首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Young male rats were iv infused with synthetic LRH (L) and with L and TRH (T) in combination for 1, 3, 24, 48 and 72 hrs at each dose of 1 microgram/hr. All the basophils of the controls infused with saline are divided into the continuous cyclic types, i.e., II-, II/III, III-, III/IV- and III/IV/II-types. The II-, III- and III/IV-type cells correspond, in fine structure, with those of the classical thyrotrophs, LH- and FSH-gonadotrophs, respectively. A 1-hr infusion of L does not induce any serious changes in all the basophils. After a 3-hr infusion of L, the II-type cells disperse from the gland, while the III/IV-type cells diminished the number of their small secretory granules, and the lumina of endoplasmic reticulum are closed. After a 24-hr infusion, the irregularly shaped III/IV/II-type cells which may revert from the III/IV- to the II-type cells are accumulated, whose secretory granules are remarkably reduced in diameter (50--100 nm). There is evidence to show the diffusion mechanism of the secretory granules into the ground matrix. After a 48-hr infusion of L, most basophils take an appearance of III/IV/II-type cells; after a 72-hr infusion, all the basophils show the homologous fine structure. Thus, the morphological changes of the basophils following the L infusion resemble intrinsically those following the T infusion (Soji, 1976b). From these results, it is tentatively concluded that L does not act only on the III-type cells analogous to the "LH-cells", but universally upon a series of basophils. The transformations of the III/IV-type cells into the III/IV/II-type ones and those of the II-type ones into the III- or III/IV-type ones due to a slow infusion of L are inhibited to some extent by the infusion of T + L. The granular releases from the III/IV- and II-type cells due to a slow infusion of L are also inhibited to some extent by the infusion of T + L. For this reason, both T and L may act, not synergistically but antogonistically, upon the transformation of a series of basophils and their granular release.  相似文献   

2.
Summary Pituitaries from normal, young and adult male rats were fixed either in sublimate-formalin or in glutaraldehyde-osmium. In adjacent Paraplast sections, almost all the gonadotrophs were immunostained with both LH and FSH antisera. The rat LH and FSH antisera used were shown to be highly specific by the absorption test and by double antibody radioimmunoassay. Thin and thick adjacent Epon sections were prepared for EM and immunohistochemical examination. Cells stained with the rat LH antiserum were identified by LM, and then observed in detail by EM. On the basis of these observations we suggest that the LH cells are arranged in a sequence of basophils, i.e., Types II/III, III, III/IV and IV: Type II/III basophils are elongate with a cytoplasmic process and less vesiculated. They have morphological features of Type II (classical thyrotrophs) and also of Type III basophils. Type III basophils are oval in shape and moderately vesiculated. Both Types II/III and III basophils can be divided into two classes of cell characterized mainly by the existence of only small secretory granules (150–220 nm in diameter) (Type A) or by the coexistence of small and large (350–500 nm) (Type B). Type III/IV basophils are cells intermediate between types III and IV basophils, and moderately vesiculated with an abundance of secretory granules (150–300 nm in diameter). Type IV basophils are large, spherical or oval cells whose RER cisternae are conspicuously dilated; they contain less numerous secretory granules (150–300 nm in diameter). It is concluded that LH cells are not a single cell type, but include a wide range of subtypes.  相似文献   

3.
Summary The postnatal development of rat pituitary thyrotrophs was investigated immunohistochemically on days 1, 3, 5, 10, 15 and 25. Fetal thyrotrophs are strongly immunoreactive. In the postnatal period, however, weakly immunoreactive thyrotrophs increase in number to constitute clusters on days 3–5. The numbers and dimensions of the clusters reach a maximum on day 10. Thereafter the clusters break down to give rise to single, scattered neogenic thyrotrophs. Thyrotrophs in clusters on day 10 were investigated by electron microscopy in adjacent sections. They can be characterized as an immature type of basophil, according to the classification of Yoshimura et al. (1977): 1) Type I basophils, which are irregularly shaped with elongate processes, and characterized by rows of secretory granules about 100 nm in diameter. 2) Type I/II basophils, i.e., forms intermediate between Types I and II, containing less numerous secretory granules about 100–150 nm in diameter. Type II basophils which correspond to the classical thyrotrophs are not fully developed on day 10. Thus, most thyrotrophs develop from the clusters in the neonatal period. Such neogenic thyrotrophs retain the immature characteristics of Type I and I/II cells and may develop into Type II cells during subsequent maturation.  相似文献   

4.
5.
Summary The effect of thyrotrophin-releasing hormone (TRH) on pituitary thyrotrophs was investigated in Snell dwarf mice (dw/dw) that are genetically deficient in thyrotrophin (TSH) and in normal animals of the same strain. The normal animals were treated with either saline or 10 g TRH per day for 2 weeks, while the dwarf mice were given daily injections of saline, 10 g TRH for 2 weeks or 10 g for 6 weeks. At the end of each experimental period, the pituitary glands were removed and fixed for light-microscopic analysis using immunocytochemistry, or for transmission electron-microscopic study. Compared to thyrotrophs observed in the pituitary glands of untreated normal mice, thyrotrophs in TRH-treated normal mice appeared to be more numerous by immunocytochemistry and showed signs of stimulation by electron microscopy. In contrast, immunostainable thyrotrophs could not be identified in the pituitary glands of untreated or TRH-treated dwarfs. However, a few cells exhibiting ultrastructural features of stimulated thyrotrophs, were noticeable in the dwarfs following TRH administration. Thus, while failing to induce the synthesis of immunoreactive TSH under the applied experimental conditions, exogenous TRH appeared to elicit differentiation of thyrotroph precursors into ultrastructurally recognizable thyrotrophs. The discrepancy between the immunocytochemical and ultrastructural findings remains unresolved; more work is required to clarify the question as to why ultrastructural maturation of thyrotrophs was unaccompanied by the production of immunoreactive TSH.  相似文献   

6.
We recently reported that TRH-deficient mice showed characteristic tertiary hypothyroidism. In the present study, we investigated how this tertiary hypothyroidism occurred particularly in pre- and postnatal stages. Immunohistochemical analysis revealed a number of TSH-immunopositive cells in the TRH-/- pituitary on embryonic day 17.5 and at birth. The mutant pituitary at birth in pups born from TRH-deficient dams also showed no apparent morphological changes, indicating no requirement of either maternal or embryonic TRH for the development of pituitary thyrotrophs. In contrast, apparent decreases in number and level of staining of TSH-immunopositive cells were observed after postnatal day 10 in mutant pituitary. Similar decreases were observed in the 8-week-old mutant pituitary, while no apparent changes were observed in other pituitary hormone-producing cells, and prolonged TRH administration completely reversed this effect. Consistent with these morphological results, TRH-/- mice showed normal thyroid hormone levels at birth, but the subsequent postnatal increase was depressed, resulting in hypothyroidism. As expected, TSH content in the TRH-/- pituitary showed a marked reduction to only 40% of that in the wild type. Despite hypothyroidism in the mutant mice, both the pituitary TSHbeta and alpha mRNA levels were lower than those of the wild-type pituitary. These phenotypic changes were specific to the pituitary thyrotrophs. These findings indicated that 1) TRH is essential only for the postnatal maintenance of the normal function of pituitary thyrotrophs, including the normal feedback regulation of the TSH gene by thyroid hormone; 2) neither maternal nor embryonic TRH is required for normal development of the fetal pituitary thyrotroph; and 3) TRH-deficient mice do not exhibit hypothyroidism at birth. Moreover, reflecting its name, TRH has more critical effects on the pituitary thyrotrophs than on other pituitary hormone-producing cells.  相似文献   

7.
Role of calcium (Ca2+) in the effects of thyroliberin (TRH) and somatostatin (SRIF) on the release of growth hormone (GH), prolactin (PRL) and thyroid stimulating hormone (TSH) from the rat adenohypophyseal cells in primary monolayer cultures has been studied. Decrease of extracellular Ca2+ diminished the stimulatory effects of TRH on TSH and PRL release. Ca2+ is also an important factor in the mechanism of SRIF action. Data obtained in the experiments with high Ca2+ levels in the medium indicate that some antagonistic interrelationship exists between Ca2+ and SRIF. These results suggest that the participation of cAMP alone is not sufficient for stimulus-secretion coupling. Another messenger, namely Ca2+, is necessary for the effects of hypothalamic hormones. On the other hand, the contribution of Ca2+ to the secretory process in mammotrophs, somatotrophs and thyrotrophs is not equal. PRL and TSH secretion is more dependent on the presence of extracellular Ca2+ than the release of GH.  相似文献   

8.
M H Connors 《Life sciences》1977,21(10):1505-1510
The plasma TSH and prolactin responses to thyrotropin releasing hormone (TRH) were measured in 5 children with isolated growth hormone deficiency prior to, during and after the administration of human growth hormone (hGH). TSH and prolactin secretory patterns were not uniformly concordant. TSH responses to TRH infusion were suppressed in 4 subjects after 5 days or 1 month of hGH administration despite normal serum thyroxin concentrations. Prolactin responses were suppressed in all 5 subjects after 5 days of hGH administration. After 8 months of hGH therapy both TSH and prolactin responses returned toward pre-hGH values. Our finding that suppression of the TRH-induced TSH and prolactin secretory responses are reversible during hGH administration supports the concept of altered neuroregulation in this form of hypothalamic disorder.  相似文献   

9.
Adult Wistar rats food deprived for 3 days had lower basal levels of TSH compared to normal fed animals. An increase of these lower levels to normal values was obtained following a prolonged (injections during 3 consecutive days) or acute treatment (single injection) with pimozide (1 mg/injection). Blood samples obtained after the last or an only injection of pimozide contained profound increased prolactin levels. Prolactin increase was more than 100-fold in fed and more than 30-fold in starved rats following prolonged pimozide treatment and more than 25-fold and 10-fold following a single injection of pimozide. An injection of 250 ng of TRH increased plasma concentrations of TSH in all groups, but this increase was more pronounced in fasted rats injected with pimozide during 3 consecutive days. It is concluded that fasting results in a dopaminergic inhibition of the sensitivity of the thyrotrophs to a TRH challenge.  相似文献   

10.
To test whether changes in carbohydrate metabolism influence anterior pituitary function, iv TRH tests (25 micrograms TRH) were carried out on three different occasions in 6 normal subjects. On one of these occasions TRH was administered during normoglycemia (blood glucose level 4.5 mmol/l - on the other, during hyperglycemia (10 mmol/l) - and on the third, during hypoglycemia (3 mmol/l). Hypoglycemia reduced the TRH-elicited TSH response significantly (19 +/- 6%), but failed to affect the corresponding PRL response. Hyperglycemia left both the TSH and PRL responses to TRH unaffected. These results imply that thyrotrophs and lactotrophs react differently to changes in carbohydrate metabolism. Thyrotrophs - in contrast to lactotrophs - seem to require a certain minimal glucose delivery to function normally. Glucose excess does not change the reactivity of these pituitary cells significantly.  相似文献   

11.
Changes in the pituitary-thyroid axis in patients with Hashimoto's thyroiditis following withdrawal of thyroid suppressive therapy were analyzed. The group of patients with thyroid adenoma served as control (group I). Patients with Hashimoto's thyroiditis were divided into 2 groups on the basis of serum TSH levels 8 weeks after discontinuing the exogenous thyroid hormone (group II, less than 10 microunits/ml; group III, more than 10 microunits/ml). During treatment with L-T4(200 micrograms/day) or L-T3(50 micrograms/day), there was no significant difference in serum T4-I and T3 levels among the three groups. Following L-T4 withdrawal, basal serum TSH levels were higher at 2 to 8 weeks in groups II and III than in group I. Serum TSH response to TRH was greater at 4 to 8 weeks in groups II and III than in group I. Following L-T3 withdrawal, basal serum TSH levels were higher at 1 and 2 weeks in group II than in group I, while those of group III were consistently higher during the study. Higher TSH responses to TRH were observed at 1 to 8 weeks in groups II and III. Neither basal nor TRH-induced prolactin (PRL) secretion differed significantly among the three groups. We have demonstrated that pituitary TSH secretion in patients with Hashimoto's thyroiditis is affected more by withdrawal of thyroid hormone therapy than in patients with thyroid adenoma. In addition, the present findings suggest a difference between the sensitivity of thyrotrophs and lactotrophs in Hashimoto's thyroiditis after prolonged thyroid therapy is discontinued.  相似文献   

12.
To study whether central dopaminergic activity influences TSH responsiveness to TRH in normal individuals and in patients with hyperthyroidism, three experiments (A, B and C) were carried out in 8 normal subjects, and two experiments (A and B) in 8 patients with untreated thyrotoxicosis. In experiment A oral placebo (PBO) preceded iv administration of 200 micrograms TRH by 90 min. In experiment B dopamine receptor blockade with 15 mg oral metoclopramide (MET) was given 90 min before iv administration of 200 micrograms TRH. In experiment C two oral doses (each dose 2.5 mg) of bromocriptine (BCT), known for dopamine agonistic properties, were given 9 and 1 hour before ingestion of 15 mg MET which, in turn, preceded iv injection of 200 micrograms TRH by 90 min. In the healthy subjects experiment A revealed a TSH responsiveness, as reflected by the TSH incremental area, which was 430 +/- 74. The corresponding TSH responsiveness was significantly larger in experiment B (661 +/- 138; P less than 0.02). In experiment C the TSH incremental area (332 +/- 102) did not differ significantly from the one obtained in experiment A. The thyrotrophs responded quite different to TRH in the group of thyrotoxic patients, where the TSH incremental area was zero regardless of whether PBO or MET were given as oral pretreatments. These results imply that central dopaminergic activity inhibits the pituitary thyrotrophs and modulates the TSH response to TRH in healthy subjects, but does not contribute significantly to the blocked TSH responsiveness in patients with untreated hyperthyroidism.  相似文献   

13.
Normal and iron-deficient rats were exposed to cold at 4 degrees C for 1 hr or 5 hrs and the serum TSH, T3 and T4 levels were compared with those in rats kept at room temperature (20 degrees C). There was a rise in serum TSH, T3 and T4 levels in response to 1 hr and 5 hrs of cold exposure in normal, but not in iron-deficient rats. Although pituitary TSH contents were lower in iron-deficient rats, the increases in serum levels of TSH following administration of TRH were similar in both normal and iron-deficient rats. The results suggest that the inability to respond to cold in iron-deficient rats may be due to a reduction in the release of TRH from the hypothalamus.  相似文献   

14.
Thyrotropin-releasing hormone (TRH) is a major stimulator of thyrotropin-stimulating hormone (TSH) synthesis in the anterior pituitary, though precisely how TRH stimulates the TSHβ gene remains unclear. Analysis of TRH-deficient mice differing in thyroid hormone status demonstrated that TRH was critical for the basal activity and responsiveness to thyroid hormone of the TSHβ gene. cDNA microarray and K-means cluster analyses with pituitaries from wild-type mice, TRH-deficient mice and TRH-deficient mice with thyroid hormone replacement revealed that the largest and most consistent decrease in expression in the absence of TRH and on supplementation with thyroid hormone was shown by the TSHβ gene, and the NR4A1 gene belonged to the same cluster as and showed a similar expression profile to the TSHβ gene. Immunohistochemical analysis demonstrated that NR4A1 was expressed not only in ACTH- and FSH- producing cells but also in thyrotrophs and the expression was remarkably reduced in TRH-deficient pituitary. Furthermore, experiments in vitro demonstrated that incubation with TRH in GH4C1 cells increased the endogenous NR4A1 mRNA level by approximately 50-fold within one hour, and this stimulation was inhibited by inhibitors for PKC and ERK1/2. Western blot analysis confirmed that TRH increased NR4A1 expression within 2 h. A series of deletions of the promoter demonstrated that the region between bp -138 and +37 of the TSHβ gene was responsible for the TRH-induced stimulation, and Chip analysis revealed that NR4A1 was recruited to this region. Conversely, knockdown of NR4A1 by siRNA led to a significant reduction in TRH-induced TSHβ promoter activity. Furthermore, TRH stimulated NR4A1 promoter activity through the TRH receptor. These findings demonstrated that 1) TRH is a highly specific regulator of the TSHβ gene, and 2) TRH mediated induction of the TSHβ gene, at least in part by sequential stimulation of the NR4A1-TSHβ genes through a PKC and ERK1/2 pathway.  相似文献   

15.
Hypothalamic thyrotropin-releasing hormone (TRH) stimulates thyroid-stimulating hormone (TSH) secretion from the anterior pituitary. TSH then initiates thyroid hormone (TH) synthesis and release from the thyroid gland. Although opposing TRH and TH inputs regulate the hypothalamic-pituitary-thyroid axis, TH negative feedback is thought to be the primary regulator. This hypothesis, however, has yet to be proven in vivo. To elucidate the relative importance of TRH and TH in regulating the hypothalamic-pituitary-thyroid axis, we have generated mice that lack either TRH, the beta isoforms of TH receptors (TRbeta KO), or both (double KO). TRbeta knock-out (KO) mice have significantly higher TH and TSH levels compared with wild-type mice, in contrast to double KO mice, which have reduced TH and TSH levels. Unexpectedly, hypothyroid double KO mice also failed to mount a significant rise in serum TSH levels, and pituitary TSH immunostaining was markedly reduced compared with all other hypothyroid mouse genotypes. This impaired TSH response, however, was not due to a reduced number of pituitary thyrotrophs because thyrotroph cell number, as assessed by counting TSH immunopositive cells, was restored after chronic TRH treatment. Thus, TRH is absolutely required for both TSH and TH synthesis but is not necessary for thyrotroph cell development.  相似文献   

16.
Radioimmunoassayable TRH and TSH were measured in plasma samples taken at 5 min intervals for 4 hr (2100-0200 hr) from 4 normal male subjects. Three subjects showed a TSH surge at 2135 hr, 2455 hr and 0150 hr, respectively. The mean plasma TRH level of the 4 subjects was 10.3-11.7 pg/ml. Plasma TRH showed random fluctuation, which did not coincide with the nocturnal increase in plasma TSH.  相似文献   

17.
Unique association of hypothyrotropinemia with euthyroidism was described in 2 children of short stature. Both had a history of intrauterine growth retardation (IUGR), but showed an appropriate growth rate after infancy (5 cm/y). Growth hormone secretion after provocation tests was normal, whereas TSH response to TRH was absent. With a highly sensitive TSH radioimmunoassay (RIA) and a specific RIA for TSH-alpha-subunit, both responded to a high dose of TRH stimulation. Serum thyroid hormones were within the normal range, while prolactin response to TRH was exaggerated. Exogenous thyroxine (T4) supplement in case 1 did not improve his growth rate, indicating absence of hypothyroidism. Case 2 was treated with stanozolol, which accelerated his growth velocity to 8 cm/y. During the treatment, serum T4 gradually decreased to 50% of the initial level, but blunted TSH response to TRH remained unchanged. These results indicate that their thyrotrophs are resistant to TRH stimulation and the pituitary setpoint of TSH release is unusually high. The exact mechanism involved in maintaining euthyroidism despite hypothyrotropinemia remains to be elucidated, but a common history of IUGR appears to play a role in producing this pituitary-thyroid state.  相似文献   

18.
When TRH was administered every 15 min for 2 hr in euthyroid rats, equivalent modestly supraphysiologic doses of either T4 or T3 suppressed TRH-induced TSH secretion after 45 min. Pretreatment with iopanoic acid blocked the ability of T4 but not of T3 to suppress TRH-induced TSH secretion 2 hr after administration of the respective thyroid hormone. Pretreatment with iopanoic acid also blocked the ability of T4, but not of T3, to depress the elevated basal plasma TSH concentration of hypothyroid rats within 2 hr. Propylthiouracil did not significantly inhibit the ability of T4 to depress TRH-induced TSH secretion and only slightly depressed the ability of T4 to reduce the elevated plasma TSH of hypothyroid rats. Our data support the concept that although equivalent physiologic doses of T4 or T3 inhibit basal or TRH-induced TSH secretion equally rapidly, TSH inhibition produced by T4 is probably dependent on its rapid conversion to T3, either within the pituitary or peripherally. T3 thus seems to be exerting almost all the negative feedback effects on TSH secretion under the conditions of our experiments.  相似文献   

19.
Summary Thyroidectomy cells of the rat pituitary gland were studied by the peroxidase-antibody labeling procedure and by electron microscopy. Secretory granules accumulated in these cells in response to a short-term treatment with thyroxine, and the cells were then reactive to the peroxidase-antibody labeling procedure. An intravenous injection of synthetic thyrotrophin releasing hormone (TRH) to thyroxine-treated, thyroidectomized rats provoked an acute and active extrusion of secretory granules from the thyroidectomy cells. The secretory granules in these cells were mostly haloed after primary fixation in osmium tetroxide. It is concluded that TRH causes thyroidectomy cells to release their secretory granules, and presumably TSH, by the usual process of exocytosis or granule extrusion.This study was supported by USPHS Grant AM 12583.  相似文献   

20.
The study assessed the sensitivity of the thyrotrophs of hyperprolactinaemic patients to a physiological dose of dopamine (DA). Eight hyperprolactinaemic amenorrhoeic patients received 4-hour infusions of either DA (0.4 micrograms/kg x min) or glucose. Twelve normal women served as controls. In normal women the mean thyrotrophin (TSH) concentration declined significantly (P less than 0.05) from 81 +/- 6.6% of basal levels during glucose infusion to 59 +/- 5.8% of basal levels during DA infusion. In contrast DA infusion to hyperprolactinaemic patients caused no significant reduction in TSH levels compared to glucose infusion (DA infusion 68 +/- 4.7% of basal levels; glucose infusion 73 +/- 4.9% of basal levels). DA infusion caused a significant reduction in serum prolactin (PRL) levels both in hyperprolactinaemic patients (P less than 0.001) and normal women (P less than 0.02), but the PRL suppression was significantly (P less than 0.05) less pronounced in the hyperprolactinaemic patients, compared to normal women. We propose that the abnormal PRL as well as TSH secretion in hyperprolactinaemic amenorrhoeic patients may be due to a common defect. Both the lactotrophs and the thyrotrophs may be relatively insensitive to dopaminergic inhibition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号