首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Substrate-supported planar lipid bilayer membranes are attractive model cellular membranes for biotechnological applications such as biochips and sensors. However, reliable fabrication of the lipid membranes on solid surfaces still poses significant technological challenges. In this study, simultaneous surface plasmon resonance (SPR) and surface plasmon fluorescence spectroscopy (SPFS) measurements were applied to the monitoring of adsorption and subsequent reorganization of phospholipid vesicles on solid substrates. The fluorescence intensity of SPFS depends very sensitively on the distance between the gold substrate and the fluorophore because of the excitation energy transfer to gold. By utilizing this distance dependency, we could obtain information about the topography of the adsorbed membranes: Adsorbed vesicles could be clearly distinguished from planar bilayers due to the high fluorescence intensity. SPSF can also incorporate various analytical techniques to evaluate the physicochemical properties of the adsorbed membranes. As an example, we demonstrated that the lateral mobility of lipid molecules could be estimated by observing the recovery of fluorescence after photobleaching. Combined with the film thickness information obtained by SPR, SPR-SPFS proved to be a highly informative technique to monitor the lipid membrane assembly processes on solid substrates.  相似文献   

2.
Trichosanthin (TCS) is a toxic protein isolated from a Chinese herbal medicine, the root tuber of Trichosanthes kirilowii Maximowicz of the Curcurbitaceae family. It is now used in China to terminate early and mid-trimester pregnancies. The ribosome inactivating property is thought to be account for its toxicity; it can inactivate the eukaryotic ribosome through its RNA N-glycosidase activity. The interactions of TCS with biological membrane is thought to be essential for its physiological effect, for it must get across the membrane before it can enter the cytoplasm and exert its RIP function. In the present work, the interaction of TCS with supported phospholipid monolayers is studied by surface plasmon resonance. The results show that electrostatic forces dominate the interaction between TCS and negatively charged phospholipid containing membranes under acid condition and that both the pH value and the ionic strength can influence its binding. It is proposed that, besides electrostatic forces, hydrophobic interaction may also be involved in the binding process.  相似文献   

3.
4.
Substrate-supported planar lipid bilayers are generated most commonly by the adsorption and transformation of phospholipid vesicles (vesicle fusion). We have recently demonstrated that simultaneous measurements of surface plasmon resonance (SPR) and surface plasmon fluorescence spectroscopy (SPFS) are highly informative for monitoring lipid membranes on solid substrates. SPR and SPFS provide information on the amount and topography of adsorbed lipid membranes, respectively. In this study, the vesicle fusion process was studied in detail by measuring SPR-SPFS at a higher rate and plotting the obtained fluorescence intensity versus film thickness. We could track the initial adsorption of vesicles, the onset of vesicle rupture occurring at certain vesicle coverage of the surface, and the autocatalytic transformation into planar bilayers. We also monitored vesicle fusion of the same vesicle suspensions by quartz crystal microbalance with dissipation monitoring (QCM-D). We compared the results obtained from SPR-SPFS and QCM-D to highlight the unique information provided by SPR-SPFS.  相似文献   

5.
Mouri R  Konoki K  Matsumori N  Oishi T  Murata M 《Biochemistry》2008,47(30):7807-7815
Amphotericin B (AmB) is a membrane-active antibiotic that increases the permeability of fungal membranes. Thus, the dynamic process of its interaction with membranes poses intriguing questions, which prompted us to elaborate a quick and reliable method for real-time observation of the drug's binding to phospholipid liposomes. We focused on surface plasmon resonance (SPR) and devised a new modification method of sensor chips, which led to a significant reduction in the level of nonspecific binding of the drug in a control lane. With this method in hand, we examined the affinity of AmB for various membrane preparations. As expected, AmB exhibited much higher affinity for sterol-containing palmitoyloleoylphosphatidylcholine membranes than those without sterol. The sensorgrams recorded under various conditions partly fitted theoretical curves, which were based on three interaction models. Among those, a two-state reaction model reproduced well the sensorgram of AmB binding to an ergosterol-containing membrane; in this model, two states of membrane-bound complexes, AB and AB*, are assumed, which correspond to a simple binding to the surface of the membrane (AB) and formation of another assembly in the membrane (AB*) such as an ion channel complex. Kinetic analysis demonstrated that the association constant in ergosterol-containing POPC liposomes is larger by 1 order of magnitude than that in the cholesterol-containing counterpart. These findings support the previous notion that ergosterol stabilizes the membrane-bound assembly of AmB.  相似文献   

6.
Duverger E  Frison N  Roche AC  Monsigny M 《Biochimie》2003,85(1-2):167-179
The specificity, the strength, the kinetics and some thermodynamic parameters of sugar-protein interactions are easily assessed by surface plasmon resonance (SPR). This paper intends to present both theoretical and practical considerations. This includes: the principle of SPR, the analysis according to Langmuir and Scatchard, the problems linked either to mass transport limitation, to the heterogeneity of the immobilized ligand density or to the non-linearity due to cluster effects. The non-linearity may be taken into account by either one of two ways: the fractal or the Sips approaches that have been developed with the aim of linearizing the data. In addition, selected data obtained by using either immobilized carbohydrates or immobilized lectins are summarized. The SPR has also been found useful to collect information concerning oligosaccharide structure as well as lectin-sugar specificity and to develop new tools with medical applications. Finally, a series of practical considerations are gathered in the hope of avoiding some of the common pitfalls arising in sugar-lectin interaction studies based on the use of SPR.  相似文献   

7.
The detection and quantification of specific proteins in complex mixtures is a major challenge for proteomics. For example, the development of disease-related biomarker panels will require fast and efficient methods for obtaining multiparameter protein profiles. We established a high throughput, label-free method for analyzing serum using surface plasmon resonance imaging of antibody microarrays. Microarrays were fabricated using standard pin spotting on bare gold substrates, and samples were applied for binding analysis using a camera-based surface plasmon resonance system. We validated the system by measuring the concentrations of four serum proteins using part of a 792-feature microarray. Transferrin concentrations were measured to be 2.1 mg/ml in human serum and 1.2 mg/ml in murine serum, which closely matched ELISA determinations of 2.6 and 1.2 mg/ml, respectively. In agreement with expected values, human and mouse albumin levels were measured to be 24.3 and 23.6 mg/ml, respectively. The lower limits of detection for the four measurements ranged from 14 to 58 ng/ml or 175 to 755 pm. Where purified target proteins are not available for calibration, the microarrays can be used for relative protein quantification. We used the antibody microarray to compare the serum protein profiles from three liver cancer patients and three non-liver cancer patients. Hierarchical clustering of the serum protein levels clearly distinguished two distinct profiles. Thirty-nine significant protein changes were detected (p < 0.05), 10 of which have been observed previously in serum. alpha-Fetoprotein, a known liver cancer marker, was observed to increase. These results demonstrate the feasibility of this high throughput approach for both absolute and relative protein expression profiling.  相似文献   

8.
We present a new integrated-optic surface plasmon resonance (SPR) biosensor based on electro-optical modulation. The SPR characteristics for the analyte concentration detection can be electro-optically modulated by applying the voltage on the electrodes of the biosensor fabricated on lithium niobate, which is an excellent electro-optic material. Two measurement methods, electro-optically modulated SPR spectral measurement and electro-optically modulated SPR intensity measurement, are demonstrated and their measurands are the SPR wavelength and the output optical intensity, respectively. Human serum albumin is coated on the gold film surface of the proposed biosensor to detect the concentration of beta-blocker, which is a remedy for heart disease. As the applied voltage increases such that the effective index of guided mode rises, the SPR wavelength shifts toward the long wavelength side and the output optical intensity at the wavelength of 632.8 nm diminishes. The linear regression slope of the relation between the measurand and the applied voltage is dependent on the analyte concentration and can be used to determine the concentration variation. Experimental results measured by the electro-optically modulated SPR methods are compared with those measured by the conventional spectral and intensity methods, and the effects of waveguide width on the biosensor performance are discussed.  相似文献   

9.
Surface plasmon resonance (SPR) biosensors are affinity sensing devices exploiting a special mode of electromagnetic field-surface plasmon-polariton-to detect the binding of analyte molecules from a liquid sample to biomolecular recognition elements immobilized on the surface of the sensor. In this paper, we review advances of SPR biosensor technology towards detection systems for the simultaneous detection of multiple analytes (multi-analyte detection). In addition, we report application of a recently developed multichannel SPR sensor based on spectroscopy of surface plasmons and wavelength division multiplexing of sensing channels to multi-analyte detection.  相似文献   

10.
VDAC - a mitochondrial channel involved in the control of aerobic metabolism and apoptosis - interacts in vitro and in vivo with a wide repertoire of proteins including cytoskeletal elements. A functional interaction between actin and Neurospora crassa VDAC was reported, excluding other VDAC isoforms. From a recent genome-wide screen of the VDAC interactome, we found that human actin is a putative ligand of yeast VDAC. Since such interaction may have broader implications for various mitochondrial processes, we probed it with Surface Plasmon Resonance (SPR) technology using purified yeast VDAC (YVDAC) and rabbit muscle G-actin (RGA). We show that RGA binds to immobilized YVDAC in a reversible and dose-dependent manner with saturating kinetics and an apparent KD of 50 μg/ml (1.2 μM actin). BSA does not bind VDAC regardless of the concentrations. Alternatively, VDAC binds similarly to immobilized RGA but without saturating kinetics. VDAC being known to interact with itself, this latter interaction was directly measured to interpret the RGA signals. VDAC could bind to VDAC without saturating kinetics as expected if higher order binding occurred, and could account for maximally 66% of the non-saturating behavior of VDAC binding onto RGA. Hence, actin-VDAC interactions are not a species-specific oddity and may be a more general phenomenon, the role of which ought to be further investigated.  相似文献   

11.
Direct measurement of VDAC-actin interaction by surface plasmon resonance   总被引:1,自引:0,他引:1  
VDAC--a mitochondrial channel involved in the control of aerobic metabolism and apoptosis--interacts in vitro and in vivo with a wide repertoire of proteins including cytoskeletal elements. A functional interaction between actin and Neurospora crassa VDAC was reported, excluding other VDAC isoforms. From a recent genome-wide screen of the VDAC interactome, we found that human actin is a putative ligand of yeast VDAC. Since such interaction may have broader implications for various mitochondrial processes, we probed it with Surface Plasmon Resonance (SPR) technology using purified yeast VDAC (YVDAC) and rabbit muscle G-actin (RGA). We show that RGA binds to immobilized YVDAC in a reversible and dose-dependent manner with saturating kinetics and an apparent K(D) of 50 microg/ml (1.2 microM actin). BSA does not bind VDAC regardless of the concentrations. Alternatively, VDAC binds similarly to immobilized RGA but without saturating kinetics. VDAC being known to interact with itself, this latter interaction was directly measured to interpret the RGA signals. VDAC could bind to VDAC without saturating kinetics as expected if higher order binding occurred, and could account for maximally 66% of the non-saturating behavior of VDAC binding onto RGA. Hence, actin-VDAC interactions are not a species-specific oddity and may be a more general phenomenon, the role of which ought to be further investigated.  相似文献   

12.
Two different strategies for scanning and screening of mutations in polymerase chain reaction (PCR) products by hybridization analysis are described, employing real-time biospecific interaction analysis (BIA) for detection. Real-time BIA was used to detect differences in hybridization responses between PCR products and different 17-mer oligonucleotide probes. For the analysis using a biosensor instrument, two different experimental formats were investigated based on immobilization of either biotinylated PCR products or oligonucleotide probes onto a sensor chip. Applied on the human tumour suppressor p53 gene, differences in hybridization levels for full-match and mismatch situations employing both formats allowed the detection of point mutations in exon 6 PCR products, derived from a breast tumour biopsy sample. In addition, a mutant sample sequence could be detected in a 50/50 background of wild type exon 6 sequence. The suitability of the different formats for obtaining a regenerable system and a high throughput of samples is discussed. © 1997 John Wiley & Sons, Ltd.  相似文献   

13.
Pol E  Wang L 《Biochemistry》2006,45(2):513-522
Surface plasmon resonance (SPR) detection technology was employed to investigate the kinetic mechanism of deoxyadenosine kinase from Mycoplasma mycoides ssp. mycoides SC. In our experimental approach, the enzyme was attached to the sensor surface, the reactants were injected in the mobile phase, and the product-enzyme complex formation was measured using the fact that the rate of product formation exceeds that of its dissociation. The pre-steady-state analysis of deoxyguanosine phosphorylation showed the presence of a burst phase, which is consistent with product dissociation being a rate-limiting step. High activity of the immobilized enzyme was demonstrated by analyzing the reaction mixture eluted from the chip and by determining the Michaelis-Menten constants for several phosphate acceptors (e.g., deoxyadenosine) and phosphate donors (e.g., ATP) using SPR detection. These values were in good agreement with those reported previously [Wang, L. et al. (2001) Mol. Microbiol. 42, 1065-1073]. The bisubstrate initial rate pattern obtained was characteristic of a sequential kinetic mechanism. Because in the method applied here it is the mass change on the surface that is monitored, a new mathematical approach to interpreting product inhibition experiments was proposed. According to that approach, product inhibition studies, supported by product binding experiments, indicated that the reaction mechanism was of Bi Bi sequential ordered type, involving the formation of a ternary complex, in which ATP and deoxyadenosine bound sequentially, followed by a transfer of the phosphate group, and an ordered release of products with ADP dissociating before dAMP.  相似文献   

14.
Biophysical techniques such as isothermal titration calorimetry (ITC) and surface plasmon resonance (SPR) are routinely used to ascertain the global binding mechanisms of protein-protein or protein-ligand interaction. Recently, Dumas etal, have explicitly modelled the instrument response of the ligand dilution and analysed the ITC thermogram to obtain kinetic rate constants. Adopting a similar approach, we have integrated the dynamic instrument response with the binding mechanism to simulate the ITC profiles of equivalent and independent binding sites, equivalent and sequential binding sites and aggregating systems. The results were benchmarked against the standard commercial software Origin-ITC. Further, the experimental ITC chromatograms of 2′-CMP + RNASE and BH3I-1 + hBCLXL interactions were analysed and shown to be comparable with that of the conventional analysis. Dynamic approach was applied to simulate the SPR profiles of a two-state model, and could reproduce the experimental profile accurately.  相似文献   

15.
There is a growing demand for the development of a new bioanalytical technique that is capable of monitoring neuronal differentiation noninvasively, in real time, and without any fluorescent probes. In a previous article, we demonstrated that a high-resolution two-dimensional surface plasmon resonance (2D–SPR) imager was very useful to monitor cell response on chemical stimulation in which protein kinase C (PKC) translocation was related. In the current study, we focused on developing a new method for monitoring neuronal differentiation and examined the application of the high-resolution 2D–SPR imager to monitor neuronal differentiation noninvasively and by a label-free format. We successfully monitored the intracellular signal transduction, which was mainly translocation of PKC in PC12 cells by the 2D–SPR imager, and found that the cells treated with a differentiation factor, nerve growth factor (NGF), showed a remarkable enhancement of 2D–SPR response to muscarine, carbachol, and acetylcholine stimulation. The results demonstrated that 2D–SPR sensing is applicable to in situ assessment of neuronal differentiation and to studying the expression state of the specific receptors in the living state.  相似文献   

16.
An epitope may be defined as a specific site on an antigen module characterized by the binding of one monoclonal antibody (MAb). Epitope mapping by surface plasmon resonance in the BIAcore biosensor may be performed to characterize an antigen or a group of specific MAbs or both. This article describes the BIAcore instrument and methods for such mapping. Examples include molecular interaction studies with simple and complex proteins, such as myoglobin and calprotectin, respectively.  相似文献   

17.
Ni(II) and Zn(II) M-DNA formation and denaturation of double-stranded DNA (dsDNA) by Cd(2+) were monitored by surface plasmon resonance (SPR). When exposed to immobilized 30 bp 50% GC dsDNA, Zn(2+) and Ni(2+) were found to give signals indicative of a conformational change at pH 8.5 but not 7.5, while Mg(2+) and Ca(2+) caused small changes at both pHs. The concentrations that gave 50% of the maximum responses were 0.06 and 0.50 mM for Zn(2+) and Ni(2+), respectively. At pH 8.5, Cd(2+) denatured over 40% of the dsDNA, while other metals denatured less than 5% of the DNA. Smaller pH-dependent signals were induced by Zn(2+), Ni(2+) or Cd(2+) with 50% GC single-stranded DNA (ssDNA), and with a homopolymer of d(T)30. Homopolymers d(A)30 and d(C)30 showed small signals that were largely independent of pH in the presence of Zn(2+) or Ni(2+).  相似文献   

18.
Cholesterol oxidase (ChOx) has been covalently immobilized onto 1-fluoro-2-nitro-4-azidobenzene (FNAB) modified poly-(3-hexylthiophene) (P3HT) self-assembled monolayer (SAM) onto gold coated glass plates. These ChOx/FNAB/P3HT/Au bio-electrodes have been characterized using contact angle (CA) measurements, UV-vis spectroscopy, electrochemical impedance technique, cyclic voltammetric technique and atomic force microscopic (AFM) technique, respectively. The ChOx/FNAB/P3HT/Au bio-electrodes were utilized for the estimation of cholesterol concentration in standard solutions using surface plasmon resonance (SPR) technique. It is shown that this SPR biosensor has linearity from 50 to 500 mg/dl of cholesterol in solution with detection limit of 50 mg/dl, sensitivity of 1.0 4 m degrees /(mg dl), reusability of around 15 times and a shelf-life of about 10 weeks when stored at 4 degrees C.  相似文献   

19.
The molecular chaperone activity of alphaB crystallin, an important stress protein in humans, is regulated by physiological factors, including temperature, pH, Ca2+, and ATP. In this study, the role of these factors in regulating the subunit dynamics of human alphaB crystallin was investigated using surface plasmon resonance (SPR). SPR experiments indicate that at temperatures above 37 degrees C, where alphaB crystallin has been reported to have higher chaperone activity, the subunit dynamics of alphaB crystallin were increased with faster association and dissociation rates. SPR experiments also indicate that interactions between alphaB crystallin subunits were enhanced with much faster association and slower dissociation rates at pH values below 7.0, where alphaB crystallin has been reported to have lower chaperone activity. The results suggest that the dynamic and rapid subunit exchange rate may regulate the chaperone activity of alphaB crystallin. The effect of Ca2+ and ATP on the subunit dynamics of alphaB crystallin was minimal, suggesting that Ca2+ and ATP modulate the chaperone activity of alphaB crystallin without altering the subunit dynamics. Based on the SPR results and previously reported biochemical data for the chaperone activity of alphaB crystallin under different conditions of temperature and pH, a model for the relationship between the subunit dynamics and chaperone activity of alphaB crystallin is established. The model is consistent with previous biochemical data for the chaperone activity and subunit dynamics of small heat shock proteins (sHSPs) and establishes a working hypothesis for the relationship between complex assembly and chaperone activity for sHSPs.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号