首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The physiology of Thermus aquaticus strain Z05 was investigated. Substantial evidence for gene and enzyme regulation in the central metabolism of this extreme thermophile was found.Two anaplerotic pathways were detected: (1) phosphoenolpyruvate carboxylase; (2) a glyoxylate shunt which proved to be essential for growth on pyruvate as well as acetate. The synthesis of isocitrate lyase and malate synthase were found to depend on a common control mechanism. Pronounced regulatory effects were observed on the activity of malic enzyme, pyruvate kinase and phosphoenolpyruvate carboxylase. The data could be fitted together into a picture of the metabolism during glycolysis and gluconeogenesis which shows how variations of enzyme levels and activities correlate with the apparent needs of the cell.Our results call attention to a peculiar metabolic analogy between T. aquaticus and Acinetobacter Abbreviations ace acetate nonutilizing - Acetyl-CoA acetyl-coenzyme A - I.U. international unit - PEP phosphoenolpyruvate - T Thermus  相似文献   

2.
Fluorescence techniques have been used to study the structural characteristics of many proteins. The thermophilic enzyme NAD-glutamate dehydrogenase from Thermus thermophilus HB8 is found to be a hexameric enzyme. Fluorescence spectra of native and denatured protein and effect of denaturants as urea and guanidine hydrochloride on enzyme activity of thermophilic glutamate dehydrogenase (t-GDH) have been analyzed. Native t-GDH presents the maximum emission at 338 nm. The denaturation process is accompanied by an exposure to the solvent of the tryptophan residues, as manifested by the red shift of the emission maximum. Fluorescence quenching by external quenchers, KI and acrylamide, has also been carried out.  相似文献   

3.
The highly thermophilic, hydrogen-oxidizing aerobic bacteria related to Hydrogenobacter possess a respiratory chain comprising a quinone and b-type (alpha band at 556 nm and 562 nm) and c-type (alpha band at 552 nm) cytochromes. They have no aa3-type cytochromes and their terminal oxidase is an o-type cytochrome. A polarographic method with an oxygen electrode was used for the measurement of the hydrogen-oxidizing activity. This activity was strongly inhibited by HQNO (2-N-heptyl-4-hydroxyquinoline N-oxide), an inhibitor of the respiratory chain in the quinone-cytochrome b region, and by KCN, an inhibitor of the terminal cytochrome oxidase. This study shows that the electrons released from hydrogen oxidation by the membrane-bound hydrogenase probably enter the respiratory chain at the level of the quinone-cytochrome b region.Abbreviations HQNO 2-N-heptyl-4-hydroxyquinoline N-oxide - TMPD N,N,N',N'-tetramethyl-p-phenylenediamine - DW dry weight  相似文献   

4.
The RecA protein plays a central role in homologous recombination by promoting strand exchange between ssDNA and homologous dsDNA. Since RecA alone can advance this reaction in vitro, it is widely used in gene manipulation techniques. The RecX protein downregulates the function of RecA, indicating that it could be used as an inhibitor to control the activities of RecA in vitro. In this study, the RecX protein of the hyper-thermophilic bacterium Thermus thermophilus (ttRecX) was over-expressed in Escherichia coli and purified by heat treatment and several column chromatography steps. Size-exclusion chromatography indicated that purified ttRecX exists as a monomer in solution. Circular dichroism measurements indicated that the alpha-helical content of ttRecX is 54% and that it is stable up to 80 degrees C at neutral pH. In addition, ttRecX inhibited the DNA-dependent ATPase activity of the T. thermophilus RecA protein (ttRecA). The stable ttRecX may be applicable for variety of techniques using the ttRecA reaction.  相似文献   

5.
Extraction of intact RNA is essential for quantitative gene expression analysis. Isolating high quality RNA from gram-positive bacteria is known to be problematic particularly from organisms that have optimal growth temperatures greater than 45 °C. We report a novel extraction protocol for the rapid isolation of fully intact RNA from thermophilic Geobacillus thermoleovorans using a lysing matrix containing a mixture of ceramic and glass beads, triisopropylnaphthalene sulfonic acid (TNS), and p-4-aminosalicyclic acid (PAS). Combining both detergents, TNS and PAS, appeared to increase denaturation of RNases at thermophilic temperatures. Gel electrophoresis revealed that only RNA isolated using the TNS-PAS procedure demonstrated sharp, undegraded 23S, 16S, and 5S ribosomal RNA bands. RNA extracted from geobacilli using commercially available kits was extensively degraded and was not suitable for detecting gene expression. Total RNA yields extracted with the TNS-PAS protocol were greater than eightfold higher than those obtained with available kits. Critically, it was also shown that only RNA isolated with the TNS-PAS-based method was suitable for monitoring thermophile gene expression patterns using RT-PCR analysis.Communicated by G. Antranikian  相似文献   

6.
Yeom SJ  Kim YS  Lim YR  Jeong KW  Lee JY  Kim Y  Oh DK 《Biochimie》2011,93(10):1659-1667
Mannose-6-phosphate isomerase catalyzes the interconversion of mannose-6-phosphate and fructose-6-phosphate. The gene encoding a putative mannose-6-phosphate isomerase from Thermus thermophilus was cloned and expressed in Escherichia coli. The native enzyme was a 29 kDa monomer with activity maxima for mannose 6-phosphate at pH 7.0 and 80 °C in the presence of 0.5 mM Zn2+ that was present at one molecule per monomer. The half-lives of the enzyme at 65, 70, 75, 80, and 85 °C were 13, 6.5, 3.7, 1.8, and 0.2 h, respectively. The 15 putative active-site residues within 4.5 Å of the substrate mannose 6-phosphate in the homology model were individually replaced with other amino acids. The sequence alignments, activities, and kinetic analyses of the wild-type and mutant enzymes with amino acid changes at His50, Glu67, His122, and Glu132 as well as homology modeling suggested that these four residues are metal-binding residues and may be indirectly involved in catalysis. In the model, Arg11, Lys37, Gln48, Lys65 and Arg142 were located within 3 Å of the bound mannose 6-phosphate. Alanine substitutions of Gln48 as well as Arg142 resulted in increase of Km and dramatic decrease of kcat, and alanine substitutions of Arg11, Lys37, and Lys65 affected enzyme activity. These results suggest that these 5 residues are substrate-binding residues. Although Trp13 was located more than 3 Å from the substrate and may not interact directly with substrate or metal, the ring of Trp13 was essential for enzyme activity.  相似文献   

7.
Screening for alkane hydroxylase genes (alkB) was performed in thermophilic aerobic bacteria of the genus Geobacillus. Total DNAs were isolated from the biomass of 11 strains grown on a mixture of saturated C10–C20 hydrocarbons. Fragments of alkB genes were amplified by PCR with degenerate oligonucleotide primers, and the PCR products were cloned and sequenced. For the first time, a set of alkB gene homologs was detected in the genomes of thermophilic bacteria. The strains each contained three to six homologs, of which only two were common for all of the strains. Phylogenetic analysis of the nucleotide sequences and the deduced amino acid sequences showed that six of the variants revealed in Geobacillus were closely related to alkB4, alkB3, and alkB2, found in Rhodococcus erythropolis strains NRRL B-16531 and Q15. All variants of alkB sequences were unique. Analysis of the GC composition showed that the Geobacillus alkB homologs are closer to Rhodococcus than to Geobacillus chromosomal DNA. It was assumed that the alkB genes were introduced in the Geobacillus genome via interspecific horizontal transfer and that Rhodococcus or other representatives of Actinobacteria served as donors. Analysis of the codon usage in the fragments of alkB genes confirmed the suggestion that the pool of these genes is common to the majority of Gram-positive and certain Gram-negative bacteria. The formation of a set of several alkB homologs in a genome of a particular microorganism may result from free gene exchange within this pool.  相似文献   

8.
The complete nucleotide sequence of pTT8, a cryptic plasmid from Thermus thermophilus HB8, was determined. pTT8 was 9328bp long and its G+C content was 69%. pTT8 contained eight putative open reading frames, three of which showed extensive similarities to the plasmid addiction proteins PasA and PasB of pTC-F14 and pAM10.6, and the RepA protein of the ColE2-related plasmids, respectively. During the analysis of pTT8-based plasmid pPP442, which had been obtained during a promoter-screening experiment, we occasionally isolated a plasmid with a relatively high-copy-number. This plasmid, pPP442m, contained a 1025 bp fragment derived from the genome of the HB27 host strain immediately upstream of the putative repA gene. Using the ori region of pPP442m, we constructed an expression vector, pTEV131m, with an estimated high-copy-number of 30-40. This plasmid was stably maintained in T. thermophilus HB27 under nonselective conditions for at least 100 generations. Cloning of the alpha-amylase gene of Bacillus stearothermophilus DY-5 into pTEV131m gave more than twofold production of the enzyme compared with pTEV131, the parental plasmid.  相似文献   

9.
The genes for trehalose synthesis in Thermus thermophilus RQ-1, namely otsA [trehalose-phosphate synthase (TPS)], otsB [trehalose-phosphate phosphatase (TPP)], and treS [trehalose synthase (maltose converting) (TreS)] genes are structurally linked. The TPS/TPP pathway plays a role in osmoadaptation, since mutants unable to synthesize trehalose via this pathway were less osmotolerant, in trehalose-deprived medium, than the wild-type strain. The otsA and otsB genes have now been individually cloned and overexpressed in Escherichia coli and the corresponding recombinant enzymes purified. The apparent molecular masses of TPS and TPP were 52 and 26 kDa, respectively. The recombinant TPS utilized UDP-glucose, TDP-glucose, ADP-glucose, or GDP-glucose, in this order as glucosyl donors, and glucose-6-phosphate as the glucosyl acceptor to produce trehalose-6-phosphate (T6P). The recombinant TPP catalyzed the dephosphorylation of T6P to trehalose. This enzyme also dephosphorylated G6P, and this activity was enhanced by NDP-glucose. TPS had an optimal activity at about 98°C and pH near 6.0; TPP had a maximal activity near 70°C and at pH 7.0. The enzymes were extremely thermostable: at 100°C, TPS had a half-life of 31 min, and TPP had a half-life of 40 min. The enzymes did not require the presence of divalent cations for activity; however, the presence of Co2+ and Mg2+ stimulates both TPS and TPP. This is the first report of the characterization of TPS and TPP from a thermophilic organism.  相似文献   

10.
The thermophilic bacterium Thermus thermophilus HB8 has been characterized as a polyhydroxybutyrate (PHB)-degrading microorganism since it grows efficiently and forms clear zones on agar plates containing PHB as sole carbon source. T. thermophilus extracellular PHB depolymerase was purified to homogeneity using an affinity chromatography protocol. The purified enzyme was estimated to have an apparent molecular mass of 42 kDa. The extracellular PHB depolymerase gene was identified as the TTHA0199 gene product of T. thermophilus HB8. The amino acid sequence of the TTHA0199 gene product shared significant homologies to other carboxylesterases. A catalytic triad was identified consisting of S183, E310, and H405. A pentapeptide sequence (GX1SX2G) exists within the molecule, characteristic for PHB depolymerases (lipase box) and for other serine hydrolases. Purified extracellular PHB depolymerase was stable at high temperatures with an optimum activity at pH 8.0. The apparent Km value of the purified enzyme for PHB was 53 μg/ml. As the main product of the enzymic hydrolysis of PHB, the monomer 3-hydroxybutyrate was identified, suggesting that the enzyme acts principally as an exo-type hydrolase.  相似文献   

11.
Archaea, Bacteria, and Eukarya have 34 homologous ribosomal protein (RP) families in common. Comparisons of published amino acid sequences prompted us to question whether RPs of the prokaryote Thermus thermophilus contain nuclear localization signals (NLSs), which are recognized by the nuclear import machinery of eukaryotic cells and are thereby translocated into the nucleoplasm ultimately accumulating in the nucleolus. Several RPs of T. thermophilus - specifically S12, S17, and L2 - were selected for this study since their three-dimensional structures as well as rRNA interaction patterns are precisely known at the molecular level. Fusion proteins of these RPs were constructed and subsequently expressed in COS cells. N-terminally tagged fusions with dimeric EGFP and C-terminally tagged hybrids with beta-galactosidase of prokaryotic RP S17 (S17p) were targeted to the nucleoplasm where they were visualized by direct fluorescence and by indirect immune staining, respectively. A region containing the classical monopartite NLS KRKR, which is known to physically interact with karyopherin alpha2, was delineated by tagging specific S17p fragments with beta-galactosidase. Unexpectedly, S12p and L2p hybrids accumulated in the nucleolus. Due to their size, RPs tagged with beta-galactosidase can only be imported into the nucleus when NLS-recognition is mediated by karyopherins since they are otherwise excluded from entry into the nucleoplasm of eukaryotic cells. Our results indicate that after the formation of the nuclear compartment during evolution, the newly established eukaryotic cell relied on the pre-existing basic amino acid clusters of the prokaryotic RPs for use as NLSs.  相似文献   

12.
A novel sulfite oxidase has been identified from Thermus thermophilus AT62. Despite this enzyme showing significant amino-acid sequence homology to several bacterial and eukaryal putative and identified sulfite oxidases, the kinetic analysis, performed following the oxidation of sulfite and with ferricyanide as the electron acceptor, already pointed out major differences from representatives of bacterial and eukaryal sources. Sulfite oxidase from T. thermophilus, purified to homogeneity, is a monomeric enzyme with an apparent molecular mass of 39.1 kDa and is almost exclusively located in the periplasm fraction. The enzyme showed sulfite oxidase activity only when ferricyanide was used as electron acceptor, which is different from most of sulfite-oxidizing enzymes from several sources that use cytochrome c as co-substrate. Spectroscopic studies demonstrated that the purified sulfite oxidase has no cytochrome like domain, normally present in homologous enzymes from eukaryotic and prokaryotic sources, and for this particular feature it is similar to homologous enzyme from Arabidopsis thaliana. The identified gene was PCR amplified on T. thermophilus AT62 genome, expressed in Escherichia coli and the recombinant protein identified and characterized.  相似文献   

13.
The structural gene encoding the Rieske iron-sulfur protein from Thermus thermophilus HB8 has been cloned and sequenced. The gene encodes a protein of 209 amino acids that begins with a hydrophilic N-terminus followed by a stretch of 21 hydrophobic amino acids that could serve as a transmembrane helix. The remainder of the protein has a hydrophobicity pattern typical of a water-soluble protein. A phylogenetic analysis of 26 Rieske proteins that are part of bc 1 or b 6 f complexes shows that they fall into three major groups: eubacterial and mitochondrial, cyanobacterial and plastid, and five highly divergent outliers, including that of Thermus. Although the overall homology with other Rieske proteins is very low, the C-terminal half of the Thermus protein contains the signature sequence CTHLGC-(13X)-CPCH that most likely provides the ligands of the [2Fe-2S] cluster. It is proposed that this region of the protein represents a small domain that folds independently and that the encoding DNA sequence may have been transferred during evolution to several unrelated genes to provide the cluster attachment site to proteins of different origin. The role of individual residues in this domain of the Thermus protein is discussed vis-a-vis the three-dimensional structure of the bovine protein (Iwata et al., 1996 Structure 4, 567–579).  相似文献   

14.
Cytochrome ba3 is an integral membrane protein that serves as a terminal oxidase of the respiratory chain in some prokaryotes. We have cloned the complete cba operon of Thermus thermophilus HB8 in an Escherichia coli/T. thermophilus shuttle vector. The ba3-encoding operon, cba, was eliminated from the chromosome of T. thermophilus strain MT111 using the pyrE system of Yamagishi and co-workers. Expression of functional cytochrome ba3 occurred in cells grown at reduced dioxygen levels. A hepta-histidine tag was placed at the N-terminus of subunit I, and a purification method for this form of the enzyme was developed. Growth conditions were investigated for moderate sized cultures (2L) with typical yields of approximately 2 mg of highly pure enzyme per liter of culture medium. The physical properties and enzymatic activities of these recombinant enzymes were compared with those of native enzyme. Recombinant enzyme lacking the histidine tag is spectrally identical to wild-type enzyme. Histidine-tagged cytochrome ba3 shows minor differences from wild-type, and it appears be somewhat less active as a cytochrome c552 oxidase. Exemplary mutants were also produced and compared to native protein. Tyrosine I-237, previously found to be covalently bonded to I-His-233, was changed to phenylalanine (I-Y237F) and to histidine (I-Y237H) in the hepta-histidine tagged cytochrome ba3. The Y to F mutant is devoid of enzyme activity whereas the Y to H mutant possesses approximately 5% wild-type oxidase activity; their properties are compared with those of wild-type enzyme. The above versions of the histidine-tagged enzyme have been crystallized, and our analysis of a 2.3 angstrom resolution electron-density map will be discussed elsewhere.  相似文献   

15.
The complete genomes of Thermus oshimai JL-2 and T. thermophilus JL-18 each consist of a circular chromosome, 2.07 Mb and 1.9 Mb, respectively, and two plasmids ranging from 0.27 Mb to 57.2 kb. Comparison of the T. thermophilus JL-18 chromosome with those from other strains of T. thermophilus revealed a high degree of synteny, whereas the megaplasmids from the same strains were highly plastic. The T. oshimai JL-2 chromosome and megaplasmids shared little or no synteny with other sequenced Thermus strains. Phylogenomic analyses using a concatenated set of conserved proteins confirmed the phylogenetic and taxonomic assignments based on 16S rRNA phylogenetics. Both chromosomes encode a complete glycolysis, tricarboxylic acid (TCA) cycle, and pentose phosphate pathway plus glucosidases, glycosidases, proteases, and peptidases, highlighting highly versatile heterotrophic capabilities. Megaplasmids of both strains contained a gene cluster encoding enzymes predicted to catalyze the sequential reduction of nitrate to nitrous oxide; however, the nitrous oxide reductase required for the terminal step in denitrification was absent, consistent with their incomplete denitrification phenotypes. A sox gene cluster was identified in both chromosomes, suggesting a mode of chemolithotrophy. In addition, nrf and psr gene clusters in T. oshmai JL-2 suggest respiratory nitrite ammonification and polysulfide reduction as possible modes of anaerobic respiration.  相似文献   

16.
The present study analyzed the community structures of anaerobic microflora producing hydrogen under extreme thermophilic conditions by two culture-independent methods: denaturing gradient gel electrophoresis (DGGE) and clone library analyses. Extreme thermophilic microflora (ETM) was enriched from cow manure by repeated batch cultures at 75 degrees C, using a substrate of xylose, glucose, lactose, cellobiose, or soluble starch, and produced hydrogen at yields of 0.56, 2.65, 2.17, 2.68, and 1.73 mol/mol-monosaccharide degraded, respectively. The results from the DGGE and clone library analyses were consistent and demonstrated that the community structures of ETM enriched with the four hexose-based substrates (glucose, lactose, cellobiose, and soluble starch) consisted of a single species, closely related to a hydrogen-producing extreme thermophile, Caldoanaerobacter subterraneus, with diversity at subspecies levels. The ETM enriched with xylose was more diverse than those enriched with the other substrates, and contained the bacterium related to C. subterraneus and an unclassified bacterium, distantly related to a xylan-degrading and hydrogen-producing extreme thermophile, Caloramator fervidus.  相似文献   

17.
Fifty isolates belonging to the six validly described species of the genus Thermus (T. aquaticus, T. filiformis, T. thermophilus, T. scotoductus, T. brockianus, and T. oshimai) isolated from hot springs of different geographical areas were compared using macrorestriction analysis of genomic DNA and ribotyping. With the exception of presumed clones, the macrorestriction patterns of isolates obtained with EcoRI or NdeI were distinct. However, isolates belonging to the same species exhibited similar profiles particularly when they were isolated from the same hot spring. The estimated genomic size of strains of the Thermus spp. varied between approximately 1.8 and 2.5 Mbp. Ribotyping with BamHI and HindIII produced 30 and 35 distinct ribotypes, respectively. In spite of the variability of the hybridization patterns produced, the ribotypes obtained for isolates belonging to the same species also shared, in general, several fragments of identical size, and these fragments were similar when isolates originated from the same spring. Received: 7 October 1996 / Accepted: 10 March 1997  相似文献   

18.
We disrupted the mpgS encoding mannosyl-3-phosphoglycerate synthase (MpgS) of Thermus thermophilus strains HB27 and RQ-1, by homologous recombination, to assess the role of the compatible solute mannosylglycerate (MG) in osmoadaptation of the mutants, to examine their ability to grow in NaCl-containing medium and to identify the intracellular organic solutes. Strain HB27 accumulated only MG when grown in defined medium containing 2% NaCl; mutant HB27M9 did not grow in the same medium containing more than 1% NaCl. When trehalose or MG was added, the mutant was able to grow up to 2% of NaCl and accumulated trehalose or MG, respectively, plus amino acids. T. thermophilus RQ-1 grew in medium containing up to 5% NaCl, accumulated trehalose and lower amounts of MG. Mutant RQ-1M1 lost the ability to grow in medium containing more than 3% NaCl and accumulated trehalose and moderate levels of amino acids. Exogenous MG did not improve the ability of the organism to grow above 3% NaCl, but caused a decrease in the levels of amino acids. Our results show that MG serves as a compatible solute primarily during osmoadaptation at low levels of NaCl while trehalose is primarily involved in osmoadaptation during growth at higher NaCl levels.  相似文献   

19.
L-asparaginase EC 3.5.1.1 was purified to homogeneity from Thermus thermophilus. The apparent molecular mass of L-asparaginase by SDS-PAGE was found to be 33 kDa, whereas by its mobility on Sephacryl S-300 superfine column was around 200 kDa, indicating that the enzyme at the native stage acts as hexamer. The purified enzyme showed a single band on acrylamide gel electrophoresis with pI = 6.0. The optimum pH was 9.2 and the Km for L-asparagine was 2.8 mM. It is a thermostable enzyme and it follows linear kinetics even at 77°C. Chemical modification experiments implied the existence of histidyl, arginyl and a carboxylic residues located at or near active site while serine and mainly cysteine seems to be necessary for active form.  相似文献   

20.
A second species of the extremely thermophilic, eubacterial genus Thermotoga is described as clearly distinguished from the type species Thermotoga maritima by physiological and phylogenetic criteria. It is named Thermotoga neapolitana.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号