首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Management of riparian vegetation is difficult because these communities are frequently impacted by herbivores, invasive weeds, and altered hydrologic regimes. Multiple and intertwined factors affecting rare species recruitment are particularly difficult to identify. Gaura neomexicana ssp. coloradensis Munz (Gaura) is a short‐lived perennial forb endemic to riparian areas in mixed‐grass prairies of Wyoming, Nebraska, and Colorado, U.S.A. It became a federally listed threatened species in October 2000. Because the species is a recruitment‐limited monocarpic perennial, we studied the effects of six capsule‐collection dates, a 2‐month cool‐moist stratification, 24‐hr leaching, and 24‐hr imbibition on Gaura seedling emergence. Seedling emergence did not vary with collection date. Capsules collected from Gaura plants grown at the Bridger Plant Materials Center in Montana exhibited greater emergence than capsules harvested from endemic populations near Cheyenne, Wyoming, suggesting that maternal plant growing conditions impact dormancy. Because cool‐moist stratification enhanced seedling emergence of Gaura and leaching did not, sufficient moisture during cool temperatures may be more critical than leaching of germination inhibitors as might occur with normal stream flows. Spring flooding may enhance Gaura recruitment by increasing the availability of riparian sites that are inundated during periods of cool temperatures. If so, hydrologic and climatic regimes must be considered in restoring the unique conditions needed for germination of this rare riparian endemic.  相似文献   

2.
Litter‐removing disturbances such as fire in grasslands temporarily increase available resources for plants, opening a window of opportunity for new establishment as communities recover. At this time, new individuals or species could be added to the community as a result of germination from the local seed bank. In reconstructed grasslands this may be problematic, as the seed bank may contain a suite of undesired species reflective of prior and surrounding land uses. In two, 25‐year‐old, low‐diversity reconstructed grasslands, we tested the effect of local seed bank establishment following litter‐removing disturbance using seedling removal plots (1 m2) and plots where natural seedling establishment was allowed. Following disturbance, the vegetation was either left intact or hayed to enhance seedling establishment (a common practice following inter‐seeding efforts). Although the seed bank and seedling community were dominated by resident grasses (Andropogon gerardii and Poa pratensis), recruitment from the seed bank increased species richness and reduced evenness through the addition of forb species (including Cirsium arvense) in one of the study sites. Haying temporarily altered the abundances of the dominant grasses, but did not consistently affect seedling recruitment. Disturbances that facilitate seed bank recruitment may promote establishment of undesired species within reconstructed grassland communities, and we need to take steps to better manage the contributions into and recruitment from the seed bank to reconstruct sustainable grasslands.  相似文献   

3.
Direct and indirect interactions among plants contribute to shape community composition through above‐ and belowground processes. However, we have not disentangled yet the direct and indirect soil and canopy effects of dominants on understorey species. We addressed this issue in a semi‐arid system from southeast Spain dominated by the legume shrub Retama sphaerocarpa. During a year with an exceptionally dry spring, we removed the shrub canopy to quantify aboveground effects and compared removed‐canopy plots to open plots between shrubs to quantify soil effects, both with and without watering. We added a grass removal treatment in order to separate direct from indirect shrub effects and quantified biomass, abundance, richness and composition of the forb functional group. With watering, changes in forb biomass were primarily driven by indirect shrub effects, with contrasting negative soil and positive aboveground indirect effects; changes in forb abundance and composition were more influenced by direct shrub soil effects with contrasting species composition between open and Retama patches. As community composition was different between open and Retama patches the indirect effects of Retama on forb species did not concern forbs from the open community but forbs from Retama patches. Indirect effects are, thus, important at the functional group level rather than at the species level. Without watering, there were no significant interactions. Changes in species richness between treatments were weak and seldom significant. We conclude that shrub effects on understorey forbs are primarily due to their influence on soil properties, directly affecting forb species composition but indirectly affecting the biomass of the forbs of the Retama patches, and only with sufficient water.  相似文献   

4.
It is shown that litter of flowering plants of Cirsium vulgare inhibits the growth of seedlings of the same species at concentrations as low as 0.4% (g litter/g soil). The inhibition of growth cannot be fully compensated by adding nutrients, which indicates that autotoxicity may occur. It must be concluded, however, from an analysis of the results that immobilization of nutrients by microorganisms is the main cause of growth reduction if litter is added to the soil. In a field experiment under nutrient rich conditions plant litter did not affect germination, survival or growth of seedlings. The hypothesis is put forward that under conditions of nutrient deficiency and at high population densities, immobilization of nitrogen by Cirsium vulgare litter may influence plant growth. Results are discussed in relation to those of Stachon and Zimdahl (1980) and Wilson (1981) who claimed allelopathy for the related Cirsium arvense.Publication of the Meijendel-Comité, New Series no. 74  相似文献   

5.
Invasive plants are often regarded as drivers that actively reduce diversity and alter ecosystem processes such as succession. Alternatively, invaders may be passengers that simply colonize openings produced by anthropogenic disturbance and are present only temporarily. Here we test whether the behaviour of invasive species as drivers or passengers is contingent on disturbance and nutrient availability. We created twelve experimental environments (three levels of annual disturbance × four levels of nitrogen availability) for 18 years in a grassland at the northern edge of the North American Great Plains. Out of 19 invasive species initially present, two perennials (Bromus inermis, a grass, and Cirsium arvense, a forb) acted as drivers, maintaining or increasing dominance, maintaining low species richness, and forming an invader‐ dominated successional sequence. Behaviour as drivers was environmentally contingent: Bromus behaved as a driver only in less disturbed environments, and the tendency of Cirsium to behave as a driver increased significantly with both disturbance and nitrogen availability. Most invasive species (90%), however, consistently behaved as passengers, disappearing or becoming rare. The importance of disturbance and fertility for starting invasions is well‐known, but our study shows that these factors also contribute to the behaviour of some invaders as drivers. The emergence of drivers and invader‐dominated successional sequences suggests that, as rates of invasion, disturbance and eutrophication continue to increase with human activity, invasive species that act as drivers may form low‐diversity communities that persist for decades.  相似文献   

6.
Dominant Grasses Suppress Local Diversity in Restored Tallgrass Prairie   总被引:1,自引:0,他引:1  
Warm‐season (C4) grasses commonly dominate tallgrass prairie restorations, often at the expense of subordinate grasses and forbs that contribute most to diversity in this ecosystem. To assess whether the cover and abundance of dominant grass species constrain plant diversity, we removed 0, 50, or 100% of tillers of two dominant species (Andropogon gerardii or Panicum virgatum) in a 7‐year‐old prairie restoration. Removing 100% of the most abundant species, A. gerardii, significantly increased light availability, forb productivity, forb cover, species richness, species evenness, and species diversity. Removal of a less abundant but very common species, P. virgatum, did not significantly affect resource availability or the local plant community. We observed no effect of removal treatments on critical belowground resources, including inorganic soil N or soil moisture. Species richness was inversely correlated with total grass productivity and percent grass cover and positively correlated with light availability at the soil surface. These relationships suggest that differential species richness among removal treatments resulted from treatment induced differences in aboveground resources rather than the belowground resources. Selective removal of the dominant species A. gerardii provided an opportunity for seeded forb species to become established leading to an increase in species richness and diversity. Therefore, management practices that target reductions in cover or biomass of the dominant species may enhance diversity in established and grass‐dominated mesic grassland restorations.  相似文献   

7.
Native plant individuals often persist within communities dominated by exotics but the influence of this exposure on native populations is poorly understood. Selection for traits contributing to competitive ability may lead to native plant populations that are more tolerant of the presence of exotic invaders. In this way, long‐term coexistence with an exotic may confer competitive advantages to remnant (experienced) native populations and be potentially beneficial to restoration. In past studies we have documented genetic differentiation within native grass populations exposed to the exotic invader Russian knapweed (Acroptilon repens). Here, we examine populations of a cool‐season grass, needle‐and‐thread (Hesperostipa comata [Trin. & Rupr.]) and a warm season, alkali sacaton (Sporobolus airoides [Torr.]) collected from Russian knapweed‐invaded sites and adjacent noninvaded sites to assess their relative competitive ability against a novel exotic neighbor, Canada thistle (Cirsium arvense). Experienced S. airoides (from within A. repens invasions) appear to better tolerate (accumulate biomass, leaf nitrogen content, and to initiate new tillers) the presence of a novel competitor (C. arvense). Experienced and inexperienced H. comata genets differ in their response to the presence of C. arvense. Relative neighbor effects of native grasses on C. arvense were generally greater from experienced grasses. The ability to compete with novel neighbors may be driven by general competitive traits rather than species‐specific coevolutionary trajectories. Irrespective of competitive mechanisms, the conservation of native species populations within weed invasions may provide an important restoration tool by retaining unique components of native gene pools selected by competitive interactions with exotics.  相似文献   

8.
1. Within the host range of herbivorous insects, performance hierarchies are often correlated with relatedness to a primary host plant, as plant traits are phylogenetically conserved. Therefore, it was hypothesised that differences in herbivore performance on closely related plant species are due to resistance traits that vary in magnitude, rather than in the nature of the traits. 2. This hypothesis was tested by manipulating putative resistance traits of three congeneric thistle species (Cirsium arvense, Cirsium palustre, and Cirsium vulgare) and assessing the performance of the oligophagous, leaf‐feeding beetle, Cassida rubiginosa. Measurements were done of survival, weight gain, and development time of the beetle on its primary host, C. arvense, and two alternative hosts under low and high nutrient availability, and on shaved and unshaved leaves. 3. Survival of C. rubiginosa was strongly dependent on plant species with final mean survival rates of 47%, 16%, and 8% on C. arvense, C. palustre, and C. vulgare, respectively. Survival was primarily explained by leaf trichome densities, and to a lesser extent by specific leaf area. Leaf flavonoid concentrations did not explain differences in beetle survival, and there were no differences in beetle weight gain or development time of individuals that survived to adulthood. 4. No beetles survived on unshaved (hairy) C. vulgare plants, but manipulating leaf trichome densities of the thistle species by shaving the leaves moderated the plant‐specific resistance, and equalised the survival rates. Survival of C. rubiginosa on alternative congeneric hosts was explained by a common physical resistance trait that varied in magnitude.  相似文献   

9.
In grasslands, litter has been recognized as an important factor promoting grass persistence and the suppression of forbs. The invasive European annual grass Bromus diandrus (ripgut brome) is widespread throughout California, where it produces a persistent and thick litter layer. The native grass, Stipa pulchra, is also common in some grassland settings and can also produce persistent litter, yet it is typically associated with more forbs. Very little is known about the mechanisms through which these two common grass species influence seedling establishment of both exotic invasive and native herbs. Here, we evaluated the effect of B. diandrus and S. pulchra litter on seedling establishment of two invasive (the grass B. diandrus and the forb Centaurea melitensis) and two native (the grass S. pulchra, and the forb Clarkia purpurea) herbaceous plants in a greenhouse setting. Our results showed that B. diandrus litter cover hindered seedling establishment of the four species tested, but that the degree and mechanism of inhibition was dependent on which species was tested, life form (e.g. monocot/dicot) and seed size. Seedling emergence of the two forb species was more vulnerable to litter cover than either grass species and both forbs had smaller seed size. After germination, only seedling biomass of B. diandrus itself was reduced by litter (both B. diandrus and S. pulchra). We found no significant effects of leachate of either grass species on seedling emergence of any species, while a high concentration of B. diandrus leachates inhibited root growth of all species including B. diandrus seedlings. Stipa pulchra litter leachates did not affect S. pulchra or C. melitensis seedlings although it did suppress B. diandrus and C. purpurea seedling growth. Our findings provide direct experimental evidence for the mechanism of effect of litter on these coexisting invasive and native species. Such evidence helps advance our understanding of role of B. diandrus and S. pulchra litter in California grassland.  相似文献   

10.
Abstract. Data referring to changes in vegetation composition resulting from cattle exclosure and ploughing in a Portuguese pasture dominated by annuals were used to test hypotheses regarding the biology of species favoured or eliminated by disturbance in semi-natural herbaceous communities. These hypotheses were tested in two ways. First we compared the distribution of six a priori groups – grasses, small rosettes, large rosettes, small species with leafy stems, large species with leafy stems, legumes – across grazed, ploughed and undisturbed plots. In a second set of analyses we examined changes in the frequencies of individual biological attributes in response to grazing and ploughing. These analyses were carried out separately for grasses and dicot forbs. Overall, the species composition showed little response to either grazing or ploughing, though species dominance changed. This lack of responsiveness of species composition was attributed to the long history of intensive land use which has resulted in the loss of disturbance-intolerant species over entire landscapes. When considering a priori groups, small rosettes were indifferent to disturbance. grazing and ploughing showed that dominated. Large rosettes, large species with leafy stems and legumes were generally intolerant to both grazing and ploughing, though individual species may increase in response to disturbance. Small species with leafy stems were the only group favoured by grazing whereas ploughing favoured grasses. As to individual traits, grazing excluded large grass species with heavy seeds and promoted a flat rosette canopy structure and a small size, along with a moderate dormancy and protected inflorescences. In forbs, grazing favoured small species, as expected, while it excluded tall species, and, in contrast to earlier results, a rosette canopy. These attributes were consistent with responses of the a priori groups, though it would not have been possible to reconstruct groups directly from the attribute list. Ploughing had no effect on any of the forb traits. As to grass traits, flat- and short-statured species increased and heavy-seeded species decreased. Our analysis revealed two advantages of establishing plant functional classifications within life forms. Subgroups within forbs had contrasting types of behaviour. For the same trait patterns could differ within the grass group from within the forb group. Finally, this analysis emphasizes the need for plant functional classifications aiming at the identification of syndromes of co-occurring attributes rather than of lists of isolated traits of which actual combinations are not specified.  相似文献   

11.
Altica carduorum Guer. (Coleoptera: Chrysomelidae) populations aggregate on vigorously growing stands of its host, the thistle Cirsium arvense (L.) Scop. (Asteraceae). The beetle needs contact to recognize a Cirsium species and biting to distinguish its host C. arvense. Feeding or mechanical damage on C. arvense, but not other Cirsium species, aggregates the beetles. Also feces from feeding on C. arvense, but not other Cirsium species, aggregates the opposite sex. Adults also aggregate on larval feces. We suggest that initial host location in the spring depends on random encounter by beetles overwintering in a stand of C. arvense. The beetles commonly make short flights after feeding and either land on another C. arvense plant, which establishes a secondary aggregation centre, or return to the original one. In this manner beetles released on a stand of C. arvense in China spread a radius of 600 m in a year, but those released 35 m away from their host failed to find it. Altica carduorum will develop on any Cirsium species to which it is confined, but is monophagous in the field because host finding is dependent on aggregation to wound and feces substances that are specific to C. arvense.  相似文献   

12.
Human management practices and large detritivores such as earthworms incorporate plant litter into the soil, thereby forming a heterogeneous soil environment from which plant roots extract nutrients. In a greenhouse experiment we investigated effects of earthworms and spatial distribution of 15N-labelled grass litter on plants of different functional groups [Lolium perenne (grass), Plantago lanceolata (forb), Trifolium repens (legume)]. Earthworms enhanced shoot and root growth in L. perenne and P. lanceolata and N uptake from organic litter and soil in all plant species. Litter concentrated in a patch (compared with litter mixed homogeneously into the soil) increased shoot biomass and 15N uptake from the litter in L. perenne and enhanced root proliferation in P. lanceolata when earthworms were present. Growth of clover (T. repens) was rather independent of the presence of earthworms and organic litter distribution: nevertheless, clover took up more nitrogen in the presence of earthworms and exploited more 15N from the added litter than the other plant species. The magnitude of the effects of earthworms and organic litter distribution differed between the plant species, indicating different responses of plants with contrasting root morphology. Aphid (Myzus persicae) reproduction was reduced on P. lanceolata in the presence of earthworms. We suggest that earthworm activity may indirectly alter plant chemistry and hence defence mechanisms against herbivores.  相似文献   

13.
Large areas of tropical forest have been cleared and planted with exotic grass species for use as cattle pasture. These often remain persistent grasslands after grazer removal, which is problematic for restoring native forest communities. It is often hoped that remnant and/or planted trees can jump‐start forest succession; however, there is little mechanistic information on how different canopy species affect community trajectories. To investigate this, I surveyed understory communities, exotic grass biomass, standing litter pools, and soil properties under two dominant canopy trees—Metrosideros polymorpha (‘ōhi‘a) and Acacia koa (koa)—in recovering Hawaiian forests. I then used structural equation models (SEMs) to elucidate direct and indirect effects of trees on native understory. Native understory communities developed under ‘ōhi‘a, which had larger standing litter pools, lower soil nitrogen, and lower exotic grass biomass than koa. This pattern was variable, potentially due to historical site differences and/or distance to intact forest. Koa, in contrast, showed little understory development. Instead, data suggest that increased soil nitrogen under koa leads to high grass biomass that stalls native recruitment. SEMs suggested that indirect effects of trees via litter and soils were as or more important than direct effects for determining native cover. It is suggested that diverse plantings which incorporate species that have high carbon to nitrogen ratios may help ameliorate the negative indirect effects of koa on natural understory regeneration.  相似文献   

14.
Vegetation treatments have been widely implemented in efforts to enhance conditions for wildlife populations. Yet the effectiveness of such efforts often lack rigorous evaluations to determine whether these practices are effective for targeted species. This is particularly important when manipulating wildlife habitats in ecosystems that are faced with multiple stressors. The sagebrush (Artemisia spp.) ecosystem has been altered extensively over the last century leading to declines of many associated species. Wyoming big sagebrush (A. tridentata wyomingensis) is the most widely distributed subspecies, providing important habitats for sagebrush-obligate and associated wildlife. Sagebrush often has been treated with chemicals, mechanical treatments, and prescribed burning to increase herbaceous forage species released from competition with sagebrush overstory. Despite many studies documenting negative effects of sagebrush control on greater sage-grouse (Centrocercus urophasianus) habitat, treatments are still proposed as a means of improving habitat for sage-grouse and other sagebrush-dependent species. Furthermore, most studies have focused on vegetation response and none have rigorously evaluated the direct influence of these treatments on sage-grouse. We initiated a 9-year (2011–2019) experimental study in central Wyoming, USA, to better understand how greater sage-grouse respond to sagebrush reduction treatments in Wyoming big sagebrush communities. We evaluated the influence of 2 common sagebrush treatments on greater sage-grouse demography and resource selection. We implemented mowing and tebuthiuron application in winter and spring 2014 and evaluated the pre- (2011–2013) and post-treatment (2014–2019) responses of sage-grouse relative to these management actions. We evaluated responses to treatments using demographic and behavioral data collected from 620 radio-marked female greater sage-grouse. Our specific objectives were to evaluate how treatments influenced 1) sage-grouse reproductive success and female survival; 2) sage-grouse nesting, brood-rearing, and female resource selection; 3) vegetation responses; and 4) forbs and invertebrates. Our results generally suggested neutral demographic responses and slight avoidance by greater sage-grouse in response to Wyoming big sagebrush treated by mowing and tebuthiuron. Neither mowing nor tebuthiuron treatments influenced nest survival, brood survival, or female survival. Selection for nest and brood-rearing sites did not differ before and after treatments. Females selected habitats near treatments before and after they were implemented; however, the strength of selection was lower after treatments compared with pre-treatment periods, which may be explained by a lack of response in vegetation and invertebrates following treatments. Perennial grass cover and height varied temporally yet did not vary systematically between treatment and control plots. Forb cover and species richness varied annually but not in relation to either treatment type. Perennial grass cover and height, forb cover, and forb species richness did not increase within mowed or tebuthiuron-treated areas that received 2 or 6 years of grazing rest compared with areas that received no grazing rest. Finally, forb and invertebrate dry mass did not differ between treated plots and control plots at mowing or tebuthiuron sites in any years following treatments. Results from our study add to a large body of evidence that sage-grouse using Wyoming big sagebrush vegetation communities do not respond positively to sagebrush manipulation treatments. Management practices that focus on the maintenance of large, undisturbed tracts of sagebrush will best facilitate the persistence of sage-grouse populations and other species reliant on the sagebrush steppe.  相似文献   

15.

Background and aims

Precipitation and nitrogen (N) deposition are predicted to increase in northern China. The present paper aimed to better understand how different dominant species in semi-arid grasslands in this region vary in their litter decomposition and nutrient release responses to increases in precipitation and N deposition.

Methods

Above-ground litter of three dominant species (two grasses, Agropyron cristatum and Stipa krylovii, and one forb, Artemisia frigida) was collected from areas without experimental treatments in a semi-arid grassland in Inner Mongolia. Litter decomposition was studied over three years to determine the effects of water and N addition on litter decomposition rate and nutrient dynamics.

Results

Litter mass loss and nutrient release were faster for the forb species than for the two grasses during decomposition. Both water and N addition increased litter mass loss of the grass A. cristatum, while the treatments showed no impacts on that of the forb A. frigida. Supplemental N had time-dependent, positive effects on litter mass loss of the grass S. krylovii. During the three-year decomposition study, the release of N from litter was inhibited by N addition for the three species, and it was promoted by water addition for the two grasses. Across all treatments, N and potassium (K) were released from the litter of all three species, whereas calcium (Ca) was accumulated. Phosphorus (P) and magnesium (Mg) were released from the forb litter but accumulated in the grass litter after three years of decomposition.

Conclusions

Our findings revealed that the litter decomposition response to water and N supplementation differed among dominant plant species in a semi-arid grassland, indicating that changes in dominant plant species induced by projected increases in precipitation and N deposition are likely to affect litter decomposition, nutrient cycling, and further biogeochemical cycles in this grassland. The asynchronous nutrient release of different species’ litter found in the present study highlights the complexity of nutrient replenishment from litter decomposition in the temperate steppe under scenarios of enhancing precipitation and N deposition.
  相似文献   

16.
Exotic annual grasses have been introduced into many semi-arid ecosystems worldwide, often to the detriment of native plant communities. The accumulation of litter from these grasses (i.e. residual dry biomass) has been demonstrated to negatively impact native plant communities and promote positive feedbacks to exotic grass persistence. More targeted experiments are needed, however, to determine the relative impact of exotic grass litter on plant community structure across local environmental gradients. We experimentally added exotic grass litter to annual forb-dominated open woodland communities positioned along natural canopy cover gradients in southwest Western Australia. These communities are an important component of this region’s plant biodiversity hotspot and are documented to be under threat from exotic annual grasses. After a one-year treatment period, we measured the effects of exotic grass litter, soil properties, and canopy cover on native and exotic species richness and abundance, as well as common species’ biomass and abundances. Plant community structure was more strongly influenced by soil properties and canopy cover than by grass litter. Total plant abundances per plot, however, were significantly lower in litter addition plots than control plots, a trend driven by native species. Exotic grass litter was also associated with lower abundances of one very common native species: Waitzia acuminata. Our results suggest that exotic grass litter limits the establishment of some native species in this system. Over multiple years, these subtle impacts may contribute substantially to the successful advancement of exotic species into this system, particularly in certain microenvironments.  相似文献   

17.
Valuable timber tree species frequently show poor regeneration after selective logging in tropical forests. Small size of logging gaps, lack of soil disturbance, and limited seed availability have each been blamed for observed regeneration failures. We investigated seed germination and seedling performance using a split‐plot factorial design involving light availability and litter removal for six Central African timber tree species, hypothesizing that canopy gaps and litter removal would improve seedling establishment, and that less shade‐tolerant species would show stronger responses to both factors. Contrary to our expectations, significantly more germinants established on intact litter than on exposed mineral soil 3 mo after seeding. After 18 mo, seedling survival, height and diameter growth, leaf area, and rooting depth were all much higher in gap plots than in the understory for all species, with the exception of Gilbertiodendron dewevrei, a highly shade‐tolerant species whose survival was higher in the understory. Leaf production was negatively influenced by litter removal in the least shade‐tolerant species, Nauclea diderrichii, with weak or positive effects in other species. G. dewevrei, while displaying a low‐light threshold for growth, exhibited a surprisingly high growth response to increasing light comparable to more shade‐intolerant species, a response that may help explain its local competitive dominance in the region. Due to the rapid closure of small gaps, we suggest that shade‐intolerant species such as N. diderrichii, Khaya anthotheca, and Entandrophragma utile might benefit from more intensive silvicultural practices that create larger canopy gaps.  相似文献   

18.
Abstract. We studied the vertical structure of wet grazed grasslands in Tierra del Fuego (southern Argentina). A point quadrat method was developed using a fine needle graduated in cm. The vertical and horizontal frequency of species and organs was quantified in samples collected from non‐grazed and grazed plots in the field. There was vertical stratification in both types of samples, but only in the first eight cm above the ground in grazed samples, with a dominance of Caltha sagittata. In non‐grazed samples graminoids grew taller than forbs and their inflorescences were an important element of the canopy structure. In both treatments, vertical species diversity was maximum in the lower part of the canopy, although diversity was significantly higher in grazed pots. In grazed samples, Caltha sagittata was the dominant species in 46% of samples and its leaves occupied 35% of the upper canopy. In the non‐grazed samples, Hordeum pubiflorum and Festuca magellanica were dominant in 63% of the samples, with H. pubiflorum leaves occupying 55% of the upper canopy. Comparing species by pairs, significant differences in vertical position were maintained in non‐grazed versus grazed pots. It is concluded that vertical stratification occurs even in the shortest communities. In this community, forb species grew close to the ground in the grazed areas, while forbs grew in the gaps and grasses above them in the non‐grazed areas. The main differences were in the relative dominance of forb and grass species and the presence of inflorescences.  相似文献   

19.
Question: Does the overstorey of pine savannas influence plant species biodiversity in the ground cover? Location: Camp Whispering Pines (30°41’N; 90°29’W), eastern Louisiana (USA). Methods: We used ecologically sensitive restoration logging to remove patches of Pinus palustris (longleaf pine) in a second‐growth loess plain Pinus palustris savanna managed using frequent lightning season fires. Five years later, we measured numbers of vascular plant species and transmitted light in replicated 100‐m2 plots. Treatments involved three different overstorey conditions: no overstorey for 5 years, no overstorey for several decades, and overstorey pines present for decades. Results: Both recent and long‐term openings contained, on average, about 100 vascular plant species per 100 m2, 20% more than in similar‐sized areas beneath overstorey trees. Responses varied with life form; more herbaceous species occurred in recent and older overstorey openings than beneath overstorey trees. Total numbers of all species and of less abundant forb species were positively and linearly related to light transmitted to ground level. Those species responding to openings in the overstorey and positively associated with increased transmitted light levels were monocarpic and shortlived perennial forb and grass species with a seed bank in the soil. In addition, community structure, as reflected in species composition and abundances, appeared to vary with canopy condition. Conclusions: Restoration involving ecologically sensitive removal of patches of overstorey pines in frequently burned pine savannas should benefit the ground cover and increase plant species biodiversity as a result of increased abundance of seed bank species.  相似文献   

20.
Creeping thistle or Canada thistle, Cirsium arvense (L.) Scop., is considered one of the world's worst weeds and the third most important weed in Europe. Biological control of this indigenous weed in Europe by use of native agents may provide a low-cost alternative to use of chemical or mechanical control measures and contribute to a more sustainable weed management. We investigated the potential of a shoot-base boring weevil, Apion onopordi Kirby (Coleoptera: Apionidae), for biological weed control, in the presence or absence of plant competition by three grass species. Infestation of thistle shoots by A. onopordi at natural infestation levels reduced above- and belowground plant performance after 2 years. Plant competition at natural levels had an overall greater effect than that of herbivory, significantly reducing both above- and belowground thistle performance in both years, thereby slowing the propagation of the weed. Weevil infestation and grass competition had a synergistic effect on C. arvense growth; the combined effects of the two factors was greater than the sum of both single-factor effects. The experiment revealed that A. onopordi promotes systemic infections of the rust fungus Puccinia punctiformis (Str.) Röhl in the year following weevil infestation. Systemically infected thistle shoots died before the end of the growing season. Although the direct effect of A. onopordi may not be sufficient to control creeping thistle, the synergistic interaction with plant competition and the indirect effect via promotion of systemic rust infections makes A. onopordi a promising agent for the biological control of this weed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号