首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
目的:通过自行设计的启发式思考题,让问题式学习伴随医学生分子生物学实验教学全程,利用实验课的教学互动环节发挥学生学习的主观能动性。方法:借鉴启发式教学经验和问题式教学方法,在实验的平时考核中增加了启发式思考题,针对教学内容设置拓展性问题,以开卷回答的方式引导学生通过自学寻找操作实践及其理论基础中潜在的知识内涵和科学规律。结果:思考题的引入在强化学生自主学习,锻炼思考和解决问题能力的同时也显示出了良好的区分度。思考题成绩以及以此为基础的平时成绩与实验理论考核成绩之间显示出了显著的相关性。结论:贯穿于实验课教学活动中的启发式思考题在拓展思维、提升学生自主学习能力的同时促进了实验课的教学效果。  相似文献   

2.
Using results from a controlled experiment and simulations based on cognitive models, we show that visual presentation style can have a significant impact on performance in a complex problem-solving task. We compared subject performances in two isomorphic, but visually different, tasks based on a card game of SET. Although subjects used the same strategy in both tasks, the difference in presentation style resulted in radically different reaction times and significant deviations in scanpath patterns in the two tasks. Results from our study indicate that low-level subconscious visual processes, such as differential acuity in peripheral vision and low-level iconic memory, can have indirect, but significant effects on decision making during a problem-solving task. We have developed two ACT-R models that employ the same basic strategy but deal with different presentations styles. Our ACT-R models confirm that changes in low-level visual processes triggered by changes in presentation style can propagate to higher-level cognitive processes. Such a domino effect can significantly affect reaction times and eye movements, without affecting the overall strategy of problem solving.  相似文献   

3.
Rapid advancements in hardware, software, and connectivity are helping to shorten the times needed to develop computer simulations for science education. These advancements, however, have not been accompanied by corresponding theories of how best to design and use these technologies for teaching, learning, and testing. Such design frameworks ideally would be guided less by the strengths/limitations of the presentation media and more by cognitive analyses detailing the goals of the tasks, the needs and abilities of students, and the resulting decision outcomes needed by different audiences. This article describes a problem-solving environment and associated theoretical framework for investigating how students select and use strategies as they solve complex science problems. A framework is first described for designing on-line problem spaces that highlights issues of content, scale, cognitive complexity, and constraints. While this framework was originally designed for medical education, it has proven robust and has been successfully applied to learning environments from elementary school through medical school. Next, a similar framework is detailed for collecting student performance and progress data that can provide evidence of students' strategic thinking and that could potentially be used to accelerate student progress. Finally, experimental validation data are presented that link strategy selection and use with other metrics of scientific reasoning and student achievement.  相似文献   

4.
This study examined the effects of exam length on student performance and cognitive fatigue in an undergraduate biology classroom. Exams tested higher order thinking skills. To test our hypothesis, we administered standard- and extended-length high-level exams to two populations of non-majors biology students. We gathered exam performance data between conditions as well as performance on the first and second half of exams within conditions. We showed that lengthier exams led to better performance on assessment items shared between conditions, possibly lending support to the spreading activation theory. It also led to greater performance on the final exam, lending support to the testing effect in creative problem solving. Lengthier exams did not result in lower performance due to fatiguing conditions, although students perceived subjective fatigue. Implications of these findings are discussed with respect to assessment practices.  相似文献   

5.
医学细胞生物学教学初探   总被引:1,自引:0,他引:1  
李祥 《生物学杂志》2009,26(3):95-96
在医学细胞生物学教学过程中,教师以学生为主体,精心备课;采用多媒体教学方式,用适当的手段和教学方法培养学生的兴趣;引导学生利用网络资源提高分析问题、解决问题的能力;注重反馈信息,多与学生接触和沟通,取得了较好的教学效果。  相似文献   

6.
Decision-making in socioscientific issues (SSI) constitutes a real challenge for both biology teachers and learners. The assessment of students’ performances in SSIs constitutes a problem, especially for biology teachers. The study at hand was conducted in Germany and uses a qualitative approach following the research procedures of grounded theory to focus on teachers’ concepts and, especially, coping strategies in assessment concerning students’ decision-making in SSIs. Semi-structured interviews with six teachers, in combination with video-vignettes, were used for data generation. The results show predominantly defensive strategies when teachers are confronted with the assessment of students’ performances in SSIs. These results and implications for teacher education and teacher training are discussed.  相似文献   

7.
Considerable research has focused on differences in expert and novice problem representation and performance within physics, chemistry, and genetics. Here, we examine whether models of problem solving based on this work are useful within the domain of evolutionary biology. We utilized card sort tasks, interviews, and paper-and-pencil tests to: (1) delineate problem categorization rules, (2) quantify problem solving success, and (3) measure the relationships between the composition, structure, and coherence of problem solutions. We found that experts and novices perceived different item features to be of significance in card sort tasks, and that sensitivity to item surface features was adversely associated with problem solving success. As in other science domains, evolutionary problem representation and problem solving performance were tightly coupled. Explanatory coherence and the absence of cognitive biases were distinguishing features of evolutionary expertise. We discuss the implications of these findings for biology teaching and learning.  相似文献   

8.
To help students develop successful strategies for learning how to learn and communicate complex information in cell biology, we developed a quarter-long cell biology class based on team projects. Each team researches a particular human disease and presents information about the cellular structure or process affected by the disease, the cellular and molecular biology of the disease, and recent research focused on understanding the cellular mechanisms of the disease process. To support effective teamwork and to help students develop collaboration skills useful for their future careers, we provide training in working in small groups. A final poster presentation, held in a public forum, summarizes what students have learned throughout the quarter. Although student satisfaction with the course is similar to that of standard lecture-based classes, a project-based class offers unique benefits to both the student and the instructor.  相似文献   

9.
We tested the hypothesis that peer instruction enhances student performance on qualitative problem-solving questions. To test this hypothesis, qualitative problems were included in a peer instruction format during our Physiology course. Each class of 90 min was divided into four to six short segments of 15 to 20 min each. Each short segment was followed by a qualitative problem-solving scenario that could be answered with a multiple-choice quiz. All students were allowed 1 min to think and to record their answers. Subsequently, students were allowed 1 min to discuss their answers with classmates. Students were then allowed to change their first answer if desired, and both answers were recorded. Finally, the instructor and students discussed the answer. Peer instruction significantly improved student performance on qualitative problem-solving questions (59.3 +/- 0.5% vs. 80.3 +/- 0.4%). Furthermore, after peer instruction, only 6.5% of the students changed their correct response to an incorrect response; however, 56.8% of students changed their incorrect response to a correct response. Therefore, students with incorrect responses changed their answers more often than students with correct responses. In conclusion, pausing four to six times during a 90-min class to allow peer instruction enhanced student performance on qualitative problem-solving questions.  相似文献   

10.
The relationships between physical and biological sciences are important in science education. This is shown in the links between the structure of biological science and the use of models. Although the physical sciences contain many principles of wide application, much of biology consists of very distinct examples. When these examples are used as models of organisms or processes, misunderstanding can occur if the characteristics of the model are used to make inaccurate generalizations. In biological education, stress on the importance of unique features must continually accompany the demonstration of similarities.

Theoretical models are constructed and reconstructed by students learning science, particularly in relation to broadly applicable principles. In biology a student may build a theoretical model of a subject which is itself a model used as an example. Distinct features of biological science may influence a variety of learning situations including problem solving.  相似文献   

11.
吴娟娟  朱蕙霞  贾辛 《生物学杂志》2012,29(2):106-107,110
生物化学与分子生物学是医学专业的必修基础课,独立学院学生是大学生群体中的特殊群体,提高他们学习生物化学与分子生物学的兴趣,增加考试通过率是独立学院面临的一项迫切任务.对两组共156名南通大学杏林学院临床专业学生进行了一学年的生物化学教学模式对比研究,结果表明:在对独立学院的生物化学教学中,多媒体教学和随堂测验相结合的教学模式优于仅采用多媒体教学,很有成效.  相似文献   

12.
In North America, public understanding and acceptance of evolution is alarmingly low. Moreover, acceptance rates are declining, and studies suggest that even students who have taken courses in evolution have the same misunderstandings as the general public. These data signal deficiencies in our educational system and provide a “call to arms” to improve how evolution is taught. Many studies show that student education can be improved by replacing lecture-based pedagogy with active learning approaches—where the role of students changes from passive note taking to active problem solving. Here, we describe changes made to a second-year undergraduate evolution course to facilitate a shift to active learning and improve student understanding of evolution. First, lectures were used only sparingly and were largely replaced by problem-solving activities. Second, standard textbooks were replaced by “popular” books applying evolutionary thinking to topics students encounter on a daily basis. Lastly, predefined laboratory exercises were replaced by student-designed and implemented research projects. These changes led to increased student engagement and enjoyment, improved understanding of evolution and ability to apply evolutionary thinking to biological problems, and increased student recognition that evolutionary thinking is important not only in the classroom but also in their daily lives.  相似文献   

13.
Basic mathematical fluency is a prerequisite for success in a wide array of areas in biology and it has been noted that many students are deficient in this skill. In this paper, the use of a simulated peer-assessment activity is investigated as a method to improve performance in numerical problem-solving questions in high school biology. Additionally, the benefits of using simulated, rather than real, student’s answers in peer-assessment is discussed. The study involved a small cohort of students who carried out a simulated peer-assessment as a classroom activity and their improvement in performance and attitude towards the activity was measured. The results demonstrate that a simulated peer-assessment activity is suitable as a replacement for standard peer-assessment and that students’ attitudes favour the simulated approach.  相似文献   

14.
While the use of computer tools to simulate complex processes such as computer circuits is normal practice in fields like engineering, the majority of life sciences/biological sciences courses continue to rely on the traditional textbook and memorization approach. To address this issue, we explored the use of the Cell Collective platform as a novel, interactive, and evolving pedagogical tool to foster student engagement, creativity, and higher-level thinking. Cell Collective is a Web-based platform used to create and simulate dynamical models of various biological processes. Students can create models of cells, diseases, or pathways themselves or explore existing models. This technology was implemented in both undergraduate and graduate courses as a pilot study to determine the feasibility of such software at the university level. First, a new (In Silico Biology) class was developed to enable students to learn biology by “building and breaking it” via computer models and their simulations. This class and technology also provide a non-intimidating way to incorporate mathematical and computational concepts into a class with students who have a limited mathematical background. Second, we used the technology to mediate the use of simulations and modeling modules as a learning tool for traditional biological concepts, such as T cell differentiation or cell cycle regulation, in existing biology courses. Results of this pilot application suggest that there is promise in the use of computational modeling and software tools such as Cell Collective to provide new teaching methods in biology and contribute to the implementation of the “Vision and Change” call to action in undergraduate biology education by providing a hands-on approach to biology.  相似文献   

15.
Science education is progressively more focused on employing inquiry-based learning methods in the classroom and increasing scientific literacy among students. However, due to time and resource constraints, many classroom science activities and laboratory experiments focus on simple inquiry, with a step-by-step approach to reach predetermined outcomes. The science classroom inquiry (SCI) simulations were designed to give students real life, authentic science experiences within the confines of a typical classroom. The SCI simulations allow students to engage with a science problem in a meaningful, inquiry-based manner. Three discrete SCI simulations were created as website applications for use with middle school and high school students. For each simulation, students were tasked with solving a scientific problem through investigation and hypothesis testing. After completion of the simulation, 67% of students reported a change in how they perceived authentic science practices, specifically related to the complex and dynamic nature of scientific research and how scientists approach problems. Moreover, 80% of the students who did not report a change in how they viewed the practice of science indicated that the simulation confirmed or strengthened their prior understanding. Additionally, we found a statistically significant positive correlation between students’ self-reported changes in understanding of authentic science practices and the degree to which each simulation benefitted learning. Since SCI simulations were effective in promoting both student learning and student understanding of authentic science practices with both middle and high school students, we propose that SCI simulations are a valuable and versatile technology that can be used to educate and inspire a wide range of science students on the real-world complexities inherent in scientific study.  相似文献   

16.
In the following review we use recent examples from the literature to discuss progress in the area of atomistic and coarse-grained molecular dynamics simulations of selected bacterial membranes and proteins, with a particular focus on Gram-negative bacteria. As structural biology continues to provide increasingly high-resolution data on the proteins that reside within these membranes, simulations have an important role to play in linking these data with the dynamical behavior and function of these proteins. In particular, in the last few years there has been significant progress in addressing the issue of biochemical complexity of bacterial membranes such that the heterogeneity of the lipid and protein components of these membranes are now being incorporated into molecular-level models. Thus, in future we can look forward to complementary data from structural biology and molecular simulations combining to provide key details of structure-dynamics-function relationships in bacterial membranes.  相似文献   

17.
Formal training in computational biology was initiated at Wayne State University in 1990 to meet the needs of the faculty. This was still at a time when the molecular databases and analysis tools could be housed in what is now equivalent to a modern but dated desktop computer. In 1995 the course was expanded to include graduate students to provide these senior students with a foundation in computational biology. This course has armed our students with a requisite set of basic skills that are necessary for a successful career in molecular genetics. It is now an integral component of the graduate program of the Center for Molecular Medicine and Genetics and our experiences in course delivery have been detailed (BioInformatics Methods and Protocols, S. Misener and S. A. Krawetz, eds., Humana Press, Totowa, NJ, 2000.). The course was expanded to a campus-wide unlimited enrollment program for the summer of 2000 to address the needs of our student body. In this review we present our experience with delivering a multidisciplinary campuswide computational biology course to a new and widely diverse student body.  相似文献   

18.
We carried out an experiment to determine whether student learning gains in a large, traditionally taught, upper-division lecture course in developmental biology could be increased by partially changing to a more interactive classroom format. In two successive semesters, we presented the same course syllabus using different teaching styles: in fall 2003, the traditional lecture format; and in spring 2004, decreased lecturing and addition of student participation and cooperative problem solving during class time, including frequent in-class assessment of understanding. We used performance on pretests and posttests, and on homework problems to estimate and compare student learning gains between the two semesters. Our results indicated significantly higher learning gains and better conceptual understanding in the more interactive course. To assess reproducibility of these effects, we repeated the interactive course in spring 2005 with similar results. Our findings parallel results of similar teaching-style comparisons made in other disciplines. On the basis of this evidence, we propose a general model for teaching large biology courses that incorporates interactive engagement and cooperative work in place of some lecturing, while retaining course content by demanding greater student responsibility for learning outside of class.  相似文献   

19.
Laboratory classes are commonplace and essential in biology departments but can sometimes be cumbersome, unreliable, and a drain on time and resources. As university intakes increase, pressure on budgets and staff time can often lead to reduction in practical class provision. Frequently, the ability to use laboratory equipment, mix solutions, and manipulate test animals are essential learning outcomes, and "wet" laboratory classes are thus appropriate. In others, however, interpretation and manipulation of the data are the primary learning outcomes, and here, computer-based simulations can provide a cheaper, easier, and less time- and labor-intensive alternative. We report the evaluation of two computer-based simulations of practical exercises: the first in chromosome analysis, the second in bioinformatics. Simulations can provide significant time savings to students (by a factor of four in our first case study) without affecting learning, as measured by performance in assessment. Moreover, under certain circumstances, performance can be improved by the use of simulations (by 7% in our second case study). We concluded that the introduction of these simulations can significantly enhance student learning where consideration of the learning outcomes indicates that it might be appropriate. In addition, they can offer significant benefits to teaching staff.  相似文献   

20.
Laboratories are recognised as central in science education, allowing students to consolidate knowledge and master practical skills, however, their effectiveness has been questioned. Whilst laboratory practicals are useful for students’ learning of basic procedures, they have been shown to be less effective for developing conceptual understanding of the subject. Interactive lectures and bespoke digital resources were utilised in order to enhance theoretical understanding of laboratory practical molecular sessions, thus enabling students to take responsibility for and direct their own learning, encouraging inquiry-based learning. Providing easy to access additional learning resources offered students an opportunity to better prepare themselves for the laboratory, and consolidate their knowledge through subsequent review and self-testing in their own time. Grades before and after implementation of these active learning strategies were analysed to look at the impact on student learning and this study demonstrates that integrating these into a challenging practical biology course improved grades significantly with a concomitant increase in the number of ‘A’ grades attained. Feedback to evaluate use and perceptions of both interactive lectures and digital resources were also analysed. It has been shown here that these activities enhanced student experience and understanding of the course.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号