首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Renin-binding protein (RnBP) is an endogenous renin inhibitor originally isolated from porcine kidney. It was recently identified as the enzyme N-acetyl-D-glucosamine (GlcNAc) 2-epimerase [Takahashi, S. et al. (1999) J. Biochem. 125, 348-353] and its active site residue was determined to be cysteine 380 by site-directed mutagenesis [Takahashi, S. et al. (1999) J. Biochem. 126, 639-642]. To further investigate the relationship between structure and function of recombinant human (rh) RnBP as a GlcNAc 2-epimerase, we have constructed several C-terminal deletion and multi-cysteine/serine mutants of rhGlcNAc 2-epimerase and expressed them in Escherichia coli cells. The expression was detected by Western blotting using anti-rhRnBP antiserum. The C-terminal deletion mutant, Delta400-417, had approximately 50% activity relative to the wild-type enzyme, but other C-terminal deletion mutants, Delta380-417, Delta386-417, and Delta390-417, had no enzymatic activity. Mutational analysis of multi-cysteine/serine mutants revealed that cysteines 41 and 390 were critical for the activity or stabilization of the enzyme, while cysteine residues in the middle of the enzyme, cysteines 125, 210, 239, and 302, had no essential function in relation to the activity.  相似文献   

2.
Renin binding protein (RnBP), a cellular renin inhibitor, has been identified as the enzyme N-acetyl-D-glucosamine (GlcNAc) 2-epimerase. Our recent studies demonstrated that rat GlcNAc 2-epimerase has a ten-times higher affinity for ATP, dATP, and ddATP than the human enzyme [Takahashi, S. et al. (2001) J. Biochem. 130, 815-821]. To identify the domain conferring nucleotide binding to GlcNAc 2-epimerase, we constructed a series of chimeric enzymes successively replacing the three domains of the human enzyme (N-terminal, middle, and C-terminal domains) with the corresponding domains of the rat enzyme. Chimeras were expressed in Escherichia coli JM109 cells under the control of the Taq promoter. The purified chimeric enzymes had GlcNAc 2-epimerase activity and inhibited renin activity in a dose-dependent manner. The recombinant human and rat enzymes required catalytic amounts of ATP with apparent K(m) values of 73 and 5.5 microM, respectively. Chimeric enzymes of HHR, RHH, and RHR (H, human type domain; R, rat type domain) had nearly the same nucleotide specificity as the human GlcNAc 2-epimerase. On the other hand, HRR, HRH, and RRH chimeras had the same nucleotide specificity as the rat enzyme. These results indicate that the middle domain of the GlcNAc 2-epimerase molecule participates in the specificity for and binding of nucleotides, and that nucleotides are essential to form the catalytic domain of the enzyme.  相似文献   

3.
Renin binding protein (RnBP) is a proteinous renin inhibitor firstly isolated from porcine kidney. Recently, the protein was identified as the enzyme, N-acetyl-D-glucosamine (GlcNAc) 2-epimerase. The GlcNAc 2-epimerase activity of recombinant human RnBP was specifically inhibited by SH-reagents such as N-ethylmaleimide, 5, 5'-dithiobis-2-nitrobenzoate, and iodoacetic acid, indicating that the most probable reactive site is a cysteine residue. To identify the active site residue(s), we have constructed ten cysteine residue mutants (C41S, C66S, C104S, C125S, C210S, C239S, C302S, C380S, C386S, and C390S) for human GlcNAc 2-epimerase and expressed them in Escherichia coli cells. The relative specific activities of C41S, C66S, C125S, C210S, C239S, C302S, C386S, and C390S are nearly the same to that of the wild-type enzyme. The specific activity of the C104S mutant is 26% of that of the wild-type enzyme. The expression of the C380S mutant in E. coli cells was detected on Western blotting, whereas GlcNAc 2-epimerase activity was not detected in the extract. These results indicate that Cys380 is essential for the enzymatic activity of human GlcNAc 2-epimerase.  相似文献   

4.
5.
N-Acyl-d-Glucosamine 2-epimerase (AGE) catalyzes the reversible epimerization between N-acetyl-d-mannosamine (ManNAc) and N-acetyl-d-glucosamine (GlcNAc). Bacteroides ovatus ATCC 8483 shows 3 putative genes for AGE activity (BACOVA_00274, BACOVA_01795 and BACOVA_01816). The BACOVA_00274 gene encodes an AGE (BoAGE1) with strong similarity to the AGE previously characterized in Bacteroides fragilis. Interestingly, the BACOVA_01816 gene (BoAGE2) shares 57% identity with Anabaena sp. CH1 AGE, but has an extra 27-amino acid tag sequence in the N-terminal. When cloned and expressed in Escherichia coli Rosetta (DE3)pLys, BACOVA_01816 was able to convert ManNAc into GlcNAc and vice versa. It was stable over a broad range of pHs and its activity was enhanced by ATP (20 μM). The incubation with ATP stabilized its structure, raising its melting temperature by about 8 °C. In addition, the catalytic efficiency for ManNAc synthesis was higher than that for GlcNAc synthesis. These characteristics make BoAGE2 a promising biocatalyst for sialic acid production using cheap GlcNAc as starting material. BoAGE2 could be considered a Renin-binding Protein and its interaction with renin was studied for the first time in a prokaryotic AGE. Surprisingly, renin activated BoAGE2, an effect which is contrary to that described for mammalian AGE and unrelated with the unique N-terminal tag, since a mutant without this tag was also activated by renin. When BoAGE2 sequence was compared with other related (real and putative) AGE described in the databases, it was seen that AGE enzymes can be divided in 3 different groups. The relationship between these groups is also discussed.  相似文献   

6.
Overexpression of recombinant N-acetyl-d-glucosamine 2-epimerase, one of the key enzymes for the synthesis of N-acetylneuraminic acid, in E. coli led to the formation of protein inclusion bodies. In this study we report the recovery of active epimerase from inclusion bodies by direct solubilization with Tris buffer. At pH 7.0, 25% of the inclusion bodies were solubilized with Tris buffer. The specific activity of the solubilized proteins, 2.08 ± 0.02 U/mg, was similar to that of the native protein, 2.13 ± 0.01 U/mg. The result of circular dichroism spectroscopy analysis indicated that the structure of the solubilized epimerase obtained with pH 7.0 Tris buffer was similar to that of the native epimerase purified from the clarified cell lysate. As expected, the extent of deviation in CD spectra increased with buffer pH. The total enzyme activity recovered by solubilization from inclusion bodies, 170.41 ± 10.06 U/l, was more than 2.5 times higher than that from the clarified cell lysate, 67.32 ± 5.53 U/l. The results reported in this study confirm the hypothesis that the aggregation of proteins into inclusion bodies is reversible and suggest that direct solubilization with non-denaturing buffers is a promising approach for the recovery of active proteins from inclusion bodies, especially for aggregation-prone multisubunit proteins.  相似文献   

7.
8.
Over the past decade, parathyroid hormone-related protein (PTHrP) has been identified as a key survival factor for cells subjected to apoptotic stimuli. Its anti-apoptotic activity has been attributed to nuclear accumulation of the intact protein, or a synthetic peptide corresponding to its nuclear targeting sequence (NTS), which promotes rapid exit of nutrient deprived cells from the cell cycle. Intracellular PTHrP also inhibited apoptosis by blocking tumor necrosis factor alpha (TNFalpha)-induced apoptosis by blocking signaling from the "death receptor" and preventing damage to the mitochondrial membrane. In both cases, the anti-apoptotic activity was significantly reduced in the presence of a nuclear deficient form of PTHrP with a (88)K/E K/E.K/I(91) mutation in the NTS. The current work was undertaken to determine the mechanism by which nuclear PTHrP blocked mitochondrial-mediated apoptosis. Using sub-cellular fractionation and functional assays we showed that pre-treatment of HEK293 cells with exogenous NTS peptide before inducing apoptosis with TNFalpha was as effective as expression of the full-length protein in inhibiting apoptosis. Inhibition of apoptosis was associated with increased expression of protein kinase casein kinase 2 (CK2) and in sustained CK2 accumulation and activity in the nuclear fraction. In primary chondrogenic cells harvested from the limb buds of PTHrP(+/-) and PTHrP(-/-) embryonic mice, there was a dose-dependent decrease in CK2 expression and activity that correlated with increased susceptibility to apoptosis. Taken together the results indicate that nuclear accumulation of PTHrP effectively inhibits mitochondrial-mediated apoptosis through regulation of the expression, activity, and sub-cellular trafficking of CK2.  相似文献   

9.
N-acetyl-D-glucosamine 2-epimerase (GlcNAc 2-epimerase) catalyzes the reversible epimerization between N-acetyl-D-glucosamine (GlcNAc) and N-acetyl-D-mannosamine (ManNAc). We report here the 2.0 A resolution crystal structure of the GlcNAc 2-epimerase from Anabaena sp. CH1. The structure demonstrates an (alpha/alpha)(6) barrel fold, which shows structural homology with porcine GlcNAc 2-epimerase as well as a number of glycoside hydrolase enzymes and other sugar-metabolizing enzymes. One side of the barrel structure consists of short loops involved in dimer interactions. The other side of the barrel structure is comprised of long loops containing six short beta-sheets, which enclose a putative central active-site pocket. Site-directed mutagenesis of conserved residues near the N-terminal region of the inner alpha helices shows that R57, H239, E308, and H372 are strictly required for activity. E242 and R375 are also essential in catalysis. Based on the structure and kinetic analysis, H239 and H372 may serve as the key active site acid/base catalysts. These results suggest that the (alpha/alpha)(6) barrel represents a steady fold for presenting active-site residues in a cleft at the N-terminal ends of the inner alpha helices, thus forming a fine-tuned catalytic site in GlcNAc 2-epimerase.  相似文献   

10.
Renin binding protein (RnBP), a cellular renin inhibitor, was identified as an enzyme, GlcNAc 2-epimerase. Recombinant RnBP inhibited porcine renin activity in a dose dependent manner. However, the inhibition was neutralized by nucleotides, such as ATP, dATP, dGTP, dCTP or dTTP. Moreover, ATP inhibited the formation of hetero-complex of renin with RnBP, called high molecular weight (HMW) renin. On the other hand, N-ethylmaleimide (NEM), a SH-alkylating reagent inhibited the GlcNAc 2-epimerase activity concomitant with the decaying of the dimer to the monomer of the enzyme. The inhibition was modulated in the presence of ATP. These results indicate that nucleotides stabilize the dimeric form RnBP (GlcNAc 2-epimerase) and inhibited the formation of the renin-RnBP hetero complex, HMW renin.  相似文献   

11.
Renin-binding protein (RnBP) is an endogenous renin inhibitor originally isolated from porcine kidney as a complex of renin, so-called high molecular weight (HMW) renin. Our recent studies demonstrated that human RnBP is the enzyme N-acetyl-D-glucosamine (GlcNAc) 2-epimerase [Takahashi, S. et al. (1999) J. Biochem. 125, 348-353]. We have purified recombinant human, rat, and porcine RnBPs expressed in Escherichia coli JM 109 cells. The purified recombinant RnBPs existed as dimers and inhibited porcine renin activity strongly. On the other hand, porcine renin inhibited recombinant GlcNAc 2-epimerase activities. The human GlcNAc 2-epimerase activity could not be detected in the absence of a nucleotide, whereas ATP, dATP, ddATP, ADP, and GTP enhanced the human GlcNAc 2-epimerase activity. Other nucleotides had no effect on human GlcNAc 2-epimerase activity. Rat and porcine GlcNAc 2-epimerases were activated by several nucleotides. Nucleotides that enhance the activity of GlcNAc 2-epimerases protect these enzymes against degradation by thermolysin. These results indicate that mammalian RnBPs have GlcNAc 2-epimerase activity and that nucleotides are essential for formation of the catalytic domain of the enzyme.  相似文献   

12.
The interactions between various dietary cancer chemopreventive phytochemicals in drug transporter functions are not well studied. In this study, the effects of genistein and resveratrol on the multidrug resistance protein 2 (MRP2) expression and the underlying molecular mechanisms were investigated using HepG2-C3 cells that are stably transfected with a construct containing human MRP2 promoter region conjugated with luciferase reporter gene. A 3-fold induction of MRP2 luciferase activity was observed after genistein (50 μM) treatment to HepG2-C3 cells, but was diminished by the resveratrol (50 μM) cotreatment. This observation was further validated by Western blot analysis and RT-PCR analysis as resveratrol also inhibited genistein-induced MRP2 protein synthesis and mRNA expression. Immunofluorescence study revealed that genistein-induced formation of MRP2 vacuoles was dramatically reduced by resveratrol. The binding affinity between retinoid X receptor alpha (RXRα) and MRP2 promoter was examined by DNA–protein pull-down assay. The results showed that resveratrol inhibited the genistein-induced binding of RXRα to the promoter sequence of MRP2 gene, and this mechanism could potentially contribute to the inhibition of genistein-induced MRP2 expression by resveratrol. Taken together, our present study suggests that naturally occurring phytochemicals can potentially interfere with each other’s regulatory function on the cancer chemoprevention-related genes through a competitive mechanism.  相似文献   

13.
Rat gene for renin-binding protein (RnBP) was shown to be expressed in the kidney, adrenal gland, brain, lung, spleen, ovary, testis, and heart. On sodium depletion and captopril administration, the rat showed a marked increase in the adrenal RnBP mRNA level and a slight decrease in the kidney RnBP mRNA level. In two-kidney, one clip hypertensive rats, the RnBP mRNA levels of the clipped and contralateral kidneys were unchanged and also its adrenal mRNA level was maintained at the control level. The recombinant rat RnBP was synthesized in Escherichia coli cells and purified to apparent homogeneity. The RnBP existed as a homodimer and formed a heterodimer with rat renin to inhibit renin activity extensively. Intravenous injection of the RnBP into rats resulted in a rapid and strong inhibition of plasma renin activity, which persisted at least for 2 h. These results suggest that the expression of RnBP gene in the kidney and adrenal gland is regulated independently, and the function of RnBP is related to electrolyte homeostasis, probably through the interaction with renin.  相似文献   

14.
N-acetyl-d-neuraminic acid (NeuAc; sialic acid) is a precursor for the manufacture of many pharmaceutical drugs, such as anti-influenza virus agents. To develop a whole cell process for NeuAc production, genes of Anabaena sp. CH1 N-acetyl-d-glucosamine 2-epimerase (bage) and Escherichia coli N-acetyl-d-neuraminic acid lyase (nanA) were cloned and expressed in E. coli BL21 (DE3). The expressed bGlcNAc 2-epimerase was purified from the crude cell extract of IPTG-induced E. coli BL21 (DE3) (pET-bage) to homogeneity by nickel-chelate chromatography. The molecular mass of the purified bGlcNAc 2-epimerase was determined to be 42kDa by SDS-PAGE. The pH and temperature optima of the recombinant bGlcNAc 2-epimerase were pH 7.0 and 50 degrees C, respectively, and only needs 20mum ATP for maximal activity. The specific activity of bGlcNAc 2-epimerase (124Umg(-1) protein) for the conversion of N-acetyl-d-glucosamine to N-acetyl-d-manosamine was about four-fold higher than that of porcine N-acetyl-d-glucosamine 2-epimerase. A stirred glass vessel containing transformed E. coli cells expressing age gene from Anabaena sp. CH1 and NeuAc lyase gene from E. coli NovaBlue separately was used for the conversion of GlcNAc and pyruvate to NeuAc. A maximal productivity of 10.2gNeuAcl(-1)h(-1) with 33.3% conversion yield from GlcNAc could be obtained in a 12-h reaction. The recombinant E. coli cells can be reused for more than eight cycles with a productivity of >8.0gNeuAcL(-1)h(-1). In this process, the expensive activator, ATP, necessary for maximal activity of GlcNAc 2-epimerase in free enzyme system can be omitted.  相似文献   

15.
Chromogranin B (CgB) is a member of the granin family of neuroendocrine secretory proteins, which has been proposed to play a role in secretory granule biogenesis and as a precursor to bioactive peptides. The cloning of CgB in a phylogenetically distant vertebrate, the frog Rana ridibunda, reveals a modest overall homology (35-40%) with mammalian CgB. However, the sequences of the N- and C-terminal regions are more highly conserved (57-65% amino acid identity) and may give rise to novel regulatory peptides. In frog, intense expression of CgB mRNA was observed in particular structures of the brain and in the distal lobe of the pituitary.  相似文献   

16.
A reticulocyte translation system was depleted of functional EF-2 by treatment with diphtheria toxin (DT) fragment A and NAD. After dialysis to remove NAD, the system was reconstituted using preparations of EF-2 derived from pyBHK cells. Untreated and reconstituted lysates permitted similar rates of translation. As expected, when DT-treated EF-2 was used to reconstitute the system, no translation occurred. Furthermore EF-2, reacting with the endogenous ADP-ribosyl transferase from pyBHK cells, was also unable to restore protein synthesis in the reconstituted system. These studies suggest that eukaryotic cellular ADP-ribosyl transferases may play a role in regulating protein synthesis.  相似文献   

17.
Oxygen radicals and protein kinase C (PKC) mediate ischemic preconditioning. Using a cultured chick embryonic cardiomyocyte model of hypoxia and reoxygenation, we found that the oxygen radicals generated by ischemic preconditioning were H(2)O(2). Like preconditioning, H(2)O(2) selectively activated the epsilon-isoform of PKC in the particulate compartment and increased cell viability after 1 h of hypoxia and 3 h of reoxygenation. The glutathione peroxidase ebselen (converting H(2)O(2) to H(2)O) and the superoxide dismutase inhibitor diethyldithiocarbamic acid abolished the increased H(2)O(2) and the protection of preconditioning. PKC activation with phorbol 12-myristate 13-acetate increased cell survival; the protection of preconditioning was blocked by epsilonV(1-2), a selective PKC-epsilon antagonist. Similar to preconditioning, the protection of PKC activation was abolished by mitochondrial K(ATP) channel blockade with 5-hydroxydecanoate or by GABA receptor stimulation with midazolam or diazepam. In addition, PKC, mitochondrial ATP-sensitive K(+) (K(ATP)) channels, and GABA receptors had no effects on H(2)O(2) generated by ischemic preconditioning before prolonged hypoxia and reoxygenation. We conclude that H(2)O(2) opens mitochondrial K(ATP) channels and inhibits GABA receptors via activating PKC-epsilon. Through this signal transduction, preconditioning protects ischemic cardiomyocytes.  相似文献   

18.
A high-performance liquid chromatograph equipped with the newly developed gel, TSK G3000SW, was used to study the interaction between renin and renin-binding protein (RBP). Previously, the interaction could only be demonstrated after overnight gel chromatography in the presence of a non-physiological sulfhydryl reagent. However, this new high-speed gel chromatography provided a clear separation of renin and renin—RBP complex within 40 min. It also demonstrated that the renin—RBP complex was formed at 37°C in the absence of sulfhydryl reagent. These results indicate that the binding protein may play an important role in blood pressure regulation.  相似文献   

19.
Sialic acids are widely expressed as terminal carbohydrates on glycoconjugates of eukaryotic cells. They are involved in a variety of cellular functions, such as cell adhesion or signal recognition. The key enzyme of sialic acid biosynthesis is the bifunctional UDP-N-acetylglucosamine-2-epimerase/N-acetylmannosamine kinase (GNE), which catalyzes the first two steps of sialic acid biosynthesis in the cytosol. Previously, we have shown that inactivation of the GNE by gene targeting causes early embryonic lethality in mice, whereas heterozygous GNE-deficient mice are vital. In this study we compared the amount of membrane-bound sialic acids of wildtype mice with those of heterozygous GNE-deficient mice. For that we quantified membrane-bound sialic acid concentration in various organs of wildtype- and heterozygous GNE-deficient mice. We found an organ-specific reduction of membrane-bound sialic acids in heterozygous GNE-deficient mice. The overall reduction was 25%. Additionally, we analyzed transferrin and polysialylated neural cell adhesion molecule (NCAM) by one- or two-dimensional gel electrophoresis. Transferrin-expression was unchanged in heterozygous GNE-deficient mice; however the isoelectric point of transferrin was shifted towards basic pH, indicating a reduced sialylation. Furthermore, the expression of polysialic acids on NCAM was reduced in GNE-deficient mice. Daniel Gagiannis and André Orthmann have contributed equally to this work.  相似文献   

20.
Fibroblasts are the major source of extracellular connective tissue matrix, and the recruitment, accumulation, and stimulation of these cells are thought to play important roles in both normal healing and the development of fibrosis. Prostaglandin E(2) (PGE(2)) can inhibit this process by blocking fibroblast proliferation and collagen production. The aim of this study was to investigate the inhibitory effect of PGE(2) on human plasma fibronectin (hFN)- and bovine bronchial epithelial cell-conditioned medium (BBEC-CM)-induced chemotaxis of human fetal lung fibroblasts (HFL1). Using the Boyden blind well chamber technique, PGE(2) (10(-7) M) inhibited chemotaxis to hFN 40.8 +/- 5.3% (P < 0.05) and to BBEC-CM 49.7 +/- 11.7% (P < 0.05). Checkerboard analysis demonstrated inhibition of both chemotaxis and chemokinesis. The effect of PGE(2) was concentration dependent, and the inhibitory effect diminished with time. Other agents that increased fibroblast cAMP levels, including isoproterenol (10(-5) M), dibutyryl cAMP (10(-5) M), and forskolin (3 x 10(-5) M) had similar effects and inhibited chemotaxis 54.1, 95.3, and 87.0%, respectively. The inhibitory effect of PGE(2) on HFL1 cell chemotaxis was inhibited by the cAMP-dependent protein kinase (PKA) inhibitor KT-5720, which suggests a cAMP-dependent effect mediated by PKA. In summary, PGE(2) appears to inhibit fibroblast chemotaxis, perhaps by modulating the rate of fibroblast migration. Such an effect may contribute to regulation of the wound healing response after injury.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号