural retinal cells were differentiated that expressed markers of amacrine, cone or rod cells. When isolated RPE of the B/B mutant was cultured alone, it acquired pigmentation and did not show any property characteristic of neural retinal cells. The RPE of wild type quail always differentiated to pigment epithelial cells. In the presence of either acidic fibroblast growth factor (aFGF) or basic FGF (bFGF), the RPE of the B/B mutant differentiated to neural retinal cells in the absence of mesenchymal tissue, but the RPE of wild type embryos only did so in the presence of 10–40 times as much aFGF or bFGF. These observations indicate that genes responsible for the B/B mutation are expressed in the RPE as well as in those cells that have a role in the differentiation of neural crest cells. They further suggest that development of the neural retina and RPE is regulated by some soluble factor(s) that is derived from or localized in the surrounding embryonic mesenchyme and other ocular tissues, and that FGF may be among possible candidates.  相似文献   

12.
13.
Summary The distributions of acidic fibroblast growth factor (aFGF) and basic FGF (bFGF) in extracts of various cultured mammalian cells were determined from their elution profiles on heparin-affinity chromatography, and assay of activity as ability to stimulate DNA synthesis in BALB/c3T3 cells. Only aFGF was found in extracts of mouse melanoma B 16 cell and rat Morris hepatoma cell (MH1C1) lines. Other tumor cell lines established from solid tumors and some normal cells contained bFGF as a main component, but blood tumor cell lines contained no aFGF or bFGF. The FGFs in extracts of solid tumor tissues derived by transplantations of these cultured tumor cells and various normal tissues of mice were also examined. Tumors formed by all cell lines, regardless of whether they produced aFGF, bFGF, or neither, contained bFGF that was probably derived from host cells including capillary endothelial cells, in addition to the tumor-derived aFGF or bFGF, if produced. The content of bFGF, possibly derived from the host, in these tumor tissues was comparable to those of various mouse organs other than thymus, lung, spleen, and testis, which have higher bFGF contents. Tumor tissues derived from cultured cells producing bFGF had relatively higher bFGF contents. Like bFGF, aFGF was distributed almost ubiquitously in normal mouse tissues.  相似文献   

14.
This study reports on the effects of heparin, basic and acidic fibroblast growth factors (bFGF and aFGF, respectively), and transforming growth factor type-e (TGFe) on the growth of a human adrenocortical carcinoma cell line, SW-13. Heparin has previously been shown to inhibit growth in several cell types, including smooth muscle cells, certain fibroblasts, and epithelial cells, and to modulate the effects of fibroblast growth factors. Whereas bFGF and aFGF bind tightly to heparin and elute from a heparin-Sepharose column with 2 M NaCl and 1.6 M NaCl, respectively, TGFe binds to heparin with lower affinity and can be eluted from heparin-Sepharose column with 0.5 M NaCl. TGFe is a polypeptide unrelated to FGF, is present in neoplastic and nonneoplastic tissues, and stimulates the growth of certain epithelial cells and fibroblasts in soft agar and monolayer. Since the growth of SW-13 cells is stimulated by TGFe and by bFGF, we hypothesized that heparin would inhibit the growth of SW-13 cells by binding to these growth factors and that the effects of heparin could be overcome with the addition of either growth factor. Our experiments confirmed that heparin inhibits the growth of SW-13 cells. A dose-dependent growth inhibition was observed in both monolayer and soft agar. The inhibition in monolayer was partially reversed upon heparin withdrawal. The effects of heparin in both monolayer and soft agar were at least partially overcome by TGFe and by basic or acidic FGF. Overall protein synthesis does not appear to be affected by heparin as measured by [35S]methionine uptake. In contrast, epidermal growth factor (EGF) and insulin-like growth factor I (IGF-I) were unable to overcome heparin-induced inhibition both in monolayer and in soft agar. Heparin also inhibited [3H]thymidine incorporation in AKR-2B and partially inhibited AKR-2B cell stimulation by TGFe; however, it further potentiated the already potent stimulation by bFGF. We propose that heparin, TGFe, bFGF, and aFGF modulate the growth of SW-13 cells and possibly of other epithelial cells in complex ways and that heparin-like substances present in the extracellular matrix play an important role in the control of epithelial growth.  相似文献   

15.
We have investigated the nature of endothelial cell growth factors in 14-day embryonic and adult chick brain extracts. Mitogenic activity was isolated by a combination of cation-exchange, heparin-Sepharose affinity, and reverse-phase HPLC. Two major mitogenic fractions eluted from heparin-Sepharose at 0.8-1.3 M and 1.5-2 M. Biologically active proteins eluting at 0.8-1.3 M NaCl, after purification to homogeneity from embryonic and adult brain, were found to possess the same amino-terminal sequence as human acidic fibroblast growth factor (aFGF). The notion that the isolated mitogens represent chick aFGF is further supported by the findings that their affinity for heparin and their retention behavior in highly resolutive HPLC are indistinguishable from those of genuine aFGF. Mitogenic activities eluting at 1.5-2 M NaCl were also present in embryonic and adult brain, but in quantities insufficient for preliminary characterization. The high specific mitogenic activity for endothelial cells, high affinity for heparin and cross-reactivity with antibodies against bovine basic FGF (bFGF) suggest a relationship of those materials with basic FGF. Our data also suggest that the sequence of aFGF is highly conserved among vertebrates. While angiogenesis occurs predominantly in the embryonic brain, the absence of notable differences in the contents of the potent angiogenic factors aFGF and bFGF in embryonic versus adult chick brain is interesting.  相似文献   

16.
The labeling pattern of mouse embryonic eye frozen sections incubated with radioiodinated brain acidic and basic fibroblasts growth factors (aFGF and bFGF) was investigated by autoradiography. Both growth factors bind to basement membranes in a dose-dependent way, with a higher affinity for bFGF. Similar data were obtained with eye-derived growth factors (EDGF), the retinal forms of FGF. There was a heterogeneity in the affinity of the various basement membranes toward these growth factors. The inner limiting membrane of the retina and the posterior part of the lens capsule have a higher binding capacity than the posterior part of the Bruch's membrane. The specificity of the growth factor-basement membrane interaction was demonstrated by the following experiments: (i) an excess of unlabeled growth factor displaced the labeling; (ii) unrelated proteins with different isoelectric points--gelatin, serum albumin, histones--did not modify the labeling; and (iii) iodinated EGF or PDGF did not label basement membrane. In order to get a better understanding of the nature of this binding, we performed the incubation of the frozen sections with iodinated FGFs preincubated with various compounds: (i) heparin which is known to have a strong affinity for aFGF and bFGF partially decreases the labeling, and (ii) chondroitin sulfate B and dextran sulfate at high concentrations were also partially effective. In addition, enzymatic treatment of the sections reveals that only heparitinase, not collagenase or chondroitinase ABC, completely prevents the labeling without destroying the overall structure of the basement membrane. An antibody against the proteic part of EHS mouse proteoheparan sulfate does not affect the signal. Esterification of the acidic groups cancelled the binding. These results demonstrate that FGFs bind specifically to basement membranes, probably on the polysaccharidic part of the proteoheparan sulfate, and suggest that this type of interaction may be a general feature of the mechanism of action of these growth factors.  相似文献   

17.
Acidic fibroblast growth factor (aFGF) is a heparin binding protein that displays pleiotropic activity. The purpose of this study was to document the presence of the translated aFGF product, its mRNA, and its location in the colon. mRNA was extracted from bovine large intestine and reverse transcribed to cDNA. Nested-primer PCR was used to determine the presence of mRNA using primers homologous to the previously published bovine aFGF cDNA. Purification of translated aFGF was performed using an established HPLC protocol. Western blot analysis of the HPLC fractions was performed using two epitope-independent antibodies against aFGF. Immunohistochemistry employed these antibodies to determine the locus of aFGF expression. The nested-primer PCR product of predicted size was homologous to the published bovine aFGF mRNA sequence, as determined by DNA sequencing. Intestinal aFGF had a mass similar to bovine aFGF isolated from other tissues, and immunocrossreacted with two peptide-based, epitope-independent anti-aFGF antisera on Western blotting. Immunohistochemical analysis of large intestine using these two independent antisera localized aFGF within the myenteric plexus. These data demonstrate that aFGF is present within the myenteric plexus of the enteric nervous system.  相似文献   

18.
With the aim of identifying new intracellular binding partners for acidic fibroblast growth factor (aFGF), proteins from U2OS human osteosarcoma cells were adsorbed to immobilized aFGF. One of the adsorbed proteins is a member of the leucine-rich repeat protein family termed ribosome-binding protein p34 (p34). This protein has previously been localized to endoplasmic reticulum membranes and is thought to span the membrane with the N terminus on the cytosolic side. Confocal microscopy of cells transfected with Myc-p34 confirmed the endoplasmic reticulum localization, and Northern blotting determined p34 mRNA to be present in a multitude of different tissues. Cross-linking experiments indicated that the protein is present in the cell as a dimer. In vitro translated p34 was found to interact with maltose-binding protein-aFGF through its cytosolic coiled-coil domain. The interaction between aFGF and p34 was further characterized by surface plasmon resonance, giving a K(D) of 1.4 +/- 0.3 microm. Even though p34 interacted with mitogenic aFGF, it bound poorly to the non-mitogenic aFGF(K132E) mutant, indicating a possible involvement of p34 in intracellular signaling by aFGF.  相似文献   

19.
Human acidic and basic fibroblast growth factors (aFGF and bFGF) inhibit epidermal growth factor (EGF) receptor binding in mouse Swiss 3T3 cells. Scatchard analysis indicates that aFGF and bFGF cause a decrease in the high affinity EGF receptor population, similar to that observed for activators of protein kinase C such as phorbol esters, platelet-derived growth factor (PDGF) and bombesin. However, unlike phorbol esters, aFGF and bFGF inhibit EGF binding in protein kinase C-deficient cells. The time course and dose response of inhibition of EGF binding by both aFGF and bFGF are very similar, with an ID50 of approximately 0.10 ng/ml. In contrast to bombesin but like PDGF, neither aFGF nor bFGF act on the EGF receptor through a pertussis toxin-sensitive G protein. These results indicate that both acidic and basic FGF depress high affinity EGF binding in Swiss 3T3 cells with similar potency through a protein kinase C/Gi-independent pathway.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号