首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The epithelium and the lumen of the Malpighian tubules of the housefly contains mineralized dense bodies called concretions. The morphological characteristics, mode of origin, nature of the sequestered elements and the age-associated changes in the distribution of concretions are reported. There are three types of concretions in the cytoplasm, which have been designated as type A, type B, and type C. Type A concretions are membrane-bound spherical structures which may arise by the gradual intravacuolar accumulation of dense material. Type B concretions appear to be related to multivesicular bodies. Type C concretions are heteromorphic and morphologically resemble the residual bodies. They show a positive localization of acid phosphatase reaction product. X-ray microanalysis of intracytoplasmic and intraluminal concretions revealed the presence of phosphorus, sulphur, chlorine, calcium, iron, zinc and copper. There was no evidence suggesting the extrusion of the intracytoplasmic concretions into the lumen of the Malpighian tubules. There is an age-associated increase in the distribution of type C concretions. It is hypothesized that the sequestration of metal ions within the concretions may provide a means for the effective excretion of these elements.  相似文献   

2.
The proximal hooks of plain and complex flagella produced by a strain of Pseudomonas rhodos have been analyzed by electron microscopy and optical diffraction and filtering. Plain flagellar hooks are cone-shaped, 70 nm long, and 13 to 21.5 nm wide, and consist of helically arranged subunits. Complex flagellar hooks are cylinders, 180 to 190 nm long, and 15 to 16 nm wide, and are composed of globular subunits. The structure comprises four small-scale helical rows of subunits intersecting bewteen 10 and 11 large-scale helices of pitch angle 80 degrees. The axial and lateral dimensions of the unit cell, which define the surface lattice, are 4.9 and 4.7 nm, respectively. In addition, a core structure, approximately 5 nm wide, has been demonstrated inside the hook cylinder. Complex flagellar hooks were isolated and purified by gradient centrifugation after acid degradation of the attached filaments. Isolated hook particles have an average sedimentation constant of 130S and consist of a protein of molecular weight 43,000. A model of the complex flagellar hook is presented, and its possible role in flagellar assembly and rotation is discussed.  相似文献   

3.
The epithelial cells of the midgut in 1–40 day old adult female houseflies were examined by electron microscopic, X-ray microanalytic and histochemical techniques in order to study the mode of genesis, chemical nature and age-associated distribution of dense bodies. Dense bodies contain high concentrations of phosphorus, sulphur, chlorine, calcium, iron and copper; they are therefore termed concretions. Concretionary material is initially deposited within Golgi vesicles, lamellar bodies and residual bodies. The average size of the concretion granules and the concentration of the sequestered material increases with age, while new concretions are continually formed throughout life. With advancing age, concretions accumulate in the epithelial cells and occupy a considerable proportion of the cytoplasm in old flies. It is postulated that the concretions sequester superfluous minerals and may play an important role in the excretory system of the adult housefly.  相似文献   

4.
Nitric oxide synthase oxygenase domains (NOS(ox)) must bind tetrahydrobiopterin and dimerize to be active. New crystallographic structures of inducible NOS(ox) reveal that conformational changes in a switch region (residues 103-111) preceding a pterin-binding segment exchange N-terminal beta-hairpin hooks between subunits of the dimer. N-terminal hooks interact primarily with their own subunits in the 'unswapped' structure, and two switch region cysteines (104 and 109) from each subunit ligate a single zinc ion at the dimer interface. N-terminal hooks rearrange from intra- to intersubunit interactions in the 'swapped structure', and Cys109 forms a self-symmetric disulfide bond across the dimer interface. Subunit association and activity are adversely affected by mutations in the N-terminal hook that disrupt interactions across the dimer interface only in the swapped structure. Residue conservation and electrostatic potential at the NOS(ox) molecular surface suggest likely interfaces outside the switch region for electron transfer from the NOS reductase domain. The correlation between three-dimensional domain swapping of the N-terminal hook and metal ion release with disulfide formation may impact inducible nitric oxide synthase (i)NOS stability and regulation in vivo.  相似文献   

5.
Summary Calcium content and pineal concretions were studied in young (2–3 months) and old (28 months) Wistar rats. Samples, deep-frozen by liquid propane/isopentane and freeze-dried were analysed by means of X-ray microanalysis in a scanning electron microscope. Total semi-quantitative measurements revealed that pineals of old rats showed a marked increase of calcium compared with the pineals of young rats. It is thus suggested that a calcium-rich environment is responsible for the growth of pineal concretions, which only appear in old rats. Pineal calcifications in rats could thus be an indicator of aging and/or of a degenerating state.  相似文献   

6.
The genesis of calcium concretions in aged rats was studied by means of transmission and scanning electron microscopy. The potassium pyroantimonate method, combined with X-ray microanalysis, allowed us to study the distribution of cations and calcium. Notable accumulations of calcium (associated with phosphorus) were localized in vesicles, vacuoles, lipid droplets, lipopigments, and mitochondria of dark pinealocytes. The results obtained in the present investigation suggest that these organelles are involved in the genesis of the concretions. The presence of sulfur indicates the existence of an organic matrix. We propose that genesis takes place in dark pinealocytes, which contain more calcium than light pinealocytes. Mineralization foci are some-times associated with cellular debris and enlarge by further apposition of material. Two types of concretions, as determined by electron microscopy and confirmed by electron diffraction, could be observed: the amorphous type with concentric layers and the crystalline type with needle-shaped crystals. Once formed, the concretions reach the extracellular space and the cell breaks down. Possible extracellular calcification is suggested in the extracellular calcium-rich floculent material. The mineralization process is interpreted as being an age-related phenomenon and mainly a consequence of the degeneration of pinealocytes.  相似文献   

7.
During the pre-exuvial period of the terrestrial crustacean Orchestia, the calcium of the old cuticle is almost entirely reabsorbed and stored as calcareous concretions in the lumen of the midgut posterior caeca. The elaboration of these concretions is due to transport by the caecal epithelium. With ultrastructural cytochemistry controlled by X-ray microanalysis, it can be demonstrated that the main sites of ionized or ionizable calcium are the apical microvilli and an extracellular (lateral and basal) network of channels. Direct precipitating cytochemical methods, using potassium pyroantimonate or pyrophosphate, potassium oxalate or oxalic acid, sodium fluoride, sodium tungstate, and indirect substitution methods, using lead acetate or nitrate and cobalt nitrate were comparatively used. The results are interpreted in favour of the hypothesis of an extracellular transport pathway for calcium through the lateral smooth septate junctions, in conjunction with a more classical apical transport through the microvilli.  相似文献   

8.
Abstract. In species of the monogenean helminth Gyrodactylus , the opisthaptor is the main organ of attachment to the host. The opisthaptor comprises two large centrally positioned hooks or hamuli and sixteen peripherally distributed marginal hooks. This paper describes the functional morphology and the mechanism and sequence of attachment in this species. Information on the attachment process was gathered from observations of live gyrodactylids, from transmission electron microscopy, from scanning electron microscopy of skeletal elements, and by histochemical and X-ray elemental analysis of hook chemical composition. The marginal hooks provide the principal force of attachment whilst the hamuli are not actively employed in the process of attachment. Instead, the hamuli provide a system preventing accidental dislodgement and assist the action of the marginal hooks. Attachment is achieved by the alternating action of two systems of muscles attached respectively to the hamuli and to the marginal hooks. Relaxation or contraction of the muscles connected to the hamuli manoeuvres the hamuli over the extremities of the accessory ventral bar and allows them to pivot around their longitudinal axis, effectively raising or lowering the opisthaptoral dome. Under reduced opisthaptoral tension, the independent gaffing activity of the marginal hooks ensures a secure attachment to the host's epidermis. Repositioning of the hamuli then raises the opisthaptoral dome to tension the peripheral marginal hooks. The sequence of attachment is complete when all the muscles associated with the hooks are in a state of relaxation but are held securely and under tension by the surrounding, stretched, opisthaptoral dome.  相似文献   

9.
The renal sac of the ascidian family Molgulidae (Tunicata, phylum Chordata) has been thought to function as a kidney, yet its structure, contents and activities seem incompatible with current generalizations regarding excretory processes in marine animals. The development of the renal sac is described here as part of a general effort to reexamine the organ's role in Molgula manhattensis. Light microscopy of living animals and fixed material has shown the following: (1) The renal sac begins to sequester concretions before the heart starts beating and before feeding begins. Therefore, blood circulation by heartbeat is not necessary for production or transport of the initial concretions, whatever its effects may be on the renal sac in older individuals. Ingested food cannot provide the initial concretion material. (2) In laboratory-raised animals, concretions appear in the renal sac before “renal sac organisms” (fungus-like organisms seen in the renal sac of all field-collected adults) can be detected. Thus, at least some portion of the concretions can be produced by Molgula in the absence of renal sac organisms. (3) No openings have been detected in the renal sac at any stage of its development, nor is there any evidence that concretions are dissolved or transported out of the renal sac. (4) The development and morphology of the renal sac are consistent with the hypothesis that the organ is an epicardial derivative, except that the renal sac arises from post-pharyngeal (presumptive gut) endoderm, rather than pharyngeal endoderm.  相似文献   

10.
The structure of the bacterial flagellar hook produced by a mutant of Caulobacter crescentus was studied by electron microscopy, optical diffraction, and digital image processing techniques. The helical surface lattice of the hook is defined by a single, right-handed genetic helix having a pitch of about 23 Å, an axial rise per subunit of 4 Å and an azimuthal angle between subunits of 64·5 °. The lattice is also characterized by intersecting families of 5-start, 6-start and long-pitch 11-start helices. These helical parameters are remarkably similar to those determined for the flagellar filaments from several strains of gram-negative bacteria. The technique of three-dimensional image reconstruction (DeRosier & Klug, 1968) was applied to nine of the better preserved specimens and the diffraction data from five of these were correlated and averaged and used to generate an average three-dimensional model of the hook. The pattern of density modulations in the three-dimensional model is suggestive of an elongated, curved shape for the hook subunit (100 Å × 25 Å × 25 Å). The subunits are situated in the lattice of the polyhook such that their long axes are tilted about 45 ° with respect to the hook axis. The subunits appear to make contact with each other along the 6-start helices at a radius of 80 Å and also along the 11-start helices at a radius of 65 Å. Few structural features are revealed at radii between 15 å and 45 Å and, therefore, we are unable to decide to what extent the hook subunits extend into this region. The most striking characteristic of the model is the presence of deep, broad, continuous 6-start helical grooves extending from an inner radius of about 50 Å to the perimeter of the particle at 105 Å radius. Normal hooks usually appear curved in electron micrographs and sometimes so are the mutant hooks; the prominent 6-start grooves appear to allow for bending with minimal distortion of matter in the outer regions of the hook. A round stain-filled channel about 25 Å in diameter runs down the center of the polyhook. Such a channel supports a model for flagellar assembly in which flagellin subunits travel through the interior of the flagellum to the growing distal end of the filament.  相似文献   

11.
The flagellar hook of Salmonella is a filamentous polymer made up of subunits of the protein FlgE. Hook assembly is terminated when the length reaches about 55 nm. After our recent study of the effect of cellular levels of the hook length control protein FliK, we have now analyzed the effect of cellular levels of FlgE itself. When FlgE was overproduced in a wild-type strain, a fliC (flagellin) mutant, or a fliD (hook-associated protein 2 [HAP2], filament capping protein) mutant, the hooks remained at the wild-type length. In a fliK (hook length control protein) mutant, which produces long hooks (polyhooks), the overproduction of FlgE resulted in extraordinarily long hooks (superpolyhooks). In a flgK (HAP1, first hook-filament junction protein) mutant or a flgL (HAP3, second hook-filament junction protein) mutant, the overproduction of FlgE also resulted in longer than normal hooks. Thus, at elevated hook protein levels not only FliK but also FlgK and FlgL are necessary for the proper termination of hook elongation. When FlgE was severely underproduced, basal bodies without hooks were often observed. However, those hooks that were seen were of wild-type length, demonstrating that FlgE underproduction decreases the probability of the initiation of hook assembly but not the extent of hook elongation.  相似文献   

12.
Bored and encrusted carbonate concretions, termed hiatus concretions, coming from the Middle Jurassic (Upper Bajocian and Bathonian) siliciclastics of the Polish Jura, south-central Poland, have been subjected to detailed paleoecological investigation for the first time. The concretions possess variable morphology and bear distinct traces of bioerosion and encrustation as a result of exhumation on the sea floor during intervals of low sedimentation and/or erosion. The borings are dominated by Gastrochaenolites and Entobia. Epilithozoans, represented by at least 26 taxa, are dominated by sabellid/serpulid worm tubes and bryozoans, while sponges and corals are minor. No relationship between the concretion size and the number of encrusters has been found, suggesting that concretion size was not the primary factor controlling diversity. Stable isotope analyses and the presence of crustacean scratch marks and Rhizocorallium traces on many of the hiatus concretions indicate that they formed just below the sediment–water interface, within the sulfate reduction zone. Moreover, crustacean activities may have been a prelude to their origin, as shapes of many concretions closely resemble thalassinoidean burrow systems. It is also possible that crustacean activity around the concretions promoted their exhumation by loosening the surrounding soft sediment. The presence of borings and encrusters on different concretion surfaces, as well as truncated borings and a number of abraded epilithozoans, indicate that after the concretions were exhumed they were repeatedly overturned and moved on the sea floor, probably due to episodic storm-related bottom currents in shallow subtidal environment.  相似文献   

13.
Purified and crude flagellar isolates from cells of Bacillus pumilus NRS 236 were treated with acid, alcohol, acid-alcohol, or heat, and were examined electron microscopically in negatively stained and shadow-cast preparations. Under certain conditions, each of these agents causes the flagella to break between the proximal hooks and the spiral filaments. In such preparations, filaments are seen in various stages of disintegration, whereas hooks of fairly constant length retain their integrity and morphological identity. When crude isolates of flagella are treated under these conditions, the hooks remain attached to membrane fragments or bear basal material. These findings substantiate previous structural observations that led to the view that the proximal hook is a distinct part of the bacterial flagellum and further confirm that the hook is tightly associated with basal material and the cytoplasmic membrane. It appears that the hook is a polarly oriented structure, and that the interactions between the hook and the basal material or the cytoplasmic membrane are different from those between the hook and the filamentous portion of the organelle. Moreover, both types of interaction apparently differ still from those by which the flagellin subunits are held together in the flagellar filament. Hooks were isolated by exploiting the differences in relative stability shown by the various morphological regions of the bacterial flagellum.  相似文献   

14.
There are two types of concretions in Drosophila Malpighian tubules: Type-I concretions originate in the distal segments of the anterior tubules, type-II concretions in the adjacent transitional segment between the apical microvilli. Type-I concretions are formed with the aid of carbonic anhydrase within intracellular vesicles, which migrate to the apical cell membrane where they are discharged into the lumen by exocytosis. The carbonic anhydrase inhibitors acetazolamide or hydrochlorothiazide prevent the formation of concretions by interruption of bicarbonate supply. In addition, the formation of concretions can be reduced by feeding with sodium cellulose phosphate.  相似文献   

15.
Hypocotyl hooks have been shown to influence greening in excised cucumber (Cucumis sativus) cotyledons. The properties of the lag phase are greatly affected by the presence or absence of the hook tissue. A 45-second light pretreatment followed by 4 hours of darkness is sufficient to remove the lag phase from cotyledons with hooks, while hookless cotyledons require 2 hours of continuous illumination followed by 1 hour of dark incubation to break the lag phase. The effect of hooks on cotyledon greening is enhanced if the hooks are shielded from light. Cutting off the hooks after lag phase removal caused a marked decrease in chlorophyll accumulation in the cotyledons. These observations may indicate that the hypocotyl hooks produce a substance or substances needed in the greening process, which are translocated to the cotyledons. Indoleacetic acid, abscisic acid, gibberellin A3, 6-benzylamino purine and δ-aminolevulinic acid do not show any activity; on the other hand, ethylene appears to replace partially the hypocotyl hooks.  相似文献   

16.
By use of surface electrodes electropotenlial measurements were carried out on hypocotyl hooks of Phaseolus vulgaris seedlings. The hooks were illuminated with a small spot of white, blue, red or far red light. The potential changes in bean hypocotyl hooks do not show the red-far red reversible characteristics of phytochrome-mediated processes. By experimenting with inhibitors of photosynthesis we could demonstrate that the light-triggered potential changes in green bean hooks are correlated to photosynthetic electron transport phenomena. The red-light-induced transient is a depolarization, whereas blue light induces a hyperpolarization. Etiolated beans exhibit no bioelectric potential changes when subjected to red or far red irradiations. Blue light and white light induce a strong hyperpolarization in etiolated hooks cells. This transient seems to be an action potential induced by light. The action potential is influenced by inhibitors of electron transport and oxidative phosphorylation. By comparing the action spectrum of the action potential induced by light with the absorption spectra of extracted carotenoids and xanthophylls from etiolated bean hypocotyl hooks, we observed similarities.  相似文献   

17.
SUMMARY. Various species of ciliates are characterized by the formation and accumulation in the cytoplasm of mineral concretions which are refringent, isotropic or anisotropic. These cytoplasmic inclusions most often are composed of calcium carbonate; in several species, however, their nature remains partially or even totally undetermined. The isotropic calcium-containing concretions often exhibit a definite shape; the calcium carbonate in this case appears to be bound to an organic substrate. The physiological role of the calcic concretions is not known; their characteristic presence in a given species is not necessarily related to ecological conditions. In a few species the calcification is localized in definite structures: spicules, skeletal plates, or otoliths of organelles supposedly sensory in nature.  相似文献   

18.
In Caulobacter crescentus biogenesis of the flagellar organelle occurs during one stage of its complex life cycle. Thus in synchronous cultures it is possible to assay the sequential synthesis and assembly of the flagellum and hook in vivo with a combination of biochemical and radioimmunological techniques. The periodicity of synthesis and the subcellular compartmentation of the basal hook and filament subunits were determined by radioimmune assay procedures. Unassembled 27,000-dalton (27K) flagellin was preferentially located in isolated membrane fractions, whereas the 25K flagellin was distributed between the membrane and cytoplasm. The synthesis of hook began before that of flagellin, although appreciable overlap of the two processes occurred. Initiation of filament assembly coincided with the association of newly synthesized hook and flagellin subunits. Caulobacter flagella are unusual in that they contain two different flagellin subunits. Data are presented which suggest that the ratio of the two flagellin subunits changes along the length of the filament. Only the newly synthesized 25K flagellin subunit is detected in filaments assembled during the swarmer cell stage. By monitoring the appearance of flagellar hooks in the culture medium, the time at which flagella are released was determined.  相似文献   

19.
The chemistry and physical structure of statoliths of young cubozoan medusae (Carybdea sp.) were examined by X-ray spectroscopy (EDX) and X-ray powder diffractometry (XRD). These concretions, associated with sensory receptors, were found to consist of bassanite (calcium sulfate hemihydrate), a dense but hygroscopic biomineral. Bassanite occurs in a cluster of radially oriented crystals in a druse, which contains perfect hexagonal crystals. This discovery provides evidence that the Rhopaliophora (Scyphozoa and Cubozoa) originated from an ancestor having statoliths of bassanite.  相似文献   

20.
Soil fungi can facilitate calcification. Mushroom Morchella sp . mycelium induced the formation of carbonate concretions on the surface of an organic-based growing media amended with sand and ground limestone. According to SEM observation and X-ray-tomographic microscopy a dense mycelial network induced calcification. The CaCO3 content of concretions (?: 0.3–1.5 cm) was found to be at 30%. Microsparitic calcite cemented the pores between the sand grains forming a dense clogging microstructure. Besides water uptake by the mycelium, a high evaporation rate and a decrease in pCO2 contributed to the formation of the concretions. Fungal mycelium in the concretions is surrounded by voids indicating that at the surface of the mycelium, calcification is counteracted most probably by the release of organic acids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号