首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 922 毫秒
1.
Phospholamban (PLB) and Sarcolipin (SLN) are integral membrane proteins that regulate muscle contractility via direct interaction with the Ca-ATPase in cardiac and skeletal muscle, respectively. The molecular details of these protein-protein interactions are as yet undetermined. Solution and solid-state NMR spectroscopies have proven to be effective tools for deciphering such regulatory mechanisms to a high degree of resolution; however, large quantities of pure recombinant protein are required for these studies. Thus, recombinant PLB and SLN production in Escherichia coli was optimized for use in NMR experiments. Fusions of PLB and SLN to maltose binding protein (MBP) were constructed and optimal conditions for protein expression and purification were screened. This facilitated the large-scale production of highly pure protein. To confirm their functionality, the biological activities of recombinant PLB and SLN were compared to those of their synthetic counterparts. The regulation of Ca-ATPase activity by recombinant PLB and SLN was indistinguishable from the regulation by synthetic proteins, demonstrating the functional integrity of the recombinant constructs and ensuring the biological relevance of our future structural studies. Finally, NMR spectroscopic conditions were established and optimized for use in investigations of the mechanism of Ca-ATPase regulation by PLB and SLN.  相似文献   

2.
Phospholamban (PLB) is responsible for regulating Ca(2+) transport by Ca(2+)-ATPase across the sarcoplasmic reticulum of cardiac and smooth muscle. This regulation is coupled to beta-adrenergic stimulation, and dysfunction has been associated with end-stage heart failure. PLB appears to directly bind to Ca(2+)-ATPase, thus slowing certain steps in the Ca(2+) transport cycle. We have determined 3D structures from co-crystals of PLB with Ca(2+)-ATPase by cryoelectron microscopy of tubular co-crystals at 8--10 A resolution. Specifically, we have used wild-type PLB, a monomeric PLB mutant (L37A), and a pentameric PLB mutant (N27A) for co-reconstitution and have compared resulting structures with three control structures of Ca(2+)-ATPase alone. The overall molecular shape of Ca(2+)-ATPase was indistinguishable in the various reconstructions, indicating that PLB did not have any global effects on Ca(2+)-ATPase conformation. Difference maps reveal densities which we attributed to the cytoplasmic domain of PLB, though no difference densities were seen for PLB's transmembrane helix. Based on these difference maps, we propose that a single PLB molecule interacts with two Ca(2+)-ATPase molecules. Our model suggests that PLB may resist the large domain movements associated with the catalytic cycle, thus inhibiting turnover.  相似文献   

3.
Phospholamban (PLB) physically interacts with Ca(2+)-ATPase and regulates contractility of the heart. We have studied this interaction using electron microscopy of large two-dimensional co-crystals of Ca(2+)-ATPase and the I40A mutant of PLB. Crystallization conditions were derived from those previously used for thin, helical crystals, but the addition of a 10-fold higher concentration of magnesium had a dramatic effect on the crystal morphology and packing. Two types of crystals were observed, and were characterized both by standard crystallographic methods and by electron tomography. The two crystal types had the same underlying lattice, which comprised antiparallel dimer ribbons of Ca(2+)-ATPase molecules previously seen in thin, helical crystals, but packed into a novel lattice with p22(1)2(1) symmetry. One crystal type was single-layered, whereas the other was a flattened tube and therefore double-layered. Additional features were observed between the dimer ribbons, which were substantially farther apart than in previous helical crystals. We attributed these additional densities to PLB, and built a three-dimensional model to show potential interactions with Ca(2+)-ATPase. These densities are most consistent with the pentameric form of PLB, despite the use of the presumed monomeric I40A mutant. Furthermore, our results indicate that this pentameric form of PLB is capable of a direct interaction with Ca(2+)-ATPase.  相似文献   

4.
Phospholamban (PLB) is a small transmembrane protein that regulates calcium transport across the sarcoplasmic reticulum (SR) of cardiac cells via a reversible inhibitory interaction with Ca2+-ATPase. In this work solid-state NMR methods have been used to investigate the dynamics of the inhibitory association between PLB and Ca2+-ATPase. Skeletal muscle Ca2+-ATPase was incorporated into phosphatidylcholine membranes together with a ten-fold excess of a null-cysteine mutant of PLB labelled with 13C at Leu-44 in the transmembrane domain ([alpha-13C-L44]AAA-PLB). In these membranes the PLB variant was found to partially inhibit Ca2+-ATPase by reducing the affinity of the enzyme for calcium. Cross-polarization magic angle spinning (CP-MAS) 13C NMR spectra of the membranes exhibited a signature peak from [alpha-13C-L44]AAA-PLB at 56 ppm. Changes in the intensity of the peak were observed at different temperatures, which was diagnostic of direct interaction between [alpha-13C-L44]AAA-PLB and Ca2+-ATPase. Measurements of dipolar couplings between the 13C label and neighbouring protons were analysed to show that the mean residency time for the association of AAA-PLB with Ca2+-ATPase was on the order of 2.5 ms at temperatures between 0 degrees C and 30 degrees C. This new NMR approach will be useful for examining how the association of the two proteins is affected by physiological stimuli such as kinases and the elevation of calcium concentration.  相似文献   

5.
Our model of phospholamban (PLB) regulation of the cardiac Ca(2+)-ATPase in sarcoplasmic reticulum (SERCA2a) states that PLB binds to the Ca(2+)-free, E2 conformation of SERCA2a and blocks it from transitioning from E2 to E1, the Ca(2+)-bound state. PLB and Ca(2+) binding to SERCA2a are mutually exclusive, and PLB inhibition of SERCA2a is manifested as a decreased apparent affinity of SERCA2a for Ca(2+). Here we extend this model to explain the reversal of SERCA2a inhibition that occurs after phosphorylation of PLB at Ser(16) by protein kinase A (PKA) and after binding of the anti-PLB monoclonal antibody 2D12, which recognizes residues 7-13 of PLB. Site-specific cysteine variants of PLB were co-expressed with SERCA2a, and the effects of PKA phosphorylation and 2D12 on Ca(2+)-ATPase activity and cross-linking to SERCA2a were monitored. In Ca(2+)-ATPase assays, PKA phosphorylation and 2D12 partially and completely reversed SERCA2a inhibition by decreasing K(Ca) values for enzyme activation, respectively. In cross-linking assays, cross-linking of PKA-phosphorylated PLB to SERCA2a was inhibited at only two of eight sites when conducted in the absence of Ca(2+) favoring E2. However, at a subsaturating Ca(2+) concentration supporting some E1, cross-linking of phosphorylated PLB to SERCA2a was attenuated at all eight sites. K(Ca) values for cross-linking inhibition were decreased nearly 2-fold at all sites by PLB phosphorylation, demonstrating that phosphorylated PLB binds more weakly to SERCA2a than dephosphorylated PLB. In parallel assays, 2D12 blocked PLB cross-linking to SERCA2a at all eight sites regardless of Ca(2+) concentration. Our results demonstrate that 2D12 restores maximal Ca(2+)-ATPase activity by physically disrupting the binding interaction between PLB and SERCA2a. Phosphorylation of PLB by PKA weakens the binding interaction between PLB and SERCA2a (yielding more PLB-free SERCA2a molecules at intermediate Ca(2+) concentrations), only partially restoring Ca(2+) affinity and Ca(2+)-ATPase activity.  相似文献   

6.
Thyroid hormone exerts positive inotropic effects on the heart mediated in part by its regulation of calcium transporter proteins, including sarco(endo)plasmic reticulum Ca(2+)-ATPase (SERCA2), phospholamban (PLB), and Na(+)/Ca(2+) exchanger (NCX). To further understand the potential cardiac chamber-specific effects of thyroid hormone action, we compared the triiodo-L-thyronine (T(3)) responsiveness of calcium transporter proteins in atrial versus ventricular tissues. Rats were rendered hypothyroid by ingestion of propylthiouracil, and a subgroup of animals was treated with T(3) for 7 days (7 microg/day by constant infusion). Atrial and left ventricular (LV) tissue homogenates were analyzed for expression of SERCA2, PLB, and NCX proteins by Western blot analysis. SERCA2 protein significantly decreased by 50% in hypothyroid LV and was normalized by T(3) treatment. In contrast, SERCA2 protein in atria was unaltered in the hypothyroid state. PLB protein expression significantly increased by 1.6- and 5-fold in the hypothyroid LV and atria, respectively, and returned to euthyroid levels with T(3) treatment. Expression of NCX protein showed a greater response to T(3) treatment in atria tissue than in ventricular tissue. Sarcoplasmic reticulum calcium cycling is determined in part by the ratio of SERCA2 to PLB. This ratio was sixfold higher in the atria compared with LV, suggesting that PLB may play a minor role in the regulation of SERCA2 function in normal atria. We conclude that calcium transporter proteins are responsive to thyroid hormone in a chamber-specific manner, with atria showing a greater change in protein content in response to T(3). The differential effect on atria may account for the occurrence of atrial rather than ventricular arrhythmias in response to even mild degrees of thyrotoxicosis.  相似文献   

7.
8.
Sarcolipin (SLN) inhibits sarco(endo)plasmic reticulum Ca(2+)-ATPase (SERCA) pumps. To evaluate the physiological significance of SLN in skeletal muscle, we compared muscle contractility and SERCA activity between Sln-null and wild-type mice. SLN protein expression in wild-type mice was abundant in soleus and red gastrocnemius (RG), low in extensor digitorum longus (EDL), and absent from white gastrocnemius (WG). SERCA activity rates were increased in soleus and RG, but not in EDL or WG, from Sln-null muscles, compared with wild type. No differences were seen between wild-type and Sln-null EDL muscles in force-frequency curves or maximum rates of force development (+dF/dt). Maximum relaxation rates (-dF/dt) of EDL were higher in Sln-null than wild type across a range of submaximal stimulation frequencies, but not during a twitch or peak tetanic contraction. For soleus, no differences were seen between wild type and Sln-null in peak tetanic force or +dF/dt; however, force-frequency curves showed that peak force during a twitch and 10-Hz contraction was lower in Sln-null. Changes in the soleus force-frequency curve corresponded with faster rates of force relaxation at nearly all stimulation frequencies in Sln-null compared with wild type. Repeated tetanic stimulation of soleus caused increased (-dF/dt) in wild type, but not in Sln-null. No compensatory responses were detected in analysis of other Ca(2+) regulatory proteins using Western blotting and immunohistochemistry or myosin heavy chain expression using immunofluorescence. These results show that 1) SLN regulates Ca(2+)-ATPase activity thereby regulating contractile kinetics in at least some skeletal muscles, 2) the functional significance of SLN is graded to the endogenous SLN expression level, and 3) SLN inhibitory effects on SERCA function are relieved in response to repeated contractions thus enhancing relaxation rates.  相似文献   

9.
Reconstitution into proteoliposomes is a powerful method for studying calcium transport in a chemically pure membrane environment. By use of this approach, we have studied the regulation of Ca(2+)-ATPase by phospholamban (PLB) as a function of calcium concentration and PLB mutation. Co-reconstitution of PLB and Ca(2+)-ATPase revealed the expected effects of PLB on the apparent calcium affinity of Ca(2+)-ATPase (K(Ca)) and unexpected effects of PLB on maximal activity (V(max)). Wild-type PLB, six loss-of-function mutants (L7A, R9E, I12A, N34A, I38A, L42A), and three gain-of-function mutants (N27A, L37A, and I40A) were evaluated for their effects on K(Ca) and V(max). With the loss-of-function mutants, their ability to shift K(Ca) correlated with their ability to increase V(max). A total loss-of-function mutant, N34A, had no effect on K(Ca) of the calcium pump and produced only a marginal increase in V(max). A near-wild-type mutant, I12A, significantly altered both K(Ca) and V(max) of the calcium pump. With the gain-of-function mutants, their ability to shift K(Ca) did not correlate with their ability to increase V(max). The "super-shifting" mutants N27A, L37A, and I40A produced a large shift in K(Ca) of the calcium pump; however, L37A decreased V(max), while N27A and I40A increased V(max). For wild-type PLB, phosphorylation completely reversed the effect on K(Ca), but had no effect on V(max). We conclude that PLB increases V(max) of Ca(2+)-ATPase, and that the magnitude of this effect is sensitive to mutation. The mutation sensitivity of PLB Asn(34) and Leu(37) identifies a region of the protein that is responsible for this regulatory property.  相似文献   

10.
The role of sarcolipin (SLN) in cardiac physiology was critically evaluated by generating a transgenic (TG) mouse model in which the SLN to sarco(endoplasmic)reticulum (SR) Ca(2+) ATPase (SERCA) ratio was increased in the ventricle. Overexpression of SLN decreases SR calcium transport function and results in decreased calcium transient amplitude and rate of relaxation. SLN TG hearts exhibit a significant decrease in rates of contraction and relaxation when assessed by ex vivo work-performing heart preparations. Similar results were also observed with muscle preparations and myocytes from SLN TG ventricles. Interestingly, the inhibitory effect of SLN was partially relieved upon high dose of isoproterenol treatment and stimulation at high frequency. Biochemical analyses show that an increase in SLN level does not affect PLB levels, monomer to pentamer ratio, or its phosphorylation status. No compensatory changes were seen in the expression of other calcium-handling proteins. These studies suggest that the SLN effect on SERCA pump is direct and is not mediated through increased monomerization of PLB or by a change in PLB phosphorylation status. We conclude that SLN is a novel regulator of SERCA pump activity, and its inhibitory effect can be reversed by beta-adrenergic agonists.  相似文献   

11.
To investigate the mechanism of regulation of sarco-endoplasmic reticulum Ca(2+)-ATPase (SERCA) by phospholamban (PLB), we expressed Cerulean-SERCA and yellow fluorescent protein (YFP)-PLB in adult rabbit ventricular myocytes using adenovirus vectors. SERCA and PLB were localized in the sarcoplasmic reticulum and were mobile over multiple sarcomeres on a timescale of tens of seconds. We also observed robust fluorescence resonance energy transfer (FRET) from Cerulean-SERCA to YFP-PLB. Electrical pacing of cardiac myocytes elicited cytoplasmic Ca(2+) elevations, but these increases in Ca(2+) produced only modest changes in SERCA-PLB FRET. The data suggest that the regulatory complex is not disrupted by elevations of cytosolic calcium during cardiac contraction (systole). This conclusion was also supported by parallel experiments in heterologous cells, which showed that FRET was reduced but not abolished by calcium. Thapsigargin also elicited a small decrease in PLB-SERCA binding affinity. We propose that PLB is not displaced from SERCA by high calcium during systole, and relief of functional inhibition does not require dissociation of the regulatory complex. The observed modest reduction in the affinity of the PLB-SERCA complex with Ca(2+) or thapsigargin suggests that the binding interface is altered by SERCA conformational changes. The results are consistent with multiple modes of PLB binding or alternative binding sites.  相似文献   

12.
The structure and dynamics of a double (13)C-labelled 24-residue synthetic peptide ([(13)C(2)]CAPLB(29-52)), corresponding to the membrane-spanning sequence of phospholamban (PLB), were examined using (13)C cross-polarisation magic-angle spinning (CP-MAS) NMR spectroscopy. CP-MAS spectra of [(13)C(2)]CAPLB(29-52) reconstituted into unsaturated lipid membranes indicated that the peptide was mobile at temperatures down to -50 degrees C. The NMR spectra showed that peptide motion became constrained in the presence of the SERCA1 isoform of Ca(2+)-ATPase, and chemical cross-linking experiments indicated that [(13)C(2)]CAPLB(29-52) and Ca(2+)-ATPase came into close contact with one another. These results together suggested that the peptide and the 110-kDa calcium pump were interacting in the membrane. Rotational resonance CP-MAS (13)C-(13)C distance measurements on [(13)C(2)]CAPLB(29-52) reconstituted into lipid bilayers confirmed that the sequence spanning Phe-32 and Ala-36 was alpha-helical, and that this structure was not disrupted by interaction with Ca(2+)-ATPase. These results support the finding that the transmembrane domain of PLB is partially responsible for regulation of Ca(2+) transport through interactions with cardiac muscle Ca(2+)-ATPase in the lipid bilayer, and also demonstrate the feasibility of performing structural measurements on PLB peptides when bound to their physiological target.  相似文献   

13.
Human studies reveal sex differences in myocardial function as well as in the incidence and manifestation of heart disease. Myocellular Ca(2+) cycling regulates normal contractile function; whereas cardiac dysfunction in heart failure has been associated with alterations in Ca(2+)-handling proteins. Beta-adrenergic receptor (beta-AR) signaling regulates activity of several Ca(2+)-handling proteins and alterations in beta-AR signaling are associated with heart disease. This study examines sex differences in expression of beta(1)-AR, beta(2)-AR, and Ca(2+)-handling proteins including: L-type calcium channel (Ca(v)1.2) , ryanodine calcium-release channels (RyR), sarcoplasmic reticular Ca(2+) ATPase (SERCA2), phospholamban (PLB) and Na(+)-Ca(2+) exchange protein (NCX) in healthy hearts from male and female Sprague-Dawley rats. Protein levels were examined using Western blot analysis. Abundance of mRNA was determined by real time RT-PCR normalized to abundance of GAPDH mRNA. Contraction parameters were measured in right ventricular papillary muscle in the presence and absence of isoproterenol. Results demonstrate that female ventricle has significantly higher levels of Ca(v)1.2, RyR, and NCX protein compared to males. Messenger RNA abundance for RyR, and NCX protein was significantly higher in females whereas Ca(v)1.2 mRNA was higher in males. No differences were detected in beta-ARs, SERCA2 or PLB. Female right papillary muscle had a faster maximal rate of force development and decline (+/- dF/dt). There were no sex differences in response to isoproterenol. Results show significant sex differences in expression of key ventricular Ca(2+)-handling proteins that are associated with small functional differences in +/- dF/dt. Further studies will determine whether differences in the abundance of these key proteins play a role in sex disparities in the incidence and manifestation of heart disease.  相似文献   

14.
Calcium transport across the sarcoplasmic reticulum of cardiac myocytes is regulated by a reversible inhibitory interaction between the Ca2+-ATPase and the small transmembrane protein phospholamban (PLB). A nullcysteine analogue of PLB, containing isotope labels in the transmembrane domain or cytoplasmic domain, was reconstituted into membranes in the absence and presence of the SERCA1 isoform of Ca2+-ATPase for structural investigation by cross-polarization magic-angle spinning (CP-MAS) NMR. PLB lowered the maximal hydrolytic activity of SERCA1 and its affinity for calcium in membrane preparations suitable for structural analysis by NMR. Novel backbone amide proton-deuterium exchange CP-MAS NMR experiments on the two PLB analogues co-reconstituted with SERCA1 indicated that labeled residues Leu42 and Leu44 were situated well within the membrane interior, whereas Pro21 and Ala24 lie exposed outside the membrane. Internuclear distance measurements on PLB using rotational resonance NMR indicated that the sequences Pro21-Ala24 and Leu42-Leu44 adopt an alpha-helical structure in pure lipid bilayers, which is unchanged in the presence of Ca2+-ATPase. By contrast, rotational echo double resonance (REDOR) NMR experiments revealed that the sequence Ala24-Gln26 switches from an alpha-helix in pure lipid membranes to a more extended structure in the presence of SERCA1, which may reflect local structural distortions which change the orientations of the transmembrane and cytoplasmic domains. These results suggest that Ca2+-ATPase has a long-range effect on the structure of PLB around residue 25, which promotes the functional association of the two proteins.  相似文献   

15.
The sarcoplasmic reticulum (SR) plays a critical role in mediating cardiac contractility and its function is abnormal in the diabetic heart. However, the mechanisms underlying SR dysfunction in the diabetic heart are not clear. Because protein phosphorylation regulates SR function, this study examined the phosphorylation state of phospholamban, a key SR protein that regulates SR calcium (Ca2+) uptake in the heart. Diabetes was induced in male Sprague-Dawley rats by an injection of streptozotocin (STZ; 65 mg kg(-1) i.v.), and the animals were humanely killed after 6 weeks and cardiac SR function was examined. Depressed cardiac performance was associated with reduced SR Ca2+-uptake activity in diabetic animals. The reduction in SR Ca2+-uptake was consistent with a significant decrease in the level of SR Ca2+-pump ATPase (SERCA2a) protein. The level of phospholamban (PLB) protein was also decreased, however, the ratio of PLB to SERCA2a was increased in the diabetic heart. Depressed SR Ca2+-uptake was also due to a reduction in the phosphorylation of PLB by the Ca2+-calmodulin-dependent protein kinase (CaMK) and cAMP-dependent protein kinase (PKA). Although the activities of the SR-associated Ca2+-calmodulin-dependent protein kinase (CaMK), cAMP-dependent protein kinase (PKA) were increased in the diabetic heart, depressed phosphorylation of PLB could partly be attributed to an increase in the SR-associated protein phosphatase activities. These results suggest that there is increased inhibition of SERCA2a by PLB and this appears to be a major defect underlying SR dysfunction in the diabetic heart.  相似文献   

16.
Systematic immunological and biochemical studies indicate that the level of expression of sarcoplasmic reticulum (SR) Ca(2+)-ATPase regulatory protein phospholamban (PLB) in mammalian slow-twitch fibers varies from zero, in the rat, to significant levels in the rabbit, and even higher in humans. The lack of PLB expression in the rat, at the mRNA level, is shown to be exclusive to slow-twitch skeletal muscle, and not to be shared by the heart, thus suggesting a tissue-specific, in addition to a species-specific regulation of PLB. A comparison of sucrose density-purified SR of rat and rabbit slow-twitch muscle, with regard to protein compositional and phosphorylation properties, demonstrates that the biodiversity is two-fold, i.e. (a) in PLB membrane density; and (b) in the ability of membrane-bound Ca(2+)-calmodulin (CaM)-dependent protein kinase II to phosphorylate both PLB and SERCA2a (slow-twitch isoform of Ca(2+)-ATPase). The basal phosphorylation state of PLB at Thr-17 in isolated SR vesicles from rabbit slow-twitch muscle, colocalization of CaM K II with PLB and SERCA2a at the same membrane domain, and the divergent subcellular distribution of PKA, taken together, seem to argue for a differential heterogeneity in the regulation of Ca(2+) transport between such muscle and heart muscle.  相似文献   

17.
To study PLB (phospholamban) inhibition of the cardiac Ca(2+) pump [SERCA2a (sarcoplasmic/endoplasmic reticulum Ca(2+)-ATPase 2a)], a fusion protein (SER-20G-PLB) was engineered by tethering SERCA2a with PLB through a 20-glycine residue chain, allowing the PLB tether to either bind to or dissociate from the inhibition site on SERCA2a. When expressed in insect cells, SER-20G-PLB produced active Ca(2+) uptake, which was stimulated by the anti-PLB antibody, both similar to that which occurred with the control sample co-expressing WT (wild-type)-SERCA2a and WT-PLB. The K(Ca) values of Ca(2+)-dependent ATPase were similar for SER-20G-PLB (0.29±0.02 μM) and for the control sample (0.30±0.02 μM), both greater than 0.17±0.01 μM for WT-SERCA2a expressed alone. Thus SER-20G-PLB retains a fully active Ca(2+) pump, but its apparent Ca(2+) affinity was decreased intrinsically by tethered PLB at a 1:1 molar stoichiometry. Like WT-PLB, SER-20G-PLB ran as both monomers and homo-pentamers on SDS/PAGE. As Ca(2+) concentrations increase from 0 to the micromolar range, the proportion of non-inhibiting pentamers increased from 32% to 52%, suggesting that Ca(2+) activation of the pump completely dissociates the PLB tether from the inhibition site on SERCA2a, with concurrent association of PLB pentamers. Collectively, the regulation of SERCA2a is achieved through the Ca(2+)-dependent equilibria involving PLB association and dissociation from SERCA2a, and assembling and disassembling of SER-20G-PLB pentamers.  相似文献   

18.
19.
E Terzi  L Poteur  E Trifilieff 《FEBS letters》1992,309(3):413-416
Phospholamban (PLB), an integral membrane protein of cardiac sarcoplasmic reticulum (SR), is described as the regulator of the Ca(2+)-ATPase pump, via its phosphorylation-dephosphorylation of Ser-16. Recently it has been shown that a direct interaction between the N-terminal hydrophilic domain of PLB and Ca(2+)-ATPase may be one of the mechanisms of regulation. In order to show that this interaction could be modulated by a phosphorylation-induced conformational change in PLB, we ran CD studies on the synthetic peptide PLB(2-33) in its phosphorylated and non-phosphorylated forms, at various pHs, concentrations and in the absence or presence of trifluoroethanol. The results show a clear difference in structure of the phosphorylated and non-phosphorylated peptide.  相似文献   

20.
The ability of two loss-of-function mutants, L31A and L31C, of phospholamban (PLB) to bind to and inhibit the Ca(2+) pump of cardiac sarcoplasmic reticulum (SERCA2a) was investigated using a molecular cross-linking approach. Leu(31) of PLB, located at the cytoplasmic membrane boundary, is a critical amino acid shown previously to be essential for Ca(2+)-ATPase inhibition. We observed that L31A or L31C mutations of PLB prevented the inhibition of Ca(2+)-ATPase activity and disabled the cross-linking of N27C and N30C of PLB to Lys(328) and Cys(318) of SERCA2a. Although L31C-PLB failed to cross-link to any Cys or Lys residue of wild-type SERCA2a, L31C did cross-link with high efficiency to T317C of SERCA2a with use of the homobifunctional sulfhydryl cross-linking reagent, 1,6-bismaleimidohexane. This places Leu(31) of PLB within 10 angstroms of Thr(317) of SERCA2a in the M4 helix. Thus, contrary to previous suggestions, PLB with loss-of-function mutations at Leu(31) retains the ability to bind to SERCA2a, despite losing inhibitory activity. Cross-linking of L31C-PLB to T317C-SERCA2a occurred only in the absence of Ca(2+) and in the presence of nucleotide and was prevented by thapsigargin and by anti-PLB antibody, demonstrating for a fourth cross-linking pair that PLB interacts near M4 only when the Ca(2+) pump is in the Ca(2+)-free, nucleotide-bound E2 conformation, but not in the E2 state inhibited by thapsigargin. L31I-PLB retained full functional and cross-linking activity, suggesting that a bulky hydrophobic residue at position 31 of PLB is essential for productive interaction with SERCA2a. A model for the three-dimensional structure of the interaction site is proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号