首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
The cytokines IL-4, IL-13, and IL-5 are markers for the Th2 subset of effector T cells and are often expressed together. These cytokine genes are organized within 140 kb of orthologous DNA in both mouse and human. Using IL-4-expressing CD4+ T cell clones derived from F1 mice, we identified allelic polymorphisms for each of these cytokines and assessed the parental identity of the cytokine mRNAs. Both monoallelic and biallelic expression occurred for each gene and for an additional gene, IL-3, that lies with GM-CSF over 450 kb telomeric on the same chromosome. When coexpressed in T cell clones, IL-4 was expressed from the same allele as IL-13 or IL-5 in 81% of instances. In contrast, there was only 52% concordance of these three cytokines at the allelic level among clones that expressed IL-3. Independent expression of the cytokine alleles occurs commonly in T cells, but the clustered locus encompassing IL-4, IL-13, and IL-5 is subject to coordinate regulation.  相似文献   

4.
The nucleotide sequence of the intracisternal A-particle genome IAP-IL3 is presented. This IAP element was found to have inserted upstream of the promoter of the interleukin-3 gene of the leukemia cell line WEHI-3B. IAP-IL3 is 5095 bp in length, with identical long terminal repeats (LTRs) of 337 bp. The LTRs show many of the conserved sequence elements identified in other retroviruses. Comparison with other available sequences of IAP genomes indicates that IAP-IL3 is a deleted type I element. It carries a deletion covering the 3' end of the putative IAP gag gene and extending into the 5' end of the putative IAP pol gene. IAP-IL3 has extensive sequence homology with an IgE-binding factor cDNA and evidence is presented indicating that it was derived from a member of the mouse IAP sequence family. Comparison between the pol region of IAP-IL3 and other retroviruses suggests that IAP-IL3 is most closely related to type B and type D retroviruses.  相似文献   

5.
Many cell signals such as CD28 and CD4 binding can costimulate cytokine gene expression in activated T cells. We have found that the human T leukemia/lymphotropic virus type 1 viral protein Tax can also strongly costimulate expression of interleukin-2 (IL-2), IL-3, and granulocyte-macrophage colony-stimulating factor (GM-CSF) mRNA in T cells activated with the phorbol ester phorbol myristate acetate (PMA) and calcium ionophore, which can mimic activation through the antigen specific T-cell receptor. Reporter constructs also showed strong synergy between both stimuli and showed that Tax and the PMA-Ca2+ ionophore act through different regions of the IL-2 and GM-CSF genes. Furthermore, the Tax-responsive regions (TxRR) from both GM-CSF and IL-2 respond to costimulation through the CD28 surface receptor. The GM-CSF and IL-2 TxRRs showed significantly higher levels of NF-kappaB/rel binding, following induction by Tax, compared with that of the PMA-Ca2+ ionophore with only Tax capable of inducing c-Rel binding to a Consensus kappaB element within the GM-CSF TxRR. Tax protein mutants, however, showed that a pathway(s) other than NF-kappaB/rel induction could also cooperate with the PMA-Ca2+ ionophore to activate the GM-CSF and IL-2 genes. This high-level costimulation by Tax, through multiple pathways, may be important in the early stages of leukemia and in the nervous system disorder tropical spastic paraparesis.  相似文献   

6.
7.
8.
The use of different myeloid leukemic cell lines (WEHI-3B D+ and M1) and different sources of factors has led to discrepancies concerning the identity of factors capable of inducing differentiation in leukemic cells. We have biochemically fractionated medium conditioned by one such source (Krebs II ascites cells) and assayed fractions for their bone marrow colony-stimulating activity as well as their differentiation-inducing activity for WEHI-3B D+ and M1 cells. This resulted in the resolution of four distinct molecular species with differentiation-inducing activity. One activity was purified to homogeneity and shown by a variety of biochemical, biological, and receptor-binding criteria to be authentic granulocyte colony-stimulating factor (G-CSF). A second activity was identified as granulocyte-macrophage colony-stimulating factor (GM-CSF). Two other activities termed LIF-A and LIF-B (leukemia inhibitory factor) were shown to probably be different glycosylation variants of the same protein and one of these (LIF-A) was purified 12,000-fold to homogeneity. G-CSF induced differentiation in both WEHI-3B D+ and at higher concentrations M1 cells while GM-CSF weakly induced differentiation in WEHI-3B D+ cells. LIF-A had no colony-stimulating activity and induced differentiation in and inhibited the proliferation of only M1 cells. Each factor bound to a unique cell surface receptor with no evidence of direct cross-reactivity.  相似文献   

9.
Somatic cell genetics has proven to be a powerful tool for the dissection of cytokine signal transduction pathways. Here we describe a system in which interleukin-6 (IL-6) signaling may be dissected using myeloid leukemic M1 cells. We utilized two properties of M1 cell differentiation to isolate IL-6-unresponsive mutants. First, M1 differentiation is associated with cessation of cell division. Second, differentiated M1 cells migrate rapidly and form dispersed colonies in agar. Mutant clones that are unresponsive to IL-6 are, therefore, large and compact as compared with clones derived from IL-6-responsive wild type M1 cells. Following spontaneous or chemically induced mutagenesis and selection in a high dose of IL-6, we isolated 27 M1 clones unresponsive to IL-6. Three harbored mutations that acted in a dominant manner, whereas 24 contained recessive mutations. gp130, an IL-6 receptor component, was affected in many mutant clones. We show that these clones display IL-6 and leukemia inhibitory factor receptors with reduced binding affinities and express gp130 at reduced levels. The IL-6-unresponsive phenotype of these mutant clones was fully rescued by the transfection of exogenous gp130 DNA. Therefore, this approach targets components of the IL-6 signaling pathway and may be suitable to study signaling from a variety of cytokines.  相似文献   

10.
There are clones of myeloid leukemic cells that can be induced to undergo terminal cell differentiation to macrophages by normal hemopoietic regulatory proteins. Induction of differentiation in two different clones of myeloid leukemic cells with interleukin 6 (IL-6) or granulocyte-macrophage colony-stimulating factor (GM-CSF) resulted in induction of mRNA for the hemopoietic regulatory proteins IL-6, GM-CSF, interleukin 1 alpha and interleukin 1 beta, tumor necrosis factor, and transforming growth factor beta 1. In one of these clones, induction of differentiation with GM-CSF was also associated with induction of mRNA for macrophage colony-stimulating factor (M-CSF) but not for the receptor for M-CSF (c-fms), whereas in the other clone, induction of differentiation with IL-6 was associated with induction of mRNA for both c-fms and M-CSF. The clones also differed in their responsiveness to these regulators. There was no induction of mRNA for granulocyte colony-stimulating factor or interleukin 3 during differentiation of either clone. The results indicate that the genes for a nearly normal network of positive and negative hemopoietic regulatory proteins are induced during differentiation of these myeloid leukemic cells and that there are leukemic clones with specific defects in this network.  相似文献   

11.
12.
The antimalignant cell activity of tumor necrosis factor (TNF) in many cell types can be enhanced by lithium chloride (LiCl). This study shows the in vitro effect of LiCl on the TNF-induced or interleukin 1 (IL-1)-induced expression of IL-6, granulocyte-macrophage colony-stimulating factor (GM-CSF), IL-3, IL-2, and the IL-2 receptor-alpha (IL-2R alpha). The levels of IL-6 and GM-CSF in the medium of TNF-treated L929 fibrosarcoma cells were increased by cotreatment with LiCl. In contrast, enhancement of IL-6 production by dibutyryl cyclic AMP or cycloheximide was not affected by LiCl. The production of IL-6 and GM-CSF was not correlated with sensitivity to TNF-mediated cell killing. IL-1 by itself had no measurable effects on L929 cells. However, LiCl potentiated the IL-1-induced synthesis of IL-6, GM-CSF, IL-3, and IL-2 in PC60 murine T-cell hybridoma cells. TNF alone induced only GM-CSF production in these cells, but in the presence of LiCl, increased amounts of GM-CSF as well as small amounts of IL-2 and IL-6 could be detected. It is also shown that in these PC60 cells the expression of the IL-2R alpha was induced by TNF + LiCl treatment but not by TNF alone. IL-2R alpha expression was likewise considerably enhanced by IL-1 + LiCl treatment, as compared with treatment with IL-1 alone. The effects of LiCl on the TNF-induced and the IL-1-induced gene expression seem to be independent of the protein kinase A and C pathways. These results show that LiCl can modulate both TNF-mediated cytotoxicity and TNF-induced and IL-1-induced cytokine expression, suggesting that Li+ acts early in the TNF-signaling pathway, but at a step shared with the IL-1-signaling pathway.  相似文献   

13.
We have isolated a subline of the M-07 human megakaryoblastic leukemia cell line, designated M-07e, that requires either interleukin-3 (IL-3) or granulocyte macrophage colony-stimulating factor (GM-CSF) for growth, even in the presence of fetal calf serum. This cell line will not grow long term in any other cytokine although it responds slightly to IL-2, IL-4, IL-6, IL-9, and interferon-gamma. We have used the M-07e subline to develop a quantitative bioassay for the measurement of levels of either GM-CSF or IL-3. This assay is as sensitive to either factor as the human bone marrow colony assay (CFU-GM) or the chronic myelogeneous leukemic (CML) blast cell proliferation assay for these factors and is much more convenient and reliable than either. With this assay, as little as 25-50 pg/ml of either IL-3 or GM-CSF can be detected, a level that should render the assay useful for analysis of these molecules in samples from patients undergoing colony-stimulating factor therapy and from conditioned media from natural sources of the factors. In these cases, neutralizing antisera to each cytokine are required to demonstrate the specificity of the assay. This assay, in combination with quantitative immunoassays, should greatly facilitate the analysis of the roles of IL-3 and GM-CSF in regulating hematopoiesis both in patients and in natural sources of the cytokines.  相似文献   

14.
Three human leukemia cell lines (TALL-101, AML-193, and MV4-11) that require granulocyte/macrophage-colony stimulating factor (GM-CSF) for growth in a chemically defined medium were examined for their response to recombinant human (rh) cytokines. Either rh interleukin (IL)-3 or rhGM-CSF alone supported the long term growth of all three cell lines, and the two growth factors acted synergistically to stimulate the proliferation of the early T lymphoblastic leukemia (TALL-101) and of the monocytic leukemia (AML-193) cells. However, IL-3 antagonized the proliferation of the biphenotypic B-myelomonocytic leukemia (MV4-11) cells in the presence of GM-CSF when both factors were used at very low concentrations. The rh granulocyte (G)-CSF independently supported the long and short term growth of AML-193 and MV4-11, respectively, and synergized with GM-CSF in inducing proliferation of these cells. By contrast, G-CSF did not stimulate TALL-101 cell growth and antagonized the effect of GM-CSF such that proliferation was arrested. Although neither rh macrophage (M)-CSF nor rhIL-1 alpha independently promoted proliferation of the three leukemia cell lines, these cytokines were able to either up- or down-regulate the GM-CSF-dependent growth of these cells. Taken together, these data demonstrate that leukemic cells often require the synergistic action of several cytokines for optimal growth, whereas other combinations of factors may be growth-inhibitory. This raises the possibility that multiple hemopoietic growth factors sustain or control leukemic cell proliferation also in vivo. In addition, the observation the G-CSF, M-CSF, and IL-1 alpha can, in some cases, arrest cell proliferation without inducing differentiation suggests that the programs of proliferative arrest and differentiation in leukemic cells can be dissociated.  相似文献   

15.
Five recombinant DNA clones of endogenous feline leukemia virus-related DNA sequences were isolated by screening a lambda phage genomic library of cat placental DNA with a probe specific to the gag-pol region of infectious feline leukemia virus. The clones containing retroviral long terminal repeat-like sequences demonstrated the existence of different size classes of endogenous elements in the cat genome, including those of nearly full length in which the gag region is heterogeneous but all of pol and most of env are highly conserved. Other size classes included elements with major deletions in gag or pol. A genomic DNA analysis suggested that the majority of endogenous elements were close to full length in size and that the highly truncated sequences which we described previously (Soe et al., J. Virol. 46:829-840, 1983) represented only a subset of the elements present. A restriction analysis of genomic DNA suggested a high degree of conservation in pol and the 5' portion of env among the various endogenous sequences present in the cat genome. We also found by using DNA transfection that while all of the endogenous clones were noninfectious, there was differential expression of the elements which we examined. These findings correlate with the subgenomic expression of endogenous feline leukemia virus sequences in cat placental tissue.  相似文献   

16.
The stimulatory effects of lymphokines, interleukin 3 (IL-3), granulocyte-macrophage colony stimulating factor (GM-CSF) and interleukin 4 (IL-4), and the inhibitory effects of transforming growth factor beta (TGF-beta) and the pertussis toxin, islet activating protein (LAP), on multi-factor-dependent myeloid cell lines were examined. The effects of IL-3 on a mast cell progenitor clone, IC2 were indistinguishable from those of GM-CSF with respect to their concentration-response curves for induction of DNA synthesis and capability to maintain cell growth for many months. IL-4 acts differently on IC2 cells: the maximum level of DNA synthesis induced by IL-4 is always lower than that induced by IL-3 or GM-CSF and IL-4-induced proliferation is transient. IL-4, however, synergistically induced DNA synthesis of IC2 cells with limiting concentrations of IL-3 or GM-CSF. When IC2 cells were cultured with saturating concentrations of IL-3, GM-CSF or a combination of both, the doubling time was 25 +/- 1 h, whereas it decreased to 17 +/- 1 h when IL-4 was further added to the cultures. IAP reduced the DNA synthesis of IC2 cells induced by the above three growth factors. The doubling time of IC2 cells was 30 +/- 2 h when IC2 cells were cultured with sufficient concentrations of IL-3 in the presence of IAP. Cell cycle analysis revealed that the fraction of cells in Gl was decreased by IL-4 but was increased by IAP. TGF-beta also reduced IL-3-dependent DNA synthesis and increased the fraction of cells in Gl. The inhibitory effect on IL-3-dependent growth of IC2 cells was not increased when these cells were exposed simultaneously to TGF-beta and IAP. The results suggest that IL-3 and GM-CSF stimulate the growth of IC2 cells through similar pathways and that IL-4 augments the action of IL-3 or GM-CSF by decreasing the Gl period. It is also suggested that IAP and TGF-beta retard the growth of IC2 cells by increasing the fraction of cells in GI.  相似文献   

17.
CSFs may be useful in improving the clinical effectiveness of cytosine arabinoside (ara-C). In vitro studies have indicated that GM-CSF may be capable of specifically increasing the sensitivity of leukemic cells to this agent. Other studies have indicated that IL-3 may enhance the ability of ara-C to kill leukemic cells by cytokinetic and pharmacologic mechanisms. While the effects of GM-CSF and IL-3 on ara-C-induced differentiation appear limited, the combination of ara-C and leukemia inhibitory factor (LIF) may appear to be useful in overcoming the block in differentiation characteristic of leukemic myeloblasts. On the basis of in vitro studies, clinical trials with ara-C are underway that are examining the usefulness of GM-CSF and IL-3 in cell cycle recruitment of leukemic myeloblasts. These cytokines are also under study in supportive therapy of ara-C-induced myelosuppression. While certain results appear promising, further controlled studies are needed to determine the role of CSFs in improving ara-C therapy.  相似文献   

18.
The presence of an altered Hox-2.4 gene in the WEHI3B murine myeloid leukemia suggests that homeobox genes may contribute to neoplasia. A survey of 31 leukemia cell lines of the myeloid, lymphoid and erythroid lineages revealed that Hox-2.4 was expressed only in WEHI3B and the pre-B lymphoid line 70Z/3, in which no DNA rearrangement was observed. To clarify the WEHI3B alteration and normal Hox-2.4 structure, we have sequenced near full length cDNA clones from WEHI3B and 70Z/3, and the 5' portion of the normal Hox-2.4 gene. A WEHI3B cDNA clone demonstrates that an intracisternal A-particle (IAP) provirus has inserted within the first exon of the gene and generated a Hox-2.4 mRNA with a 5' sequence derived from the IAP long terminal repeat. A remarkable degree of similarity found between the amino acid sequences of Hox-2.4 and Hox-3.1, which reside on different chromosomes, supports the notion that an ancient homeobox gene cluster has been duplicated and dispersed early in vertebrate evolution.  相似文献   

19.
Murine T helper cell clones are classified into two distinct subsets, T helper 1 (Th1) and T helper 2 (Th2), on the basis of cytokine secretion patterns. Th1 clones produce interleukin-2 (IL-2), tumor necrosis factor-beta (TNF-beta) and interferon-gamma (IFN-gamma), while Th2 clones produce IL-4, IL-5, IL-6 and IL-10. These subsets differentially promote delayed-type hypersensitivity or antibody responses, respectively. The nuclear factor NF-AT is induced in Th1 clones stimulated through the T cell receptor-CD3 complex, and is required for IL-2 gene induction. The NF-AT complex consists of two components: NF-ATp, which pre-exists in the cytosol and whose appearance in the nucleus is induced by an increase of intracellular calcium, and a nuclear AP-1 component whose induction is dependent upon activation of protein kinase C (PKC). Here we report that the induction of the Th2-specific IL-4 gene in an activated Th2 clone involves an NF-AT complex that consists only of NF-ATp, and not the AP-1 component. On the basis of binding experiments we show that this 'AP-1-less' NF-AT complex is specific for the IL-4 promoter and does not reflect the inability of activated Th2 cells to induce the AP-1 component. We propose that NF-ATp is a common regulatory factor for both Th1 and Th2 cytokine genes, and that the involvement of PKC-dependent factors, such as AP-1, may help determine Th1-/Th2-specific patterns of gene expression.  相似文献   

20.
U Dührsen  J Stahl    N M Gough 《The EMBO journal》1990,9(4):1087-1096
Cells of the granulocyte-macrophage colony stimulating factor (GM-CSF) or multi-lineage colony stimulating factor (Multi-CSF) dependent line FDC-P1 undergo leukemic transformation after injection into irradiated DBA/2 mice. About one third of factor-independent FDC-P1 variants isolated from leukemic animals express GM-CSF or Multi-CSF, assessed either by bioassay or by sensitive RNA detection using the polymerase chain reaction. All of the GM-CSF-secreting lines studied had a rearrangement in one allele of the GM-CSF gene, three of four Multi-CSF-secreting lines had Multi-CSF gene rearrangements, while factor-independent lines lacking evidence of growth factor production had no demonstrable CSF gene alterations. All rearrangements were characterized by insertions of novel DNA in the 5'-flanking regions of the CSF genes. The inserted segments of DNA varied in size between 0.35 and 6.5 kb and displayed restriction enzyme cleavage maps reminiscent of intracisternal A-particle (IAP) genomes. This was confirmed in two cases by molecular cloning and nucleotide sequence analysis. In these instances, the insertion consisted of solitary IAP long terminal repeats. The transformation system described provides a model for the study of IAP transpositions and their effects on gene activation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号