首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Human immunodeficiency virus type 1 escape from RNA interference   总被引:20,自引:0,他引:20       下载免费PDF全文
Boden D  Pusch O  Lee F  Tucker L  Ramratnam B 《Journal of virology》2003,77(21):11531-11535
Sequence-specific degradation of mRNA by short interfering RNA (siRNA) allows the selective inhibition of viral proteins that are critical for human immunodeficiency virus type 1 (HIV-1) replication. The aim of this study was to characterize the potency and durability of virus-specific RNA interference (RNAi) in cell lines that stably express short hairpin RNA (shRNA) targeting the HIV-1 transactivator protein gene tat. We found that the antiviral activity of tat shRNA was abolished due to the emergence of viral quasispecies harboring a point mutation in the shRNA target region. Our results suggest that, in order for RNAi to durably suppress HIV-1 replication, it may be necessary to target highly conserved regions of the viral genome. Alternatively, similar to present antiviral drug therapy paradigms, DNA constructs expressing multiple siRNAs need to be developed that target different regions of the viral genome, thereby reducing the probability of generating escape mutants.  相似文献   

2.
Hetero-oligomerization between human immunodeficiency virus type 2 (HIV-2) envelope glycoprotein (Env) truncation mutants and epitope-tagged gp160 is dependent on the presence of gp41 transmembrane protein (TM) amino acids 552 to 589, a putative amphipathic alpha-helical sequence. HIV-2 Env truncation mutants containing this sequence were also able to form cross-type hetero-oligomers with HIV-1 Env. HIV-2/HIV-1 hetero-oligomerization was, however, more sensitive to disruption by mutagenesis or increased temperature. The conservation of the Env oligomerization function of the HIV-1 and HIV-2 alpha-helical sequences suggests that retroviral TM alpha-helical motifs may have a universal role in oligomerization.  相似文献   

3.
Packaging of retroviral RNA is attained through the specific recognition of a cis-acting encapsidation site (located near the 5' end of the viral RNA) by components of the Gag precursor protein. Human immunodeficiency virus type 1 (HIV-1) and simian immunodeficiency virus (SIV) are two lentiviruses that lack apparent sequence similarity in their putative encapsidation regions. We used SIV vectors to determine whether HIV-1 particles can recognize the SIV encapsidation site and functionally propagate SIV nucleic acid. SIV nucleic acid was replicated by HIV-1 proteins. Thus, efficient lentivirus pseudotyping can take place at the RNA level. Direct examination of the RNA contents of virus particles indicated that encapsidation of this heterologous RNA is efficient. Characterization of deletion mutants in the untranslated leader region of SIV RNA indicates that only a very short region at the 5' end of the SIV RNA is needed for packaging. Comparison of this region with the corresponding region of HIV-1 reveals that both are marked by secondary structures that are likely to be similar. Thus, it is likely that a similar higher-order RNA structure is required for encapsidation.  相似文献   

4.
Synthetic small interfering RNAs (siRNAs) have been shown to induce the degradation of specific mRNA targets in human cells by inducing RNA interference (RNAi). Here, we demonstrate that siRNA duplexes targeted against the essential Tat and Rev regulatory proteins encoded by human immunodeficiency virus type 1 (HIV-1) can specifically block Tat and Rev expression and function. More importantly, we show that these same siRNAs can effectively inhibit HIV-1 gene expression and replication in cell cultures, including those of human T-cell lines and primary lymphocytes. These observations demonstrate that RNAi can effectively block virus replication in human cells and raise the possibility that RNAi could provide an important innate protective response, particularly against viruses that express double-stranded RNAs as part of their replication cycle.  相似文献   

5.
Short-term assays have suggested that RNA interference (RNAi) may be a powerful new method for intracellular immunization against human immunodeficiency virus type 1 (HIV-1) infection. However, RNAi has not yet been shown to protect cells against HIV-1 in long-term virus replication assays. We stably introduced vectors expressing small interfering RNAs (siRNAs) directed against the HIV-1 genome into human T cells by retroviral transduction. We report here that an siRNA directed against the viral Nef gene (siRNA-Nef) confers resistance to HIV-1 replication. This block in replication is not absolute, and HIV-1 escape variants that were no longer inhibited by siRNA-Nef appeared after several weeks of culture. These RNAi-resistant viruses contained nucleotide substitutions or deletions in the Nef gene that modified or deleted the siRNA-Nef target sequence. These results demonstrate that efficient inhibition of HIV-1 replication through RNAi is possible in stably transduced cells. Therefore, RNAi could become a realistic gene therapy approach with which to overcome the devastating effect of HIV-1 on the immune system. However, as is known for antiviral drug therapy against HIV-1, antiviral approaches involving RNAi should be used in a combined fashion to prevent the emergence of resistant viruses.  相似文献   

6.
7.
We have previously described a series of human immunodeficiency virus type 1-based vectors in which efficient RNA encapsidation appeared to correlate with the presence of a 1.1-kb env gene fragment encompassing the Rev-responsive element (RRE). In this report, we explore in detail the role of the RRE and flanking env sequences in vector expression and RNA encapsidation. The analysis of a new series of vectors containing deletions within the env fragment failed to identify a discrete packaging signal, although the loss of certain sequences reduced packaging efficiency three- to fourfold. Complete removal of the env fragment resulted in a 100-fold decrease in the vector transduction titer but did not abolish RNA encapsidation. We conclude that the RRE and 3' env sequences are not essential for human immunodeficiency virus type 1 vector encapsidation but may be important in vectors in which a heterologous gene has been placed adjacent to the 5' packaging signal, potentially disrupting its structure.  相似文献   

8.
HIV-1 replication can be efficiently inhibited by intracellular expression of an siRNA targeting the viral RNA. However, HIV-1 escape variants emerged after prolonged culturing. These RNAi-resistant viruses contain nucleotide substitutions or deletions in or near the targeted sequence. We observed an inverse correlation between the level of resistance and the stability of the siRNA/target-RNA duplex. However, two escape variants showed a higher level of resistance than expected based on the duplex stability. We demonstrate that these mutations induce alternative folding of the RNA such that the target sequence is occluded from binding to the siRNA, resulting in reduced RNAi efficiency. HIV-1 can thus escape from RNAi-mediated inhibition not only through nucleotide substitutions or deletions in the siRNA target sequence, but also through mutations that alter the local RNA secondary structure. The results highlight the enormous genetic flexibility of HIV-1 and provide detailed molecular insight into the sequence specificity of RNAi and the impact of target RNA secondary structure.  相似文献   

9.
Recently developed antiviral strategies based upon RNA interference (RNAi), which harnesses an innate cellular system for the targeted down-regulation of gene expression, appear highly promising and offer alternative approaches to conventional highly active antiretroviral therapy or efforts to develop an AIDS vaccine. However, RNAi is faced with several challenges that must be overcome to fully realize its promise. Specifically, it degrades target RNA in a highly sequence-specific manner and is thus susceptible to viral mutational escape, and there are also challenges in delivery systems to induce RNAi. To aid in the development of anti-human immunodeficiency virus (anti-HIV) RNAi therapies, we have developed a novel stochastic computational model that simulates in molecular-level detail the propagation of an HIV infection in cells expressing RNAi. The model provides quantitative predictions on how targeting multiple locations in the HIV genome, while keeping the overall RNAi strength constant, significantly improves efficacy. Furthermore, it demonstrates that delivery systems must be highly efficient to preclude leaving reservoirs of unprotected cells where the virus can propagate, mutate, and eventually overwhelm the entire system. It also predicts how therapeutic success depends upon a relationship between RNAi strength and delivery efficiency and uniformity. Finally, targeting an essential viral element, in this case the HIV TAR region, can be highly successful if the RNAi target sequence is correctly selected. In addition to providing specific predictions for how to optimize a clinical therapy, this system may also serve as a future tool for investigating more fundamental questions of viral evolution.  相似文献   

10.
The dimer initiation site/dimer linkage sequence (DIS/DLS) region in the human immunodeficiency virus type 1 (HIV-1) RNA genome is suggested to play important roles in various steps of the virus life cycle. However, due to the presence of a putative DIS/DLS region located within the encapsidation signal region (E/psi), it is difficult to perform a mutational analysis of DIS/DLS without affecting the packaging of RNA into virions. Recently, we demonstrated that duplication of the DIS/DLS region in viral RNA caused the production of partially monomeric RNAs in virions, indicating that the region indeed mediated RNA-RNA interaction. We utilized this system to assess the precise location of DIS/DLS in the 5' region of the HIV-1 genome with minimum effect on RNA packaging. We found that the entire lower stem of the U5/L stem-loop was required for packaging, whereas the region important for dimer formation was only 10 bases long within the lower stem of the U5/L stem-loop. The R/U5 stem-loop was required for RNA packaging but was completely dispensable for dimer formation. The SL1 lower stem was important for both dimerization and packaging, but surprisingly, deletion of the palindromic sequence at the top of the loop only partially affected dimerization. These results clearly indicated that the E/psi of HIV-1 is much larger than the DIS/DLS and that the primary DIS/DLS is completely included in the E/psi. Therefore, it is suggested that RNA dimerization is a part of RNA packaging, which requires multiple steps.  相似文献   

11.
The human immunodeficiency virus type 1 (HIV-1) envelope glycoprotein has been shown to be extensively modified by N-linked glycosylation; however, the presence of O-linked carbohydrates on the glycoprotein has not been firmly established. We have found that enzymatic deglycosylation of the HIV-1 envelope glycoprotein with neuraminidase and O-glycosidase results in a decrease in the apparent molecular weight of the envelope glycoprotein. This result was observed in both vaccinia virus recombinant-derived envelope glycoproteins and glycoproteins derived from the IIIB, SG3, and HXB2, strains of HIV-1. The decrease in molecular weight was also observed when the envelope glycoprotein had been deglycosylated with N-glycanase F after treatment with neuraminidase and O-glycosidase, indicating that the decrease in apparent molecular weight was not attributable to the removal of N-linked carbohydrate. Treatment with neuraminidase, O-glycosidase, and N-glycanase F was found to be necessary to remove all radiolabel from [3H]glucosamine-labelled envelope glycoprotein, a result seen for both recombinant and HIV-1-derived envelope glycoprotein. [3H]glucosamine-labelled carbohydrates liberated by O-glycosidase treatment were separated by paper chromatography and were found to be of a size consistent with O-linked oligosaccharides. We, therefore, conclude that the HIV-1 envelope glycoprotein is modified by the addition of O-linked carbohydrates.  相似文献   

12.
Maternal passive immunity typically plays a critical role in protecting infants from new infections; however, the specific contribution of neutralizing antibodies in limiting mother-to-child transmission of human immunodeficiency virus type 1 is unclear. By examining cloned envelope variants from 12 transmission pairs, we found that vertically transmitted variants were more resistant to neutralization by maternal plasma than were maternal viral variants near the time of transmission. The vertically transmitted envelope variants were poorly neutralized by monoclonal antibodies b12 [corrected] 2G12, 2F5, and 4E10 individually or in combination. Despite the fact that the infant viruses were among the most neutralization resistant in the mother, they had relatively few glycosylation sites. Moreover, the transmitted variants elicited de novo neutralizing antibodies in the infants, indicating that they were not inherently difficult to neutralize. The neutralization resistance of vertically transmitted viruses is in contrast to the relative neutralization sensitivity of viruses sexually transmitted within discordant couples, suggesting that the antigenic properties of viruses that are favored for transmission may differ depending upon mode of transmission.  相似文献   

13.
M Kotler  G Arad    S H Hughes 《Journal of virology》1992,66(11):6781-6783
We have introduced mutations into the region of the genome of human immunodeficiency virus type 1 (HIV-1) that encodes the cleavage sites between the viral protease (PR) and the adjacent upstream region of the polyprotein precursor. Segments containing these mutations were introduced into plasmids, and the retroviral proteins were expressed in Escherichia coli. The mutations prevented cleavage between the PR and the adjacent polypeptide; however, other PR cleavage sites in the polyprotein were cleaved normally, showing that the release of free PR is not a prerequisite for the appropriate processing of HIV-1 precursors.  相似文献   

14.
The human immunodeficiency virus type 1 (HIV-1) Gag polyprotein is sufficient for assembly and release of virion-like particles from the plasma membrane. To promote assembly, the Gag polyprotein must polymerize to form a shell that lines the inner membrane of nascent virions. Several techniques have been used to functionally map the domain required for Gag polymerization (the I domain). Among these methods, isopycnic centrifugation has been used under the assumption that changes in virion density reflect impairment in Gag-Gag interaction. If virion density is determined by efficient Gag-Gag interaction, then mutation of basic residues in the nucleocapsid (NC) domain should disrupt virion density, since these residues constitute the I domain. However, we have previously shown that simultaneous disruption of up to 10 HIV-1 NC basic residues has no obvious effect on virion density. To rule out the possibility that HIV-1 NC basic residues other than those previously mutated might be important for virion density, mutations were introduced at the remaining sites and the ability of these mutations to affect Gag-Gag interaction and virion density was analyzed. Included in our analysis is a mutant in which all NC basic residues are replaced with alanine. Our results show that disruption of HIV-1 NC basic residues has an enormous effect on Gag-Gag interaction but only a minimal effect on the density of those virions that are still produced. Therefore, the determinants of the I domain and of virion density are genetically distinguishable.  相似文献   

15.
IgG1b12, a human monoclonal antibody (MAb) to an epitope overlapping the CD4-binding site on gp120, has broad and potent neutralizing activity against most primary human immunodeficiency virus type 1 (HIV-1) isolates. To assess whether and how escape mutants resistant to IgG1b12 can be generated, we cultured primary HIV-1 strain JRCSF in its presence. An escape mutant emerged which was approximately 100-fold more resistant to neutralization by IgG1b12. Both virion-associated and solubilized gp120 from this variant had a reduced affinity for IgG1b12, and sequencing of its env gene showed that amino acid substitutions had occurred at three positions within gp120. Two (D164N and D182N) were located in V2, and one (P365L) was in C3. By site-directed mutagenesis, we demonstrated that the D182N and P365L mutations, but not D164N, contribute to the IgG1b12-resistant phenotype. However, the former two substitutions, individually or in combination, hinder the replication of the neutralization-resistant virus. Introduction of the D164N substitution into the P365L variant results in a nonviable virus (D164N/P365L). In contrast, addition of D164N to the D182N or D182N/P365L mutant partially restored replicative function to near wild-type levels. Furthermore, we found that all of the IgG1b12-resistant mutant viruses remained sensitive to other human MAbs, such as 2G12 and 2F5, and to the CD4-IgG molecule, except that the P365L-containing mutant was slightly resistant to CD4-IgG. These results suggest that escape from IgG1b12 neutralization is due to a local rather than a global modification of the gp120 structure. Our findings have implications for the therapeutic and prophylactic applications of antibodies for HIV-1 infection.  相似文献   

16.
Investigation of human immunodeficiency virus type 1 (HIV-1) in the genital tract of women is crucial to the development of vaccines and therapies. Previous analyses of HIV-1 in various anatomic sites have documented compartmentalization, with viral sequences from each location that were distinct yet phylogenetically related. Full-length RNA genomes derived from different compartments in the same individual, however, have not yet been studied. Furthermore, although there is evidence that intrapatient recombination may occur frequently, recombinants comprising viruses from different sites within one individual have rarely been documented. We compared full-length HIV-1 RNA sequences in the plasma and female genital tract, focusing on a woman with high HIV-1 RNA loads in each compartment who had been infected heterosexually and then transmitted HIV-1 by the same route. We cloned and sequenced 10 full-length HIV-1 RNA genomes from her genital tract and 10 from her plasma. We also compared viral genomes from the genital tract and plasma of four additional heterosexually infected women, sequencing 164 env and gag clones obtained from the two sites. Four of five women, including the one whose complete viral sequences were determined, displayed compartmentalized HIV-1 genomes. Analyses of full-length, compartmentalized sequences made it possible to document complex intrapatient HIV-1 recombinants that were composed of alternating viral sequences characteristic of each site. These findings demonstrate that the genital tract and blood harbor genetically distinct populations of replicating HIV-1 and provide evidence that recombination between strains from the two compartments contributes to rapid evolution of viral sequence variation in infected individuals.  相似文献   

17.
The nucleotide sequences at the 5' and 3' termini of RNA isolated from the New Jersey serotype of vesicular stomatitis virus [vsV(NJ)] and two of its defective interfering (DI) particles have been determined. The sequence differs from that previously demonstrated for the RNA from the Indiana serotype of VSV at only 1 of the first 17 positions from the 3' terminus and at only 2 of the first 17 positions from the 5' terminus. The 5'-terminal sequence of VSV(NJ) RNA is the complement of the 3'-terminal sequence, and duplexes which are 20 bases long and contain the 3' and 5' termini have been isolated from this RNA. The RNAs isolated from DI particles of VSV(NJ) have the same base sequences as do the RNAs from the parental virus. These results are in sharp contrast to those obtained with the Indiana serotype of VSV and its DI particles, in which the 3'-terminal sequences differ in 3 positions within the first 17. However, with both serotypes, the 3'-terminal sequence of the DI RNA is the complement of the 5'-terminal sequence of the RNA from the infectious virus. These findings suggest that the 3' and 5' RNA termini are highly conserved in both serotypes and that the 3' terminus of DI RNA is ultimately derived by copying the 5' end of the VSV genome, as recently proposed (D. Kolakofsky, M. Leppert, and L. Kort, in B. W. J. Mahy and R. D. Barry, ed., Negative-Strand Virus and the Host Cell, 1977; M. Leppert, L. Kort, and D. Kolakofsky, Cell 12:539-552, 1977; A. S. Huang, Bacteriol. Rev. 41:811-8218 1977).  相似文献   

18.
One well-characterized in vitro function of Nef is its ability to remove CD4, the human immunodeficiency virus (HIV) receptor, from the cell surface. Nef accomplishes this by accelerating the internalization and degradation of CD4. Current models propose that Nef promotes CD4 internalization via an increased association of CD4 with clathrin-coated pits (CCP). Here, we investigated the effect of a naturally occurring antiprotozoan antibiotic, ikarugamycin (IKA), on CD4 cell surface expression in human monocytic cells stably expressing HIV type 1 SF2 Nef. IKA was able to efficiently restore CD4 cell surface expression in Nef-expressing cells without affecting either CD4 synthesis or Nef expression. In addition, we demonstrate that IKA is also capable of efficiently blocking CD4 down-modulation in response to phorbol myristate acetate. Our data suggest that IKA may be an efficient and useful inhibitor of CCP-dependent endocytosis.  相似文献   

19.
20.
R R Shukla  P L Kimmel    A Kumar 《Journal of virology》1994,68(4):2224-2229
RNase protection-gel retention studies show human host cell-specific ribonucleoprotein complexes with human immunodeficiency virus type 1 Rev-responsive element (RRE) RNA. Nuclear proteins from rodent or murine cells appear to lack the ability to form these complexes. Human-mouse somatic cell hybrids retaining a single human chromosome, either 6 or 12, form the RRE-nuclear-protein complexes. One of the complexes requires the entire RRE RNA, while the other needs RRE RNA stem-loops 1 and 2 only. Two major proteins with molecular masses of 120 and 62 kDa specifically bind to RRE RNA. Rodent cells (CHO) either lack or contain small amounts of these RRE-binding proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号