首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The mechanism responsible for the diminished activation of glycogen synthase (GS) in diabetic myotubes remains unclear, but may involve increased activity and/or expression of glycogen synthase kinase-3 (GSK-3). In myotubes established from type 2 diabetic and healthy control subjects we determined GS activity ratio, protein expression, and activity of GSK-3alpha and beta under basal and insulin-stimulated conditions when precultured in increasing insulin concentrations. In myotubes precultured at low insulin concentrations acute insulin stimulation increased GS activity more in control than in diabetic subjects, whereas the corresponding GSK-3alpha but not GSK-3beta activity was significantly reduced by acute insulin treatment in both groups. However, in myotubes precultured at high insulin concentrations the effect of insulin on GS and GSK-3alpha activity was blunted in both groups. The protein expression of GSK-3alpha or beta was unaffected. In conclusion, myotubes with a primary defect in GS activity express insulin responsive GSK-3alpha, suggesting that failure of insulin to decrease GS phosphorylation involves abnormal activity of another kinase or phosphatase.  相似文献   

2.
Lithium increases glucose transport and glycogen synthesis in insulin-sensitive cell lines and rat skeletal muscle, and has been used as a non-selective inhibitor of glycogen synthase kinase-3 (GSK-3). However, the molecular mechanisms underlying lithium action on glucose transport in mammalian skeletal muscle are unknown. Therefore, we examined the effects of lithium on glucose transport activity, glycogen synthesis, insulin signaling elements (insulin receptor (IR), Akt, and GSK-3beta), and the stress-activated p38 mitogen-activated protein kinase (p38 MAPK) in the absence or presence of insulin in isolated soleus muscle from lean Zucker rats. Lithium (10 mM LiCl) enhanced basal glucose transport by 62% (p < 0.05) and augmented net glycogen synthesis by 112% (p < 0.05). Whereas lithium did not affect basal IR tyrosine phosphorylation or Akt ser(473) phosphorylation, it did enhance (41%, p < 0.05) basal GSK-3beta ser(9) phosphorylation. Lithium further enhanced (p < 0.05) the stimulatory effects of insulin on glucose transport (43%), glycogen synthesis (44%), and GSK-3beta ser(9) phosphorylation (13%). Lithium increased (p < 0.05) p38 MAPK phosphorylation both in the absence (37%) and presence (41%) of insulin. Importantly, selective inhibition of p38 MAPK (using 10 microM A304000) completely prevented the basal activation of glucose transport by lithium, and also significantly reduced (52%, p < 0.05) the lithium-induced enhancement of insulin-stimulated glucose transport. Theses results demonstrate that lithium enhances basal and insulin-stimulated glucose transport activity and glycogen synthesis in insulin-sensitive rat skeletal muscle, and that these effects are associated with a significant enhancement of GSK-3beta phosphorylation. Importantly, we have documented an essential role of p38 MAPK phosphorylation in the action lithium on the glucose transport system in isolated mammalian skeletal muscle.  相似文献   

3.
High-fat feeding (HFF) is a well-accepted model for nutritionally-induced insulin resistance. The purpose of this investigation was to assess the metabolic responses of female lean Zucker rats provided regular chow (4% fat) or a high-fat chow (50% fat) for 15 wk. HFF rats spontaneously adjusted food intake so that daily caloric intake matched that of chow-fed (CF) controls. HFF animals consumed more (P < 0.05) calories from fat (31.9 +/- 1.2 vs. 2.4 +/- 0.2 kcal/day) and had significantly greater final body weights (280 +/- 10 vs. 250 +/- 5 g) and total visceral fat (24 +/- 3 vs. 10 +/- 1 g). Fasting plasma insulin was 2.3-fold elevated in HFF rats. Glucose tolerance (58%) and whole body insulin sensitivity (75%) were markedly impaired in HFF animals. In HFF plantaris muscle, in vivo insulin receptor beta-subunit (IR-beta) and insulin receptor substrate-1 (IRS-1) tyrosine phosphorylation and phosphorylation of Akt Ser473 and glycogen synthase kinase-3beta (GSK-3beta) Ser9, relative to circulating insulin levels, were decreased by 40-59%. In vitro insulin-stimulated glucose transport in HFF soleus was decreased by 54%, as were IRS-1 tyrosine phosphorylation (26%) and phosphorylation of Akt Ser473 (38%) and GSK-3beta Ser9 (25%), the latter indicative of GSK-3 overactivity. GSK-3 inhibition in HFF soleus using CT98014 increased insulin-stimulated glucose transport (28%), IRS-1 tyrosine phosphorylation (28%) and phosphorylation of Akt Ser473 (38%) and GSK-3beta Ser9 (48%). In summary, the female lean Zucker rat fed a high-fat diet represents an isocaloric model of nutritionally-induced insulin resistance associated with moderate visceral fat gain, hyperinsulinemia, and impairments of skeletal muscle insulin-signaling functionality, including GSK-3beta overactivity.  相似文献   

4.
In insulin-sensitive L6 myocytes, insulin stimulated glycogen synthesis in a dose-dependent manner and lithium further stimulated glycogen synthesis at all insulin concentrations. Lithium alone at 20 mM stimulated glycogen synthesis to the degree similar to the maximal insulin response. Effects of lithium and insulin were fully additive for both glycogen synthesis and glycogen synthase activity. In L6 myocytes, insulin increased phosphorylation of Akt1 and glycogen synthase kinase-3 alpha and beta (GSK-3 alpha and beta), resulting in its activation and inactivation, respectively. Unlike insulin, lithium directly inhibited GSK-3 (both alpha and beta) without affecting phosphorylation of GSK-3. Moreover, lithium in vitro could further inhibit enzyme activity of GSK-3 (both alpha and beta) that was isolated from insulin-stimulated cells (thus already phosphorylated and inactivated by insulin). In summary, insulin increases glycogen synthesis by the Akt1/GSK-3/glycogen synthase pathway, but lithium increases glycogen synthesis by direct inhibition of GSK-3 in L6 myocytes. Inhibitory effects of lithium and insulin on GSK-3 (both alpha and beta) were additive, which may account, at least in part, for their additive effects on glycogen synthase activity and glycogen synthesis in L6 myocytes.  相似文献   

5.
Since the glucose-lowering effects of vanadium could be related to increased muscle glycogen synthesis, we examined the in vivo effects of vanadium and insulin treatment on glycogen synthase (GS) activation in Zucker fatty rats. The GS fractional activity (GSFA), protein phosphatase-1 (PP1), and glycogen synthase kinase-3 (GSK-3) activity were determined in fatty and lean rats following treatment with bis(maltolato)oxovanadium(IV) (BMOV) for 3 weeks (0.2 mmol/kg/day) administered in drinking water. Skeletal muscle was freeze-clamped before or following an insulin injection (5 U/kg i.v.). In both lean and fatty rats, muscle GSFA was significantly increased at 15 min following insulin stimulation. Vanadium treatment resulted in decreased insulin levels and improved insulin sensitivity in the fatty rats. Interestingly, this treatment stimulated muscle GSFA by 2-fold (p < 0.05) and increased insulin-stimulated PP1 activity by 77% (p < 0.05) in the fatty rats as compared to untreated rats. Insulin resistance, vanadium and insulin in vivo treatment did not affect muscle GSK-3 activity in either fatty or lean rats. Therefore, an impaired insulin sensitivity in the Zucker fatty rats was improved following vanadium treatment, resulting in an enhanced muscle glucose metabolism through increased GS and insulin-stimulated PP1 activity.  相似文献   

6.
Glycogen synthase activity is increased in response to insulin and exercise in skeletal muscle. Part of the mechanism by which insulin stimulates glycogen synthesis may involve phosphorylation and activation of Akt, serine phosphorylation and deactivation of glycogen synthase kinase-3 (GSK-3), leading to dephosphorylation and activation of glycogen synthase. To study Akt and GSK-3 regulation in muscle, time course experiments on the effects of insulin injection and treadmill running exercise were performed in hindlimb skeletal muscle from male rats. Both insulin and exercise increased glycogen synthase activity (%I-form) by 2-3-fold over basal. Insulin stimulation significantly increased Akt phosphorylation and activity, whereas exercise had no effect. The time course of the insulin-stimulated increase in Akt was closely matched by GSK-3alpha Ser(21) phosphorylation and a 40-60% decrease in GSK-3alpha and GSK-3beta activity. Exercise also deactivated GSK-3alpha and beta activity by 40-60%. However, in contrast to the effects of insulin, there was no change in Ser(21) phosphorylation in response to exercise. Tyrosine dephosphorylation of GSK-3, another putative mechanism for GSK-3 deactivation, did not occur with insulin or exercise. These data suggest the following: 1) GSK-3 is constitutively active and tyrosine phosphorylated under basal conditions in skeletal muscle, 2) both exercise and insulin are effective regulators of GSK-3 activity in vivo, 3) the insulin-induced deactivation of GSK-3 occurs in response to increased Akt activity and GSK-3 serine phosphorylation, and 4) there is an Akt-independent mechanism for deactivation of GSK-3 in skeletal muscle.  相似文献   

7.
Glucocorticoids initiate whole body insulin resistance and the aim of the present study was to investigate effects of dexamethasone on protein expression and insulin signalling in muscle and fat tissue. Rats were injected with dexamethasone (1 mg/kg/day, i.p.) or placebo for 11 days before insulin sensitivity was evaluated in vitro in soleus and epitrochlearis muscles and in isolated epididymal adipocytes. Dexamethasone treatment reduced insulin-stimulated glucose uptake and glycogen synthesis by 30-70% in epitrochlearis and soleus, and insulin-stimulated glucose uptake by ∼40% in adipocytes. 8-bromo-cAMP-stimulated lipolysis was ∼2-fold higher in adipocytes from dexamethasone-treated rats and insulin was less effective to inhibit cAMP-stimulated lipolysis. A main finding was that dexamethasone decreased expression of PKB and insulin-stimulated Ser473 and Thr308 phosphorylation in both muscles and adipocytes. Expression of GSK-3 was not influenced by dexamethasone treatment in muscles or adipocytes and insulin-stimulated GSK-3β Ser9 phosphorylation was reduced in muscles only. A novel finding was that glycogen synthase (GS) Ser7 phosphorylation was higher in both muscles from dexamethasone-treated rats. GS expression decreased (by 50%) in adipocytes only. Basal and insulin-stimulated GS Ser641 and GS Ser645,649,653,657 phosphorylation was elevated in epitrochlearis and soleus muscles and GS fractional activity was reduced correspondingly. In conclusion, dexamethasone treatment (1) decreases PKB expression and insulin-stimulated phosphorylation in both muscles and adipocytes, and (2) increases GS phosphorylation (reduces GS fractional activity) in muscles and decreases GS expression in adipocytes. We suggest PKB and GS as major targets for dexamethasone-induced insulin resistance.  相似文献   

8.
Glucocorticoids cause insulin resistance in skeletal muscle. The aims of the present study were to investigate the effects of contraction on glucose uptake, insulin signaling, and regulation of glycogen synthesis in skeletal muscles from rats treated with the glucocorticoid analog dexamethasone (1 mg x kg(-1) x day(-1) ip for 12 days). Insulin resistance in dexamethasone-treated rats was confirmed by reduced insulin-stimulated glucose uptake (approximately 35%), glycogen synthesis (approximately 70%), glycogen synthase activation (approximately 80%), and PKB Ser(473) phosphorylation (approximately 40%). Chronic dexamethasone treatment did not impair glucose uptake during contraction in soleus or epitrochlearis muscles. In epitrochlearis (but not in soleus), the presence of insulin during contraction enhanced glucose uptake to similar levels in control and dexamethasone-treated rats. Contraction also increased glycogen synthase fractional activity and dephosphorylated glycogen synthase at Ser(645), Ser(649), Ser(653), and Ser(657) normally in muscles from dexamethasone-treated rats. After contraction, insulin-stimulated glycogen synthesis was completely restored in epitrochlearis and improved in soleus from dexamethasone-treated rats. Contraction did not increase insulin-stimulated PKB Ser(473) or glycogen synthase kinase-3 (GSK-3) phosphorylation. Instead, contraction increased GSK-3beta Ser(9) phosphorylation in epitrochlearis (but not in soleus) in muscles from control and dexamethasone-treated rats. In conclusion, contraction stimulates glucose uptake normally in dexamethasone-induced insulin resistant muscles. After contraction, insulin's ability to stimulate glycogen synthesis was completely restored in epitrochlearis and improved in soleus from dexamethasone-treated rats.  相似文献   

9.
We have recently shown that while adrenaline alone has no effect on the activation of Protein Kinase B (PKB) in rat soleus muscle, it greatly potentiates the effects of insulin (Brennesvik et al., Cellular Signalling 17: 1551-1559, 2005). In the current study we went on to investigate whether this was paralleled by a similar effect on GSK-3, which is a major PKB target. Surprisingly adrenaline alone increased phosphorylation of GSK-3beta Ser9 and GSK-3alpha Ser21 and adrenaline's effects were additive with those of insulin but did not synergistically potentiate insulin action. Dibutyryl-cAMP (5 mM) and the PKA specific cAMP analogue N6-Benzoyl-cAMP (2 mM) increased GSK-3beta Ser9 phosphorylation, whereas the Epac specific cAMP analogue 8-(4-chlorophenylthio)-2'-O-methyl-cAMP (1 mM) did not. Wortmannin (PI 3-kinase inhibitor; 1 microM) blocked insulin-stimulated GSK-3 phosphorylation completely, but adrenaline increased GSK-3beta Ser9 phosphorylation in the presence of wortmannin. The PKA inhibitor H89 (50 microM) reduced adrenaline-stimulated GSK-3beta Ser9 phosphorylation but did not influence the effects of insulin. Insulin-stimulated GSK-3 Ser9 phosphorylation was paralleled by decreased glycogen synthase phosphorylation at the sites phosphorylated by GSK-3 as expected. However, adrenaline-stimulated GSK-3 Ser9 phosphorylation was paralleled by increased glycogen synthase phosphorylation indicating this pool of GSK-3 may not be directly involved in phosphorylation of glycogen synthase. Our results indicate the existence of at least two distinct pools of GSK-3beta in soleus muscle, one phosphorylated by PKA and another by PKB. Further, we hypothesise that each of these pools is involved in the control of different cellular processes.  相似文献   

10.
Insulin stimulates muscle glucose disposal via both glycolysis and glycogen synthesis. Insulin activates glycogen synthase (GS) in skeletal muscle by phosphorylating PKB (or Akt), which in turn phosphorylates and inactivates glycogen synthase kinase 3 (GSK-3), with subsequent activation of GS. A rapamycin-sensitive pathway, most likely acting via ribosomal 70-kDa protein S6 kinase (p70(S6K)), has also been implicated in the regulation of GSK-3 and GS by insulin. Amino acids potently stimulate p70(S6K), and recent studies on cultured muscle cells suggest that amino acids also inactivate GSK-3 and/or activate GS via activating p70(S6K). To assess the physiological relevance of these findings to normal human physiology, we compared the effects of amino acids and insulin on whole body glucose disposal, p70(S6K), and GSK-3 phosphorylation, and on the activity of GS in vivo in skeletal muscle of 24 healthy human volunteers. After an overnight fast, subjects received intravenously either a mixed amino acid solution (1.26 micromol.kg(-1).min(-1) x 6 h, n = 9), a physiological dose of insulin (1 mU.kg(-1).min(-1) euglycemic hyperinsulinemic clamp x 2 h, n = 6), or a pharmacological dose of insulin (20 mU.kg(-1).min(-1) euglycemic hyperinsulinemic clamp x 2 h, n = 9). Whole body glucose disposal rates were assessed by calculating the steady-state glucose infusion rates, and vastus lateralis muscle was biopsied before and at the end of the infusion. Both amino acid infusion and physiological hyperinsulinemia enhanced p70(S6K) phosphorylation without affecting GSK-3 phosphorylation, but only physiological hyperinsulinemia also increased whole body glucose disposal and GS activity. In contrast, a pharmacological dose of insulin significantly increased whole body glucose disposal, p70(S6K), GSK-3 phosphorylation, and GS activity. We conclude that amino acids at physiological concentrations mediate p70(S6K) but, unlike insulin, do not regulate GSK-3 and GS phosphorylation/activity in human skeletal muscle.  相似文献   

11.
B C Park  Y Kido  D Accili 《Biochemistry》1999,38(23):7517-7523
We have used SV40-transformed hepatocytes from insulin receptor-deficient mice (-/-) and normal mice (WT) to investigate the different abilities of insulin and IGF-1 receptors to stimulate glycogen synthesis. We report that insulin receptors are more potent than IGF-1 receptors in stimulating glycogen synthesis. Both receptors stimulate glycogen synthesis in a PI 3-kinase-dependent manner, but only the effect of insulin receptors is partially rapamycin-dependent. Insulin and IGF-1 receptors activate Akt to a similar extent, whereas GSK-3 inactivation in response to IGF-1 is considerably lower in both -/- and WT cells, compared to the effect of insulin in WT cells. The findings indicate that (i) the potency of insulin and IGF-1 receptors in stimulating glycogen synthesis correlates with their ability to inactivate GSK-3, (ii) the extent of GSK-3 inactivation does not correlate with the extent of Akt activation mediated by insulin or IGF-1 receptors, indicating that the effect of insulin on GSK-3 requires additional kinases, and (iii) the pathways required for insulin stimulation of glycogen synthesis in mouse hepatocytes are PI 3-kinase-dependent and rapamycin-sensitive.  相似文献   

12.
Glycogen content and contraction strongly regulate glycogen synthase (GS) activity, and the aim of the present study was to explore their effects and interaction on GS phosphorylation and kinetic properties. Glycogen content in rat epitrochlearis muscles was manipulated in vivo. After manipulation, incubated muscles with normal glycogen [NG; 210.9 +/- 7.1 mmol/kg dry weight (dw)], low glycogen (LG; 108.1 +/- 4.5 mmol/ kg dw), and high glycogen (HG; 482.7 +/- 42.1 mmol/kg dw) were contracted or rested before the studies of GS kinetic properties and GS phosphorylation (using phospho-specific antibodies). LG decreased and HG increased GS K(m) for UDP-glucose (LG: 0.27 +/- 0.02 < NG: 0.71 +/- 0.06 < HG: 1.11 +/- 0.12 mM; P < 0.001). In addition, GS fractional activity inversely correlated with glycogen content (R = -0.70; P < 0.001; n = 44). Contraction decreased K(m) for UDP-glucose (LG: 0.14 +/- 0.01 = NG: 0.16 +/- 0.01 < HG: 0.33 +/- 0.03 mM; P < 0.001) and increased GS fractional activity, and these effects were observed independently of glycogen content. In rested muscles, GS Ser(641) and Ser(7) phosphorylation was decreased in LG and increased in HG compared with NG. GSK-3beta Ser(9) and AMPKalpha Thr(172) phosphorylation was not modulated by glycogen content in rested muscles. Contraction decreased phosphorylation of GS Ser(641) at all glycogen contents. However, contraction increased GS Ser(7) phosphorylation even though GS was strongly activated. In conclusion, glycogen content regulates GS affinity for UDP-glucose and low affinity for UDP-glucose in muscles with high glycogen content may reduce glycogen accumulation. Contraction increases GS affinity for UDP-glucose independently of glycogen content and creates a unique phosphorylation pattern.  相似文献   

13.
Stimulation of glycogen synthesis is one of the major physiological responses modulated by insulin. Although, details of the precise mechanism by which insulin action on glycogen synthesis is mediated remains uncertain, significant advances have been made to understand several steps in this process. Most importantly, recent studies have focussed on the possible role of glycogen synthase kinase-3 (GSK-3) and glycogen bound protein phosphatase-1 (PP-1G) in the activation of glycogen synthase (GS) - a key enzyme of glycogen metabolism. Evidence is also accumulating to establish a link between insulin receptor induced signaling pathway(s) and glycogen synthesis. This article summarizes the potential contribution of various elements of insulin signaling pathway such as mitogen activated protein kinase (MAPK), protein kinase B (PKB), and phosphatidyl inositol 3-kinase (PI3-K) in the activation of GS and glycogen synthesis.  相似文献   

14.
The effects of tumor necrosis factor-alpha (TNF-alpha) on insulin-induced phosphorylation of protein kinase B-alpha (PKB-alpha) and downstream enzyme glycogen synthase kinase-3 beta (GSK-3 beta) was examined in HepG2 liver cells. The exogenous treatment of HepG2 cells with TNF-alpha for 1 h caused phosphorylation of Ser473 and Thr308 residues of PKB-alpha. The maximal phosphorylation (approximately 4-fold) was obtained with 1 ng/ml TNF-alpha and no further increase was observed with higher concentrations of this cytokine. The cells pretreated with TNF-alpha for 1 h followed by incubation with insulin (10 nM) showed near additive effect on phosphorylation of PKB-alpha and downstream enzyme GSK-3 beta. The long-term (4, 8, 24 h) exogenous treatment of cells with optimal (1 ng/ml) concentration of TNF-alpha also caused phosphorylation of PKB-alpha, albeit to a lesser degree. However, long-term pretreatments of cells with TNF-alpha reduced insulin-stimulated phosphorylation of PKB-alpha and GSK-3 beta. Short- and long-term preincubation of HepG2 cells with TNF-alpha also resulted in parallel changes in glycogen synthesis in the presence of insulin. In fact, long-term preincubation with TNF-alpha completely abolished the insulin-induced glycogen synthesis. These results suggest that short-term exposure to TNF-alpha augments insulin effects whereas long-term exposure causes insulin resistance in HepG2 cells.  相似文献   

15.
Activation of GSK-3beta is presumed to be involved in various neurodegenerative diseases, including Alzheimer's disease (AD), which is characterized by memory disturbances during early stages of the disease. The normal function of GSK-3beta in adult brain is not well understood. Here, we analyzed the ability of heterozygote GSK-3beta knockout (GSK+/-) mice to form memories. In the Morris water maze (MWM), learning and memory performance of GSK+/- mice was no different from that of wild-type (WT) mice for the first 3 days of training. With continued learning on subsequent days, however, retrograde amnesia was induced in GSK+/- mice, suggesting that GSK+/- mice might be impaired in their ability to form long-term memories. In contextual fear conditioning (CFC), context memory was normally consolidated in GSK+/- mice, but once the original memory was reactivated, they showed reduced freezing, suggesting that GSK+/- mice had impaired memory reconsolidation. Biochemical analysis showed that GSK-3beta was activated after memory reactivation in WT mice. Intraperitoneal injection of a GSK-3 inhibitor before memory reactivation impaired memory reconsolidation in WT mice. These results suggest that memory reconsolidation requires activation of GSK-3beta in the adult brain.  相似文献   

16.
Protein kinase B appears to play a key role in insulin signaling and in the control of apoptosis, although the precise targets of PKB are incompletely understood. PKB exists as three isoforms (alpha, beta, and gamma) that may have unique as well as common functions within the cell. To facilitate understanding the precise roles of PKB and its isoforms, novel tools of widespread applicability are described. These tools are antisense oligonucleotide probes that enable the specific and potent knock down of endogenous PKB alpha, beta, or gamma isoforms, individually or in various combinations, including concurrent removal of all three isoforms. The probes were applied to dissect the role of PKB in phosphorylating glycogen synthase kinase-3 (GSK-3), a critical mediator in multiple responses, and other potentially key targets. Triple antisense knock down of PKB alpha, beta, and gamma so that total PKB was <6% blocked insulin-stimulated phosphorylation of endogenous GSK-3alpha and GSK-3beta isoforms by 67% and 45%, respectively, showing that GSK-3alpha and GSK-3beta are controlled by endogenous PKB. Each PKB isoform contributed to GSK-3alpha and GSK-3beta phosphorylation, with PKBbeta having the predominant role. Knock down of total PKB incompletely blocked insulin-stimulated phosphorylation of GSK-3alpha and GSK-3beta, and a pathway involving atypical PKCs, zeta/lambda, was shown to contribute to the signal. Triple antisense knock down of PKB alpha, beta, and gamma abrogated the insulin-stimulated phosphorylation of WNK1, ATP citrate lyase, and tuberin. However, antisense-mediated knock down of PKB alpha, beta, and gamma had no effect on insulin-stimulated DNA synthesis in 3T3-L1 adipocytes, indicating that pathways other than PKB mediate this response in these cells. Finally, our PKB antisense strategy provides a method of general usefulness for further dissecting the precise targets and roles of PKB and its isoforms.  相似文献   

17.
Glycogen synthase kinase 3 comprises two isoforms (GSK-3alpha and GSK-3beta) that are implicated in type II diabetes, neurodegeneration, and cancer. GSK-3 activity is elevated in human and rodent models of diabetes, and various GSK-3 inhibitors improve glucose tolerance and insulin sensitivity in rodent models of obesity and diabetes. Here, we report the generation of mice lacking GSK-3alpha. Unlike GSK-3beta mutants, which die before birth, GSK-3alpha knockout (GSK-3alpha KO) animals are viable but display enhanced glucose and insulin sensitivity accompanied by reduced fat mass. Fasted and glucose-stimulated hepatic glycogen content was enhanced in GSK-3alpha KO mice, whereas muscle glycogen was unaltered. Insulin-stimulated protein kinase B (PKB/Akt) and GSK-3beta phosphorylation was higher in GSK-3alpha KO livers compared to wild-type littermates, and IRS-1 expression was markedly increased. We conclude that GSK-3 isoforms exhibit tissue-specific physiological functions and that GSK-3alpha KO mice are insulin sensitive, reinforcing the potential of GSK-3 as a therapeutic target for type II diabetes.  相似文献   

18.
In vivo effects of insulin and vanadium treatment on glycogen synthase (GS), glycogen synthase kinase-3 (GSK-3) and protein phosphatase-1 (PP1) activity were determined in Wistar rats with streptozotocin (STZ)-induced diabetes. The skeletal muscle was freeze-clamped before or following an insulin injection (5 U/kg i.v.). Diabetes, vanadium, and insulin in vivo treatment did not affect muscle GSK-3 activity as compared to controls. Following insulin stimulation in 4-week STZ-diabetic rats muscle GS fractional activity (GSFA) was increased 3 fold (p < 0.05), while in 7-week diabetic rats it remained unchanged, suggesting development of insulin resistance in longer term diabetes. Muscle PP1 activity was increased in diabetic rats and returned to normal after vanadium treatment, while muscle GSFA remained unchanged. Therefore, it is possible that PP1 is involved in the regulation of some other cellular events of vanadium (other than regulation of glycogen synthesis). The lack of effect of vanadium treatment in stimulating glycogen synthesis in skeletal muscle suggests the involvement of other metabolic pathways in the observed glucoregulatory effect of vanadium.  相似文献   

19.
Insulin covalently and allosterically regulates glycogen synthase (GS) and may also cause the translocation of GS from glycogen-poor to glycogen-rich locations. We examined the possible role of subcellular localization of GS and glycogen in insulin activation of GS in skeletal muscle of six obese monkeys and determined whether 1) insulin stimulation during a hyperinsulinemic euglycemic clamp and/or peroxisome proliferator-activated receptor (PPAR)-alpha agonist treatment (K-111, 3 mg.kg(-1).day(-1); Kowa) induced translocation of GS and 2) translocation of GS was associated with insulin activation of GS. GS and glycogen were present in all fractions obtained by differential centrifugation, except for the cytosolic fraction, under both basal and insulin-stimulated conditions. We found no evidence for translocation of GS by insulin. GS total (GST) activity was strongly associated with glycogen content (r = 0.70, P < 0.001). Six weeks of treatment with K-111 increased GST activity in all fractions, except the cytosolic fraction, and mean GST activity, GS independent activity, and glycogen content were significantly higher in the insulin-stimulated samples compared with basal samples, effects not seen with vehicle. The increase in GST activity was strongly related to the increase in glycogen content during the hyperinsulinemic euglycemic clamp after K-111 administration (r = 0.74, P < 0.001). Neither GS protein expression nor GS gene expression was affected by insulin or by K-111 treatment. We conclude that 1) in vivo insulin does not cause translocation of GS from a glycogen-poor to a glycogen-rich location in primate skeletal muscle and 2) the mechanism of action of K-111 to improve insulin sensitivity includes an increase in GST activity without an increase in GS gene or protein expression.  相似文献   

20.
Insulin promotes dephosphorylation and activation of glycogen synthase (GS) by inactivating glycogen synthase kinase (GSK) 3 through phosphorylation. Insulin also promotes glucose uptake and glucose 6-phosphate (G-6-P) production, which allosterically activates GS. The relative importance of these two regulatory mechanisms in the activation of GS in vivo is unknown. The aim of this study was to investigate if dephosphorylation of GS mediated via GSK3 is required for normal glycogen synthesis in skeletal muscle with insulin. We employed GSK3 knockin mice in which wild-type GSK3 alpha and -beta genes are replaced with mutant forms (GSK3 alpha/beta S21A/S21A/S9A/S9A), which are nonresponsive to insulin. Although insulin failed to promote dephosphorylation and activation of GS in GSK3 alpha/beta S21A/S21A/S9A/S9A mice, glycogen content in different muscles from these mice was similar compared with wild-type mice. Basal and epinephrine-stimulated activity of muscle glycogen phosphorylase was comparable between wild-type and GSK3 knockin mice. Incubation of isolated soleus muscle in Krebs buffer containing 5.5 mM glucose in the presence or absence of insulin revealed that the levels of G-6-P, the rate of [14C]glucose incorporation into glycogen, and an increase in total glycogen content were similar between wild-type and GSK3 knockin mice. Injection of glucose containing 2-deoxy-[3H]glucose and [14C]glucose also resulted in similar rates of muscle glucose uptake and glycogen synthesis in vivo between wild-type and GSK3 knockin mice. These results suggest that insulin-mediated inhibition of GSK3 is not a rate-limiting step in muscle glycogen synthesis in mice. This suggests that allosteric regulation of GS by G-6-P may play a key role in insulin-stimulated muscle glycogen synthesis in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号