首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Fatty acid utilization during development of the rat   总被引:5,自引:4,他引:1  
The effects of dimethyl sulphoxide and glycerol on ox brain microsomal Na(+)+K(+)-stimulated adenosine triphosphatase (EC 3.6.1.3), K(+)-stimulated p-nitrophenyl phosphatase and K(+)-dependent muscle pyruvate kinase (EC 2.7.1.40) were studied. Dimethyl sulphoxide at concentrations below 20% (v/v) was found to stimulate the p-nitrophenyl phosphatase and pyruvate kinase by increasing their affinity for K(+) but to inhibit the Na(+)+K(+)-stimulated adenosine triphosphatase. The latter enzyme activity was also inhibited by glycerol, which like dimethyl sulphoxide, stimulated the K(+)-activated p-nitrophenyl phosphatase at a wide range of concentrations. The solvent effects were promptly reversed by dilution. Similarity was found between glycerol and dimethyl sulphoxide, on one hand, and ATP, on the other, in their stimulatory effect and their ability to increase the ouabain- and oligomycin-sensitivity of the K(+)-stimulated p-nitrophenyl phosphatase. However, only the solvents, not the ATP, increased the binding of K(+) by the microsomes. From the above findings it is suggested that solvents may act on K(+)-dependent enzymes by altering the state of solvation of the activating cation as well as by changing the enzyme structure.  相似文献   

2.
Inorganic lead ion in micromolar concentrations inhibits Electrophorus electroplax microsomal (Na+ + K+)-adenosine triphosphatase ((Na+ + K+)-ATPase) and K+-p-nitrophenylphosphatase (NPPase). Under the same conditions, the same concentrations of PbCl2 that inhibit ATPase activity also stimulate the phosphorylation of electroplax microsomes in the absence of added Na+. Enzyme activity is protected from inhibition by increasing concentrations of microsomes, ATP, and other metal ion chelators. The kinetics follow the pattern of a reversible noncompetitive inhibitor. No kinetic evidence is elicited for interactions of Pb2+ with Na+, K+, Mg2+, ATP, or p-nitrophenylphosphate. Na+- ATPase, in the absence of K+, and (Na+ + K+)-NPPase activity at low [K+] are also inhibited. ATP inhibition of NPPase is not reversed by Pb2+. The calculated concentrations of free [Pb2+] that produce 50% inhibition are similar for ATPase and NPPase activities. Pb2+ may act at a single independent binding site to produce both stimulation of the kinase and inhibition of the phosphatase activities.  相似文献   

3.
Application of picomole quantities of (+)-adenosine, a plant growth-regulating second messenger elicited by triacontanol, to tomato (Lycopersicon esculentum Mill.), maize (Zea mays L.), and cucumber (Cucumis sativa L.) foliage, increased Ca2+, Mg2+, and K+ concentrations in the exudate from the stumps of excised plants by 20 to 60% within 5 s after treatment. The change in ionic concentration of the exudate was transitory. When L(+)-adenosine and triacontanol were applied to different tomato plants at the same time, the L(+)-adenosine caused an increase in Ca2+ flux within 3 s, whereas a significant increase from triacontanol was not detectable until 5 min after application. This was expected because triacontanol elicits the formation of L(+)-adenosine. The enantiomer of L(+)-adenosine, D(-)-adenosine, had no effect on the cation concentration in tomato and inhibited the effect of L(+)-adenosine at equimolar or lower concentrations. These observations suggest that L(+)-adenosine acts by eliciting a rapidly propagated signal that increases the concentration of several ions in the apoplast. We postulate that modulations in apoplastic ion concentration, especially increases in Ca2+ concentration, constitute a mechanism by which plants regulate metabolic activity and growth in response to certain stimuli.  相似文献   

4.
Murine embryonal carcinoma cells (EC) can be induced to differentiate by a variety of chemical agents, including retinoid acid (RA) and dimethyl acetamide (DMA). However, it is not known how these agents exert their effects. In this study we demonstrate that murine EC cells can also be induced to differentiate by ouabain at concentrations which inhibit Na+, K+-ATPase activity as measured by inhibition of 86Rb+ uptake. Since the pharmacologic action of ouabain is thought to be specific, we investigated the role of Na+, K+-ATPase inhibition and specific metabolic consequences of this inhibition in the induction of EC differentiation, and explored whether this might be a common mode of action for a variety of structurally diverse inducers. Although the Na+, K+-ATPase maintains ion gradients in cells, our studies failed to demonstrate a consistent role for alterations of ion flux or ion concentration on the differentiation process. Ouabain inhibited cell growth, but a direct correlation between the degree of growth inhibition and the extent of differentiation could not be demonstrated. There was also no evidence that RA or DMA induces differentiation by inhibiting the Na+, K+-ATPase. The mechanism of ouabain induction may be mediated by some alternative consequence of Na+, K+-ATPase inhibition, but it appears to be specific for that inducer and cannot be generalized to that of other inducers of EC differentiation.  相似文献   

5.
T Hirano  K Oka  M Akiba 《Life sciences》1989,45(12):1111-1117
A comparative study was made of the effects of 15 synthetic and naturally occurring flavonoids on the hydrolytic activity of Na+, K+-adenosine triphosphatase (ATPase). Twelve of the flavonoids examined were mono-hydroxy or mono-methoxy derivatives. All inhibited Na+, K+-ATPase from dog kidney cortex when present at concentrations from 40-1000 microM. Flavones possessing cyclohexyl instead of the phenyl group (i.e., 2-cyclohexyl-benzopyran-4-one derivatives), were the most potent with IC50 at 257-320 microM. Structure-activity relationships were observed among the following mono-substituted flavones as: i) 2-cyclohexyl-benzopyran-4-one much greater than 2-phenyl-benzopyran-4-one; ii) 2-cyclohexyl-7-hydroxybenzopyran-4-one greater than 2-cyclohexyl-6-hydroxybenzopyran-4-one greater than 2-cyclohexyl-5-hydroxybenzopyran-4-one. Some flavonoids showing potent inhibitory activity were also examined for ouabain-displacement activity on human erythrocytes. Hardly any of the flavonoids were able to block [3H]ouabain binding to erythrocytes. These results suggest that the mechanism by which flavonoid block Na+, K+-ATPase is not related to the cardiac glycoside-specific binding site(s) of this enzyme.  相似文献   

6.
The possibility that H+ might substitute for Na+ at Na+ sites of Na+,K+-ATPase was studied. Na+,K+-ATPase purified from pig kidney showed ouabain-sensitive K+-dependent ATPase activity in the absence of Na+ at acid pH (H+,K+-ATPase). The specific activity was 1.1 mumol Pi/mg/min at pH 5.7, whereas the specific activity of Na+,K+-ATPase was 14 mumol Pi/mg/min at pH 7.5. The enzyme was phosphorylated from ATP in the absence of Na+ at the acid pH. The initial rate of the phosphorylation was also accelerated at the acid pH in the absence of Na+, and the maximal rate obtained at pH 5.5 without Na+ was 9% of the rate at pH 7.0 with Na+. The phosphoenzyme was sensitive to K+ but almost insensitive to ADP. The phosphoenzyme was sensitive to hydroxylamine treatment and the alpha-subunit of the enzyme was found to be phosphorylated. H+,K+-ATPase was inhibited as effectively as Na+,K+-ATPase by N-ethylmaleimide but was less inhibited by oligomycin or dimethyl sulfoxide. These results indicate that protons have an Na+-like effect on the Na+ sites of Na+,K+-ATPase and suggest that protons can be transported by the sodium pump in place of Na+.  相似文献   

7.
Inhibition of (Na+ + K+)-dependent adenosine triphosphatase phosphatase by vanadate is thought to occur through the tight binding of vanadate to the same site from which Pi is released. To see if ATP binds to [48V] vanadate-enzyme complex, just as it does to the phosphoenzyme, the effects of Na+, K+, and ATP on the dissociation rate of the complex at 10 degrees C were studied. The rate constant was increased by Na+, and this increase was blocked by K+, indicating that either Na+ or K+ binds to the complex. ATP alone, or in combination with K+, had no effect on the rate constant. In the presence of Na+, however, ATP caused a further increase in the rate constant. The value of K0.5 of Na+ was the same in the presence or absence of ATP; K0.5 of ATP (0.2 mM) did not seem to change significantly when Na+ concentration was varied, and K0.5 of K+, at a constant Na+ concentration, was the same in the presence or absence of ATP. The data indicate that ATP binds to the enzyme-vanadate complex regardless of the presence or absence of Na+ or K+, but it affects the dissociation rate only when Na+ is bound simultaneously. The value of K0.5 of Na+ decreased as pH was increased in the range of 6.5-7.8, but K0.5 of ATP was independent of pH. Demonstration of ATP binding to the enzyme-vanadate complex provides further support for the suggestion that the oligomeric enzyme contains a low-affinity regulatory site for ATP that is distinct from the interacting high-affinity catalytic sites.  相似文献   

8.
B Vilsen 《Biochemistry》1999,38(35):11389-11400
Mutant Phe788 --> Leu of the rat kidney Na+,K(+)-ATPase was expressed in COS cells to active-site concentrations between 40 and 60 pmol/mg of membrane protein. Analysis of the functional properties showed that the discrimination between Na+ and K+ on the two sides of the system is severely impaired in the mutant. Micromolar concentrations of K+ inhibited ATP hydrolysis (K(0.5) for inhibition 107 microM for the mutant versus 76 mM for the wild-type at 20 mM Na+), and at 20 mM K+, the molecular turnover number for Na+,K(+)-ATPase activity was reduced to 11% that of the wild-type. This inhibition was counteracted by Na+ in high concentrations, and in the total absence of K+, the mutant catalyzed Na(+)-activated ATP hydrolysis ("Na(+)-ATPase activity") at an extraordinary high rate corresponding to 86% of the maximal Na+,K(+)-ATPase activity. The high Na(+)-ATPase activity was accounted for by an increased rate of K(+)-independent dephosphorylation. Already at 2 mM Na+, the dephosphorylation rate of the mutant was 8-fold higher than that of the wild-type, and the maximal rate of Na(+)-induced dephosphorylation amounted to 61% of the rate of K(+)-induced dephosphorylation. The cause of the inhibitory effect of K+ on ATP hydrolysis in the mutant was an unusual stability of the K(+)-occluded E2(K2) form. Hence, when E2(K2) was formed by K+ binding to unphosphorylated enzyme, the K(0.5) for K+ occlusion was close to 1 microM in the mutant versus 100 microM in the wild-type. In the presence of 100 mM Na+ to compete with K+ binding, the K(0.5) for K+ occlusion was still 100-fold lower in the mutant than in the wild-type. Moreover, relative to the wild-type, the mutant exhibited a 6-7-fold reduced rate of release of occluded K+, a 3-4-fold increased apparent K+ affinity in activation of the pNPPase reaction, a 10-11-fold lower apparent ATP affinity in the Na+,K(+)-ATPase assay with 250 microM K+ present (increased K(+)-ATP antagonism), and an 8-fold reduced apparent ouabain affinity (increased K(+)-ouabain antagonism).  相似文献   

9.
In the present work we reported the results of the study of erythrocyte membrane Na+,K(+)-adenosine triphosphatase (ATPase) and Mg(2+)-ATPase in patients with essential hypertension and controls. In the 40 patients with hypertension, a more marked decrease of Na+, K(+)-ATPase was observed. The behavior of the enzyme at Mg2+ activation, ouabain inhibition and the response to different temperature suggest the possibility of differences between the two groups. The normal erythrocyte Mg(2+)-ATPase activity in two groups suggest also the possible role of ratio Na+, K(+)-ATPase/Mg(2+)-ATPase in the study of essential hypertension. However the relevance of magnesium and Mg(2+)-ATPase to the pathogenesis of essential hypertension remains unclear but merits further study. On the basis of these considerations the aim of the present study was to identify, in a kinetic approach, the presence of different abnormalities of Na+ transport and Na+, K(+)-ATPase in erythrocytes from patients with essential hypertension. Much evidence has supported the hypothesis that essential hypertension is a heterogeneous disease in the pathophysiological mechanisms as well as in its clinical and therapeutical consideration.  相似文献   

10.
L C Cantley  L Josephson 《Biochemistry》1976,15(24):5280-5287
We have examined slow changes in the rate of ATP hydrolysis for purified dog kidney Na+ and K+ stimulated adenosine triphosphatase [(Na-K)ATPase] at various concentrations of free Mg2+, Mg-ATP, K+, and Na+. The effect of these ligands on the rate of ATP hydrolysis is explained by a rapid binding step determining the initial rate of turnover followed by a slow conformational change. Inactivation of enzyme stored in the presence of ethylenediaminetetraacetic acid occurs upon adding free Mg2+, Mg-ATP, and K+; reactivation may be achieved if the concentration of these ligands is reduced. Because of the slow conformational change, the affinities for ligands affecting inactivation are time dependent. A model is presented to explain the effects of free Mg2+ and Ma-ATP on (Na-K)ATPase activity.  相似文献   

11.
The (Na+ and K+)-stimulated adenosine triphosphatase (Na+,K+)-ATPase) from canine kidney reconstituted into phospholipid vesicles showed an ATP-dependent, ouabain-inhibited uptake of 22Na+ in the absence of added K+. This transport occurred against a Na+ concentration gradient, was not affected by increasing the K+ concentration to 10 microM (four times the endogenous level), and could not be explained in terms of Na+in in equilibrium Na+out exchange. K+-independent transport occurred with a stoichiometry of 0.5 mol of Na+ per mol of ATP hydrolyzed as compared with 2.9 mol of Na+ per mol of ATP for K+-dependent transport.  相似文献   

12.
The effect of K+, Na+, Mg2+ and ATP on the p-nitrophenylphosphatase activity was investigated. As an enzyme preparation a microsomal fraction of sheep lymphocytes was used. Low concentrations of Mg2+, K+ and Na+ increased, whereas high concentrations decreased the enzyme activity. There was an inhibition of activity by ATP without Na+ in the incubation medium and an increase of enzyme activity at low K:Na-ratio. By concanavalin A in a concentration of 15 mug/ml the p-nitrophenylphosphatase activity was increased in intact cells and the microsomal fraction for 30-40%. The activation was not Na+, K+, Mg2+, p-nitrophenylphosphate or ATP dependent.  相似文献   

13.
Cells of marine pseudomonad B-16 (ATCC 19855) washed with a solution containing 0.3 M NaCl, 50 mM MgCl2, and 10 mM KCl (complete salts) could be protected from lysis in a hypotonic environment if the suspending medium contained either 20 mM Mg2+, 40 mM Na+, or 300 mM K+. When the outer double-track layer (the outer membrane) of the cell envelope was removed to yield mureinoplasts, the Mg2+, Na+ or K+, requirements to prevent lysis were raised to 80, 210, and 400 mM, respectively. In the presence of 0.1% Triton X-100, 220, 320, and 360 mM Mg2+, Na+ or K+, respectively, prevented lysis of the normal cells. Mureinoplasts and protoplasts, however, lysed instantly in the presence of the detergent at all concentrations of Mg2+, Na+, or K+ tested up to 1.2 M. Thus, the structure of the outer membrane appears to be maintained by appropriate concentrations of Mg2+ or Na+ in a form preventing the penetration of Triton X-100 and thereby protecting the cytoplasmic membrane from dissolution by the detergent. K+ was effective in this capacity with cells washed with complete salts solution but not with cells washed with a solution of NaCl, suggesting that bound Mg2+ was required in the cell wall membrane for K+ to be effective in preventing lysis by the detergent. At high concentrations (1 M) K+ and Mg2+, but not Na+, appeared to destabilize the structure of the outer membrane in the presence of Triton X-100.  相似文献   

14.
It has been shown that the intracellular concentrations of Na+, K+, and Cl- ions in Desulfonatronum thiodismutans depend on the extracellular concentration of Na' ions. An increase in the extracellular concentration of Na+ results in the accumulation of K+ ions in cells, which points to the possibility that these ions perform an osmoprotective function. When the concentration of the NaCI added to the medium was increased to 4%, the concentration gradient of Cl- ions changed insignificantly. It was found that D. thiodismutans contains two forms of hydrogenase--periplasmic and cytoplasmic. Both enzymes are capable of functioning in solutions with high ionic force; however they exhibit different sensitivities to Na+, K+, and Li+ salts and pH. The enzymes were found to be resistant to high concentrations of Na+ and K+ chlorides and Na+ bicarbonate. The cytoplasmic hydrogenase differed significantly from the periplasmic one in having much higher salt tolerance and lower pH optimum. The activity of these enzymes depended on the nature of both the cationic and anionic components of the salts. For instance, the inhibitory effect of NaCl was less pronounced than that of LiCl, whereas Na+ and Li+ sulfates inhibited the activity of both hydrogenase types to an equal degree. The highest activity of these enzymes was observed at low Na+ concentrations, close to those typical of cells growing at optimal salt concentrations.  相似文献   

15.
These in vitro studies of golden hamster sperm were undertaken to determine whether: Na+, K+-adenosine triphosphatase (ATPase) activity is required for capacitation; Na+, K+-ATPase activity is altered during capacitation; and cyclic nucleotides can control this enzyme activity. Hamster sperm were incubated in a medium in which capacitation occurred in an asynchronous manner and in which acrosome reactions began to occur after approximately 3.5 h of incubation. Inhibition of the hamster sperm acrosome reaction by the Na+, K+-ATPase inhibitor ouabain (1 microM) added at Time (T) = 2 or T = 3 h could be fully reversed by the addition of the ionophore nigericin (0.1 microM) at T = 3.5 h. However, when ouabain was added at T = 0 or T = 1 h, similar nigericin addition could not completely reverse the inhibition. Na+, K+-ATPase activity of hamster sperm increased by 2 h of incubation (compared to that measured initially after 15 min) and this activity remained elevated at 3.5 h. Addition of either monobutyryl cyclic adenosine 3':5'-monophosphate ( BtcAMP ) (12.9 microM) or monobutyryl cyclic guanosine monophosphate ( BtcGMP ) (10.5 microM), or the phosphodiesterase inhibitor SQ20009 (10 microM) at 2 h produced a stimulation of acrosome reactions at 4 and 5 h. However, while BtcGMP and SQ 20009 also induced a further increase in Na+, K+-ATPase activity measured at 3.5 h, BtcAMP had no effect. Intracellular cAMP and cGMP levels measured showed cAMP increased by 2 h and remained elevated when measured at 3.5 h, while cGMP could not be consistently detected at 15 min, 2 h or 3.5 h. However, assays of high numbers of uncapacitated sperm did detect a low level of cGMP. These results suggest that Na+, K+-ATPase activity increases in and is essential for early capacitation [and thereby eventually for the acrosome reaction (AR)] of hamster sperm and that the increase in Na+, K+-ATPase activity occurring during capacitation is probably mediated by intracellular cGMP but not cAMP, although both cyclic nucleotides stimulate the hamster sperm AR.  相似文献   

16.
The objective of the present investigation was to characterize the ATP-dependent Na+-Na+ exchange, with respect to cation sensitivity on the two aspects of the Na+/K+-pump protein. In order to accomplish this, we used Na+/K+-ATPase reconstituted with known orientation in the proteoliposomes. Activation by cytoplasmic Na+ shows cooperative interaction between three sites. The apparent intrinsic site constants displayed transmembrane dependence on the extracellular Na+ concentration. However, the apparent K0.5 for cytoplasmic Na+ is independent of the extracellular Na+ concentration. The activation by extracellular Na+ at a fixed cytoplasmic Na+ concentration is biphasic with a component which saturates at a concentration of about 1-2 mM extracellular Na+, a plateau phase up to 20 mM, and another component which tends to saturate at about 80 mM followed by a slight deactivation at higher concentrations of Na+. The apparent K0.5 value for extracellular Na+ is also found to be independent of the Na+ concentration on the opposite side of the membrane. The activation by extracellular Na+ can be explained by the negative cooperativity in the binding of extracellular Na+, but positive cooperativity in the rate of dephosphorylation of enzyme species with one and three sodium ions bound extracellularly. Na+ bound to E2-PNa has a transmembrane effect on the cooperativity between binding of cytoplasmic Na+, and E2-PNa2 does not dephosphorylate. K0.5/Vm for cytoplasmic as well as for extracellular Na+ decreases with an increase in the trans Na+ concentration in the non-saturating concentration range. The experiments indicate that at a step in the reaction simultaneous binding of extracellular and cytoplasmic Na+ occurs.  相似文献   

17.
The effect of thyroid hormones (T4, T3 and reverse T3) on rat renal Na+,K+-ATPase activity was investigated by a cytochemical technique. T3 caused stimulation of Na+,K+-ATPase activity in the renal medulla but not in the renal cortex. There was a peak in enzyme activity after cultured renal segments had been exposed to T3 for 11 min and this time of maximal stimulation did not vary with the concentration of T3. A rectilinear response in Na+,K+-ATPase activity was observed over T3 concentration range 10 pmol l-1 to 100 nmol l-1; at higher T3 concentrations, Na+,K+-ATPase activity was inhibited. The enzyme response was totally blocked by specific T3 antiserum. Addition of T4 and reverse T3 (100 fmol l-1 -1 mmol l-1) failed to stimulate Na+,K+-ATPase activity in any part of the kidney. Plasma (neat and diluted 1:10) stimulated the enzyme in parallel with the dose response curve and the stimulatory effect was abolished by prior addition of specific T3 antiserum.  相似文献   

18.
Nerve growth factor (NGF) is required for the growth and development of sensory and sympathetic neurons. Incubation of chick dorsal root ganglionic cells without NGF resulted in a decrease of active (Na+,K+-pump-mediated) K+ influx over a period of several hours. Addition of NGF to NGF-deprived cells caused 1) a return of the active K+ influx to the values occurring in cells continuously exposed to NGF, preceded by 2) a very rapid, but transient overstimulation of the Na+,K+-pump-mediated K+ influx. Restoration of normal Na+,K+-pump activity occurred at NGF concentrations of 1 biological unit/ml or greater, whereas the NGF concentration in the 1-100 biological unit/ml range affected the rapidity with which the pump restoration took place. The transient pump behavior was only observed in NGF-deprived cells and could not be elicited in NGF-supported steady-state cells or in cells having already received delayed NGF once. This transient Na+,K+-pump behavior was exclusively displayed in conjunction with a high intracellular Na+ concentration. Decreasing the external Na+ concentration below 70 mM reduced the hyperstimulation response to NGF, until at 10 mM Na+ the delayed presentation of NGF caused no overshoot at all. The effect of NGF on the Na+,K+-pump was specific for the NGF molecule and could not be mimicked by other proteins.  相似文献   

19.
The rate of phosphorylation of sodium and potassium ion-transport adenosine triphosphatase by 10 microM [gamma-32P]ATP was much slower with Ca2+ than with Mg2+ (0.13-10 mM) in the presence of 16 to 960 mM Na+ at 0 degrees C and pH 7.4. In the presence of a fixed concentration of Mg2+ or Ca2+, the rate became slower with increasing Na+ concentration. When the Na+ concentration was fixed, the rate became slower with decreasing divalent cation concentration. Sodium ions appear to antagonize the divalent cation in the phosphorylation to slow its rate. In the presence of 1 mM Ca2+ and 126 or 270 mM Na+, the rate was slow enough to permit the manual addition of a chasing solution at various times before the phosphorylation reached the steady state. Therefore, we studied the time-dependent change of the sensitivity to ADP or to K+ of the phosphoenzyme by a chase with unlabeled ATP containing ADP or K+ during the time range from the transient to the steady state of the phosphorylation. The ADP sensitivity decreased and the K+ sensitivity increased with the progress of the phosphorylation. With 270 mM Na+, the phosphoenzyme found at 1 s, when its amount was 5.5% of the maximum level, was virtually completely sensitive to ADP. Under these conditions, it was concluded that the form of the phosphoenzyme initially produced from the enzyme.ATP complex has ADP sensitivity and that the phosphoenzyme acquires K+ sensitivity later. The initially produced ADP-sensitive phosphoenzyme partially lost its normal instability and sensitivity upon adding a chelating agent, probably because of dissociation of a divalent cation from the phosphoenzyme.  相似文献   

20.
We examined effects of ethanol and dimethyl sulfoxide on the regulation and apparent thermodynamic properties of moderate affinity Na+ and K+ binding that regulates the K+-dependent phosphatase activity of (Na+,K+)-ATPase. Ethanol and other alcohols reduced the apparent affinity for Na+ and K+ at their moderate affinity sites and increased the negative delta H and delta S of cation binding. Dimethyl sulfoxide had the opposite effects. Inhibition by ethanol was favored by high temperature or low K+. Ethanol potentiated inhibition of K+ binding by ATP or Mg2+. Ethanol also shifted the equilibrium between K+-sensitive and -insensitive forms of (Na+,K+)-ATPase toward the K+-sensitive form; in this case, it reduced the negative delta H and delta S for the transition to K+-sensitive enzyme. Again, dimethyl sulfoxide had the opposite effects. These data indicate that ethanol and other agents considered to affect membrane fluidity act by a combination of membrane (on cation binding) and solvent (on conformation) effects. The most important effect of ethanol and similar agents on the enzyme is to prevent the formation of K+-sensitive enzyme by cation binding and to destabilize K+-sensitive enzyme in the presence of ATP. These results also add further evidence that the sites by which Na+ and K+ produce K+-sensitive enzyme are similar or identical.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号