首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
CsgA mutants of Myxococcus xanthus appear to be defective in producing an extracellular molecule essential for the developmental behaviors of this bacterium. The csgA gene encodes a 17.7-kilodalton polypeptide whose function and cellular location were investigated with immunological probes. Large quantities of the CsgA gene product were obtained from a lacZ-csgA translational gene fusion expressed in Escherichia coli. The chimeric 21-kilodalton protein was purified by preparative sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Affinity-purified polyclonal antibodies raised against the fusion protein were used to determine the cellular location of the native CsgA protein by colloidal gold labeling and transmission electron microscopy. Between 1,100 and 2,200 extracellular molecules of CsgA per developing M. xanthus cell were detected, most of which were associated with the extracellular matrix. The anti-CsgA antibodies inhibited wild-type development unless they were first neutralized with the fusion protein. Together these results suggest that the CsgA gene product has an essential, extracellular function during development, possibly as a pheromone.  相似文献   

2.
L Plamann  Y Li  B Cantwell    J Mayor 《Journal of bacteriology》1995,177(8):2014-2020
The Myxococcus xanthus asgA gene is one of three known genes necessary for the production of extracellular A-signal, a cell density signal required early in fruiting body development. We determined the DNA sequence of asgA. The deduced 385-amino-acid sequence of AsgA was found to contain two domains: one homologous to the receiver domain of response regulators and the other homologous to the transmitter domain of histidine protein kinases. A kanamycin resistance (Kmr) gene was inserted at various positions within or near the asgA gene to determine the null phenotype. Those strains with the Kmr gene inserted upstream or downstream of asgA are able to form fruiting bodies, while strains containing the Kmr gene inserted within asgA fail to develop. The nature and location of the asgA476 mutation were determined. This mutation causes a leucine-to-proline substitution within a conserved stretch of hydrophobic residues in the N-terminal receiver domain. Cells containing the insertion within asgA and cells containing the asgA476 substitution have similar phenotypes with respect to development, colony color, and expression of an asg-dependent gene. An analysis of expression of a translational asgA-lacZ fusion confirms that asgA is expressed during growth and early development. Finally, we propose that AsgA functions within a signal transduction pathway that is required to sense starvation and to respond with the production of extracellular A-signal.  相似文献   

3.
4.
5.
Single mutations in the mglA gene in Myxococcus xanthus render cells incapable of gliding. The mglA strains are unique in that all other nonmotile strains of M. xanthus isolated are the result of at least two independent mutations in separate motility system genes. Translational fusions of trpE, or of lacZ, to mglA were constructed, and the resulting fusion polypeptides were used to generate antibodies. Antibodies specific to MglA protein were purified. Antibody-tagged MglA was found localized to the cytoplasm of M. xanthus cells both by fractionation of cell extracts and by electron microscopy of thin sections of whole cells. Four of the five mglA missense mutants tested failed to produce detectable levels of the MglA antigen in whole cell extracts. Nonmotile double mutants (A-S-), which have one mutation in a gene of system A and one mutation in a gene of system S, have the same phenotype as null mglA mutants but produce wild-type levels of MglA protein. MglA protein is conserved in all strains of myxobacteria tested. The amino acid sequence of MglA protein includes three sequence motifs characteristic of GDP/GTP-binding proteins. On the basis of its genetic properties, intracellular location, and amino acid sequence, it is argued that MglA protein is a regulator in the sequence of functions leading to cell movement.  相似文献   

6.
7.
VGP is a major cell-surface glycoprotein present in vegetative cells of Myxococcus xanthus. Serological assays indicated that this protein was released from cells and accumulated in the medium during development, i.e., aggregation, fruiting body formation, and myxosporulation. Cells induced to form spores in the absence of aggregation retained VGP, indicating that loss of VGP was associated with developmental aggregation rather than myxosporulation. Anti-VGP antibodies inhibited vegetative cell gliding, suggesting the protein may also be required for motility.  相似文献   

8.
9.
10.
Previous studies have demonstrated that fruiting body-derived Myxococcus xanthus myxospores contain two fully replicated copies of its genome, implying developmental control of chromosome replication and septation. In this study, we employ DNA replication inhibitors to determine if chromosome replication is essential to development and the exact time frame in which chromosome replication occurs within the developmental cycle. Our results show that DNA replication during the aggregation phase is essential for developmental progression, implying the existence of a checkpoint that monitors chromosome integrity at the end of the aggregation phase.  相似文献   

11.
Myxococcus xanthus is a developmental gram-negative bacterium which forms multicellular fruiting bodies upon nutrient starvation. This bacterium was found to contain a 115-kDa membrane protein which separated with the inner membrane fraction by sucrose density gradient centrifugation. The gene for this protein was cloned, and its DNA sequence was determined. The deduced amino acid sequence consists of 1,061 residues. This protein contains a putative signal sequence and many short segments, found scattered throughout the entire protein, that have sequence similarities with OmpA, a major outer membrane protein of Escherichia coli. Thus, the gene was designated oar (OmpA-related protein). A second open reading frame was found 36 bases downstream of the oar termination codon. This open reading frame encodes a protein of 236 residues and contains a putative lipoprotein signal sequence. An aor disruption mutation (delta oar) showed no effect on vegetative growth but caused abnormal morphogenesis during development and reduced myxospore formation. When examined with a light microscope, delta oar cells were unable to aggregate on developmental agar, indicating that Oar is required for cellular adhesiveness during development.  相似文献   

12.
A gene, mokA, encoding a protein with similarities to histidine kinase-response regulator hybrid sensor, was cloned from a Myxococcus xanthus genomic library. The predicted mokA gene product was found to contain three domains: an amino-terminal input domain, a central transmitter domain, and a carboxy-terminal receiver domain. mokA mutants placed under starvation conditions exhibited reduced sporulation. Mutation of mokA also caused marked growth retardation at high osmolarity. These results indicated that M. xanthus MokA is likely a transmembrane sensor that is required for development and osmotic tolerance. The putative function of MokA is similar to that of the hybrid histidine kinase, DokA, of the eukaryotic slime mold Dictyostelium discoideum.  相似文献   

13.
The soil bacterium, Myxococcus xanthus initiates a developmental program when nutrients are limited. This results in the formation of a multicellular fruiting body structure filled with differentiated, environmentally resistant spores. At least four cell-cell signals, cell motility, and aggregation functions are required for the completion of fruiting body formation.  相似文献   

14.
Myxococcus xanthus is a Gram-negative bacterium with a complex life cycle that includes vegetative swarming on rich medium and, upon starvation, aggregation to form fruiting bodies containing spores. Both of these behaviours require multiple Ser/Thr protein kinases. In this paper, we report the first Ser/Thr protein phosphatase gene, pph1, from M. xanthus. DNA sequence analysis of pph1 indicates that it encodes a protein of 254 residues (Mr = 28 308) with strong homology to eukaryotic PP2C phosphatases and that it belongs to a new group of bacterial protein phosphatases that are distinct from bacterial PP2C phosphatases such as RsbU, RsbX and SpoIIE. Recombinant His-tagged Pph1 was purified from Escherichia coli and shown to have Mn2+ or Mg2+ dependent, okadaic acid-resistant phosphatase activity on a synthetic phosphorylated peptide, RRA(pT)VA, indicating that Pph1 is a PP2C phosphatase. Pph1-expression was observed under both vegetative and developmental conditions, but peaked during early aggregation. A pph1 null mutant showed defects during late vegetative growth, swarming and glycerol spore formation. Under starvation-induced developmental conditions, the mutant showed reduced aggregation and failure to form fruiting bodies with viable spores. Using the yeast two-hybrid system, we have observed a strong interaction between Pph1 and the M. xanthus protein kinase Pkn5, a negative effector of development. These results suggest a functional link between a Pkn2-type protein kinase and a PP2C phosphatase.  相似文献   

15.
The twin-arginine translocation (Tat) system serves to export fully folded proteins across the cytoplasmic membrane. In many bacteria, three major components, TatA, TatB and TatC, are the functionally essential constituents of the Tat system. A Myxococcus xanthus tatB–tatC deletion mutant could aggregate and form mounds, but was unable to form fruiting bodies under nutritionally limiting conditions. When tatB–tatC mutant vegetative cells were cultured with 0.5 M glycerol, the cell morphology changed to spore-like spherical cells, but the spores were not resistant to heat and sonication treatments. In contrast to the wild-type strain, the tatB–tatC mutant also showed a decreased cell growth rate and a lower maximum cell concentration. These results suggest possibility that the Tat system may contribute to export of various important proteins for development and growth for M. xanthus.  相似文献   

16.
Expression of dev genes is important for triggering spore differentiation inside Myxococcus xanthus fruiting bodies. DNA sequence analysis suggested that dev and cas (CRISPR-associated) genes are cotranscribed at the dev locus, which is adjacent to CRISPR (clustered regularly interspaced short palindromic repeats). Analysis of RNA from developing M. xanthus confirmed that dev and cas genes are cotranscribed with a short upstream gene and at least two repeats of the downstream CRISPR, forming the dev operon. The operon is subject to strong, negative autoregulation during development by DevS. The dev promoter was identified. Its -35 and -10 regions resemble those recognized by M. xanthus sigma(A) RNA polymerase, the homolog of Escherichia coli sigma(70), but the spacer may be too long (20 bp); there is very little expression during growth. Induction during development relies on at least two positive regulatory elements located in the coding region of the next gene upstream. At least two positive regulatory elements and one negative element lie downstream of the dev promoter, such that the region controlling dev expression spans more than 1 kb. The results of testing different fragments for dev promoter activity in wild-type and devS mutant backgrounds strongly suggest that upstream and downstream regulatory elements interact functionally. Strikingly, the 37-bp sequence between the two CRISPR repeats that, minimally, are cotranscribed with dev and cas genes exactly matches a sequence in the bacteriophage Mx8 intP gene, which encodes a form of the integrase needed for lysogenization of M. xanthus.  相似文献   

17.
The secretion of numerous proteins during vegetative growth of Myxococcus xanthus , and the multicellular development cycle induced upon starvation of these bacteria, are partially interrelated in so far as mutants impaired in extracellular protein production are unable to undergo development. We have cloned and sequenced a gene in which a Tn 5 insertion leads to a decrease in the production of most, if not all, extracellular proteins, and prevents development and sporulation. The deduced protein is homologous to the putative ubiquinone-binding subunit of bacterial and mitochondrial NADH:ubiquinone oxidoreductases (complex I). This is the first example of the presence of this complex in a bacterium from subclass δ of the proteobacteria. This gene is expressed during growth and during early development. As its disruption by Tn 5 does not impair growth of the mutant strain, we assume the presence of a second alternative NADH oxidoreductase, and suggest that the phenotypic alterations caused by the mutation are due to a decrease in the proton-motive force.  相似文献   

18.
Two transposon insertion mutants of Myxococcus xanthus altered in the secretion of protein as determined by the hydrolytic activities of several enzymes during vegetative growth were also unable to complete fruiting body formation and were severely impaired in sporulation. The insertions were located in the same part of the M. xanthus chromosome but were unlinked by transduction and therefore define two distinct loci, called excA and excB. Since both Exc +/- mutants were able to rescue development of an asgB mutation, they do not belong to the Asg- group, despite of the fact that asg mutants are also Exc +/-. Our results sustain the hypothesis of a possible relationship between protein secretion during vegetative growth and development or sporulation.  相似文献   

19.
Initiation of Myxococcus xanthus multicellular development requires integration of information concerning the cells' nutrient status and density. A gain-of-function mutation, sasB7, that bypasses both the starvation and high cell density requirements for developmental expression of the 4521 reporter gene, maps to the sasS gene. The wild-type sasS gene was cloned and sequenced. This gene is predicted to encode a sensor histidine protein kinase that appears to be a key element in the transduction of starvation and cell density inputs. The sasS null mutants express 4521 at a basal level, form defective fruiting bodies, and exhibit reduced sporulation efficiencies. These data indicate that the wild-type sasS gene product functions as a positive regulator of 4521 expression and participates in M. xanthus development. The N terminus of SasS is predicted to contain two transmembrane domains that would locate the protein to the cytoplasmic membrane. The sasB7 mutation, an E139K missense mutation, maps to the predicted N-terminal periplasmic region. The C terminus of SasS contains all of the conserved residues typical of the sensor histidine protein kinases. SasS is predicted to be the sensor protein in a two-component system that integrates information required for M. xanthus developmental gene expression.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号