首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Y Sarne  A Kenner 《Life sciences》1987,41(5):555-562
Displacement from brain membranes of labeled opiates by low concentrations of enkephalins and of labeled enkephalins by low concentrations of opiates has been previously explained by the existence of a common high affinity site termed mu-1. An alternative interpretation of the same results is that the trough seen in the low concentration zone of the displacement curves represents cross binding of mu and delta opioid ligands to delta and mu receptors, respectively. In three sets of experiments with brain membranes, the size of the trough is shown to be dependent on the labeled ligand used: The ratio between the size of troughs seen with [3H]D-Ala, D-Leu enkephalin and with [3H]morphine varies with experimental conditions (storage of membranes at 4 degrees C for 72 h), with ratio of mu:delta receptors (e.g. in thalamus and cortex which are enriched in mu and delta sites, respectively) and with pretreatment of membranes with naloxonazine. These results can not be explained by a common high affinity site, but rather by binding of [3H]D-Ala, D-Leu enkephalin to mu and of [3H]morphine to delta opioid receptors.  相似文献   

2.
The binding sites for opiates (agonist and antagonist) and opioid peptides can be solubilized from rat brain membranes with digitonin in the presence of Mg2+ (10 mM). High affinity and high capacity binding to the soluble delta, mu, and kappa receptors is obtainable when the membranes are treated in Mg2+ (30 degrees C, 60 min) prior to solubilization. The yields of solubilized binding sites extracted with digitonin, 40-90%, are higher than those obtained from Mg2+-pretreated membranes with other detergents commonly used for receptor solubilization. The stability of the digitonin-soluble opioid receptor at room temperature makes it useful for purification and characterization.  相似文献   

3.
The sigma opiates differ from other opiates in their stimulatory and psychotomimetic actions. The sigma opiate [3H](-)-SKF-10,047 has been used to characterize sigma receptors in rat nervous tissue. Binding of [3H](-)-SKF-10,047 to rat brain membranes was of high affinity, saturable, and reversible. Scatchard analysis revealed the apparent interaction of this drug with two distinct binding sites characterized by affinities of 0.03 and 75 nM (5 mM Tris-HCl buffer, pH 7.4, at 4 degrees C). Competition analyses involving rank order determinations for a series of opiates and other drugs indicate that the high-affinity binding site is the mu opiate receptor. The lower-affinity site (revealed after suppression of mu and delta receptor binding) has been identified as the sigma opiate/phencyclidine receptor. In vitro autoradiography has been used to visualize neuroanatomical patterns of receptors labeled using [3H](-)-SKF-10,047 in the presence of normorphine and [D-Ala2,D-Leu5]enkephalin to block mu and delta interactions, respectively. Labeling patterns differ markedly from those for mu, delta, or kappa receptors. The highest densities (determined by quantitative autoradiography) are found in the medial portion of the nucleus accumbens, amygdaloid nucleus, hippocampal formation, central gray, locus coeruleus, and the parabrachial nuclei. Receptors in these structures could account for the stimulatory, mood-altering, and analgesic properties of the sigma opiates. Although not the most selective sigma opiate ligand, [3H](-)-SKF-10,047 binds to sigma opiate receptors in brain, and this interaction can be readily distinguished from its interactions with other classes of brain opiate receptors.  相似文献   

4.
Opioid binding properties of Tyr-D-Ser-Gly-Phe-Leu-Thr-NH-NH-Gly-Mal (DSLET-Mal), a novel enkephalin-framed affinity label, was determined in rat brain membranes. In competition studies the ligand showed high affinity for the delta opioid sites, labelled by [(3)H][Ile(5,6)]deltorphin II (K(i) = 8 nM), whereas its binding to the mu ([(3)H]DAMGO) and kappa ([(3)H]EKC) sites was weaker. Preincubation of the rat brain membranes with DSLET-Mal at micromolar concentrations resulted in a wash-resistant and dose-dependent inhibition of the [(3)H][Ile(5,6)]deltorphin II binding sites (96% blocking at 10 microM concentration). Intracerebroventricular (ICV) administration of DSLET-Mal reduced the density of delta opioid receptors and had no effect on mu and kappa receptors, as determined by saturation binding studies. [Ile(5, 6)]deltorphin II-stimulated [(35)S]GTPgammaS binding was determined in membrane preparations of different brain areas of the ICV-treated animals. In both frontal cortex and hippocampus DSLET-Mal significantly decreased G protein activation by the delta agonist, having no effect on DAMGO stimulated [(35)S]GTPgammaS binding. DSLET-Mal had qualitatively similar effects on both receptor binding and G protein activation. These characteristics of the compound studied suggest that DSLET-Mal can serve as an affinity label for further studies of the delta-opioid receptors.  相似文献   

5.
Opioid receptor-coupled second messenger systems   总被引:19,自引:0,他引:19  
S R Childers 《Life sciences》1991,48(21):1991-2003
Although pharmacological data provide strong evidence for different types of opioid receptors (e.g., mu, delta, and kappa), they share many common properties in their ability to couple to second messenger systems. All opioid receptor types are coupled to G-proteins, since agonist binding is diminished by guanine nucleotides and agonist-stimulated GTPase activity has been identified in several preparations. Moreover, all three types inhibit adenylyl cyclase. This second messenger system has been identified for opioid receptors in both isolated brain membranes and in transformed cell culture. Studies with chronic treatment with opioid agonists suggest that the coupling of receptors with G-proteins and second messenger effectors may play important roles in development of opioid tolerance.  相似文献   

6.
Opiate agonists inhibit adenylate cyclase in brain membranes, but under normal conditions the maximal inhibition is small (10-15%). When rat brain membranes were preincubated at pH 4.5, washed, and then assayed for adenylate cyclase at pH 7.4, stimulation of activity by agents (fluoride, guanylyl-5'-imidodiphosphate, cholera toxin) that act through the stimulatory GTP-binding coupling protein (Gs) protein was lost. At the same time, inhibition of basal adenylate cyclase by opiate agonists was increased to a maximum of 30-40%. Opiate inhibition was maximal at low magnesium concentrations (less than 5 mM), required guanine nucleotides, and decreased the Vmax, not Km, of the enzyme. Incubation of membranes with pertussis toxin lowered the apparent affinity for agonists in inhibiting activity. The delta opioid agonists were more potent than mu agonists, and the Ke values for naloxone in blocking agonist inhibition were similar for both mu and delta agonists (50-90 nM). These results suggest that inhibition of adenylate cyclase in brain is not mediated by mu opiate receptors, but whether classic high-affinity delta and kappa receptors are involved with this enzyme cannot be confirmed by these experiments.  相似文献   

7.
Fab fragments from a monoclonal antibody, OR-689.2.4, directed against the opioid receptor, selectively inhibited opioid binding to rat and guinea pig neural membranes. In a titratable manner, the Fab fragments noncompetitively inhibited the binding of the mu selective peptide [D-Ala2,(Me)Phe4,Gly(OH)5][3H] enkephalin and the delta selective peptide [D-Pen2,D-Pen5] [3H]enkephalin (where Pen represents penicillamine) to neural membranes. In contrast, kappa opioid binding, as measured by the binding of [3H]bremazocine to rat neural membranes and guinea pig cerebellum in the presence of mu and delta blockers, was not significantly altered by the Fab fragments. In addition to blocking the binding of mu and delta ligands, the Fab fragments displaced bound opioids from the membranes. When mu sites were blocked with [D-Ala2,(Me)Phe4,Gly(OH)5]enkephalin, the Fab fragments suppressed the binding of [D-Pen2,D-Pen5][3H]enkephalin to the same degree as when the mu binding site was not blocked. The Fab fragments also inhibited binding to the mu site regardless of whether or not the delta site was blocked with [D-Pen2,D-Pen5]enkephalin. This monoclonal antibody is directed against a 35,000-dalton protein. Since the antibody is able to inhibit mu and delta binding but not kappa opioid binding, it appears that this 35,000-dalton protein is an integral component of mu and delta opioid receptors but not kappa receptors.  相似文献   

8.
A ligand containing an SNpys group, i.e. 3-nitro-2-pyridinesulfenyl linked to a mercapto (or thiol) group, can bind covalently to a free mercapto group to form a disulfide bond via the thiol-disulfide exchange reaction. This SNpys chemistry has been successfully applied to the discriminative affinity labeling of mu and delta opioid receptors with SNpys-containing enkephalins [Yasunaga, T. et al. (1996) J. Biochem. 120, 459-465]. In order to explore the mercapto groups conserved at or near the ligand binding sites of three opioid receptor subtypes, we synthesized two Cys(Npys)-containing analogs of dynorphin A, namely, [D-Ala2, Cys(Npys)8]dynorphin A-(1-9) amide (1) and [D-Ala2, Cys(Npys)12]dynorphin A-(1-13) amide (2). When rat (mu and delta) or guinea pig (kappa) brain membranes were incubated with these Cys(Npys)-containing dynorphin A analogs and then assayed for inhibition of the binding of DAGO (mu), deltorphin II (delta), and U-69593 (kappa), the number of receptors decreased sharply, depending upon the concentrations of these Cys(Npys)-containing dynorphin A analogs. It was found that dynorphin A analogs 1 and 2 effectively label mu receptors (EC50 = 27-33 nM), but also label delta receptors fairly well (160-180 nM). However, for kappa receptors they showed drastically different potencies as to affinity labeling; i.e., EC50 = 210 nM for analog 1, but 10,000 nM for analog 2. Analog 2 labeled kappa receptors about 50 times more weakly than analog 1. These results suggested that dynorphin A analog 1 labels the Cys residues conserved in mu, delta, and kappa receptors, whereas analog 2 only labels the Cys residues conserved in mu and delta receptors.  相似文献   

9.
125I-beta-Endorphin (human) binds with high affinity, specificity, and saturability to rat brain and neuroblastoma X glioma hybrid cell (NG 108-15) membranes. Dissociation constants and binding capacities were obtained from Scatchard plots and are 2 nM and 0.62 pmol/mg of protein for rat whole brain and 6 nM and 0.8 pmol/mg of protein for NG 108-15 cells. Results from competition experiments also indicate that this ligand interacts with high affinity with both mu and delta opioid binding sites, with a slight preference for mu sites, while exhibiting low affinity at kappa sites. We have demonstrated that human 125I-beta-endorphin is a useful probe for the investigation of the subunit structure of opioid receptors. The specific cross-linking of this ligand has revealed the presence of four reproducible bands or areas after sodium dodecyl sulfate-polyacrylamide gel electrophoresis and autoradiography at 65, 53, 38, and 25 kDa. All labeled bands seem to be opioid receptor related since they are eliminated when binding is carried out in an excess of various opiates. The evidence we have obtained using rat whole brain (delta congruent to mu), rat thalamus (largely mu), bovine frontal cortex (delta:mu congruent to 2:1), and NG 108-15 cells (delta) demonstrates that different labeling patterns are obtained when mu and delta binding sites are cross-linked. The pattern obtained on sodium dodecyl sulfate-polyacrylamide gel electrophoresis from cross-linked mu sites contains a major (heavily labeled) component of 65 kDa and a minor component of 38 kDa, while patterns from delta sites contain a major labeled component of 53 kDa. This 53-kDa band appears clearly in extracts from NG 108-15 cells and bovine frontal cortex, while in rat whole brain a diffusely labeled region is present between 55 and 41 kDa. In addition, NG 108-15 cells also display a minor labeled component at 25 kDa. The relationship of the minor bands to the major bands is not clear.  相似文献   

10.
[3H]Naltrindole binding characteristics were determined using homogenized rat brain tissue. Saturation binding studies at 25 degrees C measured an equilibrium dissociation constant (Kd) value of 37.0 +/- 3.0 pM and a receptor density (Bmax) value of 63.4 +/- 2.0 fmol/mg protein. Association binding studies showed that equilibrium was reached within 90 min at a radioligand concentration of 30 pM. Naltrindole, as well as the ligands selective for delta (delta) opioid receptors, such as pCI-DPDPE and Deltorphin II inhibited [3H]naltrindole binding with nanomolar IC50 values. Ligands selective for mu (mu) and kappa (kappa) opioid receptors were only effective in inhibiting [3H]naltrindole binding at micromolar concentrations. From these data, we conclude that [3H]naltrindole is a high affinity, selective radioligand for delta opioid receptors.  相似文献   

11.
The synthesis and characterization of a novel opioid receptor photoaffinity probe [3H]naltrexyl urea phenylazido derivative ([3H]NUPA) is described. In the absence of light, [3H]NUPA binds with high affinity in a reversible and saturable manner to rat brain and guinea pig cerebellum membranes. Dissociation constants and binding capacities (Scatchard plots) are 0.11 nM and 250 fmol/mg of protein for rat brain and 0.24 nM and 135 fmol/mg of protein for guinea pig cerebellum. Competition experiments indicate that this ligand interacts with high affinity at both mu- and kappa-opioid binding sites while exhibiting low affinity at delta sites (Ki = 21 nM). On irradiation, [3H]NUPA incorporates irreversibly into rat brain and guinea pig cerebellum membranes. SDS gel electrophoresis of rat brain membranes reveals specific photolabeling of a 67-kDa molecular mass band. Conversely, a major component of 58 kDa and a minor component of 36 kDa are obtained from [3H]NUPA-labeled guinea pig cerebellum membranes. Different photolabeling patterns are obtained in rat brain (mu/delta/kappa, 4/5/1) and guinea pig cerebellum (mu+delta/kappa, 1,5/8,5) membranes in the presence of selective opioid ligands indicating labeling of mu and kappa sites, respectively. Thus, [3H]NUPA behaves as an efficient photoaffinity probe of mu- and kappa-opioid receptors, which are probably represented by distinct glycoproteins of 67 and 58 kDa, respectively.  相似文献   

12.
The aim of the present study has been to characterize the regulation by opiates of 45Ca2+ influx in rat spinal cord-dorsal root ganglion cocultures. We have demonstrated that K+-induced depolarization, in the presence of the Ca2+ channel agonist Bay K8644, stimulated Ca2+ influx (3-4-fold) via the dihydropyridine class of voltage-dependent Ca2+ channels. While mu and delta opiates had no effect, kappa opiate agonists (e.g. U50488, dynorphin) profoundly depressed the stimulated Ca2+ influx (86% inhibition at 100 microM U50488). The kappa agonist action was stereospecific and could be reversed by the opiate antagonist naloxone. The inhibition produced by kappa agonists was greatly diminished following pertussis toxin treatment, and this effect was accompanied by toxin-induced ADP-ribosylation of a 40-41-kDa protein. This suggests that kappa opiate receptors are negatively coupled to voltage-dependent Ca2+ channels, via a pertussis toxin-sensitive GTP-binding protein. Basal 45Ca2+ uptake, stimulated by adenylate cyclase activators (forskolin and cholera toxin), was potently inhibited by kappa opiates suggesting that, under conditions of neurohormonal stimulation of adenylate cyclase, kappa receptors are coupled to Ca2+ channels indirectly via the adenylate cyclase complex. In addition, cAMP-independent coupling pathways may also be involved.  相似文献   

13.
Both [D-Ala2,Glu4]Deltorphin and [D-Ala2,4'-I-Phe3,Glu4]Deltorphin are highly selective ligands for delta, relative to mu, opioid receptors. Radiolabeled [D-Ala2, 4'-125I-Phe3,Glu4]Deltorphin ([125I]Deltorphin) was prepared with a specific activity of 2200 Ci/mmol from [D-Ala2, 4'-NH2-Phe3, Glu4]Deltorphin through a diazonium salt intermediate. The inhibition of [125I]Deltorphin binding to rat brain membranes by ligands selective for mu, delta, and kappa opioid receptors is consistent with binding by the radioligand to a single site having the properties of a delta opioid receptor. The results of these studies are in good agreement with those obtained by structurally different delta opioid receptor ligands. The similarity between the delta receptor site labeled by [125I]Deltorphin and those labeled by other delta receptor agonists, in contrast to differences seen by in vivo studies of their analgesic effects, is discussed.  相似文献   

14.
A series of neuroblastoma cell lines were screened for the presence of opioid receptor sites with the tracers [3H]diprenorphine (mu, delta, kappa ligand) and [3H]naloxone (mu-selective ligand). One human neuroblastoma cell line, SK-N-SH, displayed avid binding for both tracers. Binding experiments with multiple tracers revealed the presence of both mu and delta sites. These sites were stereospecific, saturable, and proteinaceous in character. Saturation binding experiments provided an estimate of 50,000 mu and 10,000 delta sites/cell. NaCl (100 mM) and guanine nucleotide, guanylyl imidodiphosphate (50 microM), reduced opioid agonist but not antagonist binding to these sites. Etorphine at 1 nM inhibited prostaglandin E1-stimulated cyclic AMP production by approximately 20%, which was reversible by naloxone. The opioid-binding sites on SK-N-SH cells closely resemble the previously reported mu and delta sites in human and rodent brain. Therefore, the SK-N-SH neuroblastoma cell line represents a useful tool to study the molecular functions of opioid receptors.  相似文献   

15.
Opioid receptor selectivity of peptide models of beta-endorphin   总被引:1,自引:0,他引:1  
Two peptides, designed to contain structural models of the proposed hydrophilic linker domain (residues 6-12) and amphiphilic alpha-helical domain (residues 13-29) in beta-endorphin, have been tested for their abilities to mimic the opioid receptor selectivity profile of the natural hormone. In competitive binding assays employing guinea-pig brain membranes, both peptides displayed a much higher affinity for mu- and delta-opioid receptors than for kappa opioid receptors. Relative to beta-endorphin, the peptide models were 2-3 times more potent in the mu and kappa receptor binding assays, and about equipotent in the delta receptor binding assay. In guinea-pig ileum assays, one peptide was equipotent to beta-endorphin and the other was twice as potent. Like beta-endorphin, their actions on this tissue were highly sensitive to naloxone antagonism, indicating that they were mediated by mu receptors and not kappa receptors. In view of the design of the two peptide models, and their minimal homology to the natural hormone, these results provide additional evidence in support to our proposal for the functional conformation of beta-endorphin.  相似文献   

16.
Exposure of C6 glial cell cultures to desipramine induced the appearance of opioid receptors and up-regulated sigma receptors. Opioid binding was demonstrated with 3H-etorphine and 3H-dihydromorphine (DHM), but was not observed with the mu, delta and kappa ligands 3H-DAMGE, 3H-DADLE or 3H-(-)ethylketocyclazocine in the presence of specific blockers, respectively. Competition experiments with 3H-DHM and either (-)naloxone or (+)naloxone indicated the presence of authentic opioid receptors. In similar studies with beta-endorphin, its truncated form (1-27) or their N-acetyl derivatives, beta-endorphin proved to have the highest affinity. Opioid receptors in glial cell aggregates were primarily kappa, with few mu and delta sites. Desipramine increased Bmax values for kappa but not mu and delta.  相似文献   

17.
A radiolabelled form of deltorphin II was synthesized by catalytic tritiation using [p-IPhe3]-deltorphin II as a precursor. The ligand labels rat brain membranes with a Kd value of 1.9 nM, and the Bmax was found to be 92 fmol/mg protein. This new tritiated ligand exhibits high affinity for the delta opioid binding site, whereas its binding to the mu type is weak and extremely low for the kappa type. Mu/delta and kappa/delta selectivity ratios were about 900 and 10,000, respectively. The highly delta selective binding properties of this new radioligand suggest that it could serve as an excellent tool for investigating the delta opioid receptors in various species.  相似文献   

18.
Prejunctional effects of opioids were examined in the perfused mesentery of two species: the rat and rabbit. Use of agonists selective for subtypes of mu, delta, and kappa opioid receptors produced no effect on contractile responses to adrenergic nerve stimulation in the rat perfused mesentery, except for small effects of the kappa agonist EKC, which may be non specific. In contrast, mu, delta and kappa receptors appear to be present in the rabbit. The mu selective agonist, DAMGO, kappa agonist, ethylketocyclazocine, and delta agonists, DPDPE and [Leu5]-enkephalin, all produced significant inhibition of contractile responses to transmural nerve stimulation. The inhibitory effect was greatest for ethylketocyclazocine. To test the possibility that prejunctional activation of alpha 2 adrenoceptors with endogenous norepinephrine might decrease the activity of prejunctional opioid receptors in the rabbit, inhibitory effects of delta and kappa selective agonists were tested in the presence of 10(-7) M yohimbine. Inhibitory responses of the kappa selective agonist ethylketocyclazocine were enhanced, while that of delta selective agonists [Leu5]-enkephalin and DPDPE remained unchanged when yohimbine was present. Thus, the effects of opioids vary and depend on the tissue and receptor subtypes they act upon. Furthermore, the enhanced inhibitory effect of opioid receptor activation in the presence of yohimbine is not found for all opioid receptors.  相似文献   

19.
A series of 2-amino-oxazole (7 and 8) analogs and 2-one-oxazole analogs (9 and 10) were synthesized from cyclorphan (1) or butorphan (2) and evaluated in-vitro by their binding affinity at mu, delta, and kappa opioid receptors and compared with their 2-aminothiozole analogs 5 and 6. Ligands 7-10 showed decreased affinities at kappa and mu receptors. Urea analogs (11-14) were also prepared from 2-aminocyclorphan (3) or 2-aminobutorphan (4) and evaluated in-vitro by their binding affinity at mu, delta, and kappa opioid receptors. The urea derived opioids retained their affinities at mu receptors while showing increased affinities at delta receptors and decreased affinities at kappa receptors. Functional activities of these compounds were measured in the [35S]GTPgammaS binding assay, illustrating that all of these ligands were kappa agonists. At the mu receptor, compounds 11 and 12 were mu agonist/antagonists.  相似文献   

20.
The binding properties of 14 beta-(bromoacetamido)morphine (BAM) and the ability of BAM to irreversibly inhibit opioid binding to rat brain membranes were examined to characterize the affinity and selectivity of BAM as an irreversible affinity ligand for opioid receptors. BAM had the same receptor selectivity as morphine, with a 3-5-fold decrease in affinity for the different types of opioid receptors. When brain membranes were incubated with BAM, followed by extensive washing, opioid binding was restored to control levels. However, when membranes were incubated with dithiothreitol (DTT), followed by BAM, and subsequently washed, 90% of the 0.25 nM [3H] [D-Ala2,(Me)Phe4,Gly(ol)5]enkephalin (DAGO) binding was irreversibly inhibited as a result of the specific alkylation of a sulfhydryl group at the mu binding site. This inhibition was dependent on the concentrations of both DTT and BAM. The mu receptor specificity of BAM alkylation was demonstrated by the ability of BAM alkylated membranes to still bind the delta-selective peptide [3H] [D-penicillamine2,D-penicillamine5]enkephalin (DPDPE) and (-)-[3H]bremazocine in the presence of mu and delta blockers, selective for kappa binding sites. Under conditions where 90% of the 0.25 nM [3H]DAGO binding sites were blocked, 80% of the 0.8 nM [3H]naloxone binding and 50% of the 0.25 nM 125I-labeled beta h-endorphin binding were inhibited by BAM alkylation. Morphine and naloxone partially protected the binding site from alkylation with BAM, while ligands that did not bind to the mu site did not afford protection.2+hese studies have demonstrated that when a disulfide bond  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号