首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Bloom K 《Cell》2006,125(1):17-18
In this issue of Cell, Norden et al. (2006) describe a new pathway, NoCut, that links the completion of chromosome segregation to the onset of cytokinesis in budding yeast. In NoCut, Aurora kinase (Ipl1) at the spindle midzone negatively regulates cytokinesis through two proteins previously identified to be involved in cell polarity, Boi1 and Boi2.  相似文献   

2.
Mitosis is a highly coordinated process that assures the fidelity of chromosome segregation. Errors in this process result in aneuploidy which can lead to cell death or oncogenesis. In this paper we describe a putative mammalian protein kinase, AIM-1 (Aurora and Ipl1-like midbody-associated protein), related to Drosophila Aurora and Saccharomyces cerevisiae Ipl1, both of which are required for chromosome segregation. AIM-1 message and protein accumulate at G2/M phase. The protein localizes at the equator of central spindles during late anaphase and at the midbody during telophase and cytokinesis. Overexpression of kinase-inactive AIM-1 disrupts cleavage furrow formation without affecting nuclear division. Furthermore, cytokinesis frequently fails, resulting in cell polyploidy and subsequent cell death. These results strongly suggest that AIM-1 is required for proper progression of cytokinesis in mammalian cells.  相似文献   

3.
BACKGROUND: The Aurora/Ipl1p-related kinase AIR-2 is required for mitotic chromosome segregation and cytokinesis in early Caenorhabditis elegans embryos. Previous studies have relied on non-conditional mutations or RNA-mediated interference (RNAi) to inactivate AIR-2. It has therefore not been possible to determine whether AIR-2 functions directly in cytokinesis or if the cleavage defect results indirectly from the failure to segregate DNA. One intriguing hypothesis is that AIR-2 acts to localize the mitotic kinesin-like protein ZEN-4 (also known as CeMKLP1), which later functions in cytokinesis. RESULTS: Using conditional alleles, we established that AIR-2 is required at metaphase or early anaphase for normal segregation of chromosomes, localization of ZEN-4, and cytokinesis. ZEN-4 is first required late in cytokinesis, and also functions to maintain cell separation through much of the subsequent interphase. DNA segregation defects alone were not sufficient to disrupt cytokinesis in other mutants, suggesting that AIR-2 acts specifically during cytokinesis through ZEN-4. AIR-2 and ZEN-4 shared similar genetic interactions with the formin homology (FH) protein CYK-1, suggesting that AIR-2 and ZEN-4 function in a single pathway, in parallel to a contractile ring pathway that includes CYK-1. Using in vitro co-immunoprecipitation experiments, we found that AIR-2 and ZEN-4 interact directly. CONCLUSIONS: AIR-2 has two functions during mitosis: one in chromosome segregation, and a second, independent function in cytokinesis through ZEN-4. AIR-2 and ZEN-4 may act in parallel to a second pathway that includes CYK-1.  相似文献   

4.
The Aurora/Ipl1 family of protein kinases plays multiple roles in mitosis and cytokinesis. Here, we describe ZM447439, a novel selective Aurora kinase inhibitor. Cells treated with ZM447439 progress through interphase, enter mitosis normally, and assemble bipolar spindles. However, chromosome alignment, segregation, and cytokinesis all fail. Despite the presence of maloriented chromosomes, ZM447439-treated cells exit mitosis with normal kinetics, indicating that the spindle checkpoint is compromised. Indeed, ZM447439 prevents mitotic arrest after exposure to paclitaxel. RNA interference experiments suggest that these phenotypes are due to inhibition of Aurora B, not Aurora A or some other kinase. In the absence of Aurora B function, kinetochore localization of the spindle checkpoint components BubR1, Mad2, and Cenp-E is diminished. Furthermore, inhibition of Aurora B kinase activity prevents the rebinding of BubR1 to metaphase kinetochores after a reduction in centromeric tension. Aurora B kinase activity is also required for phosphorylation of BubR1 on entry into mitosis. Finally, we show that BubR1 is not only required for spindle checkpoint function, but is also required for chromosome alignment. Together, these results suggest that by targeting checkpoint proteins to kinetochores, Aurora B couples chromosome alignment with anaphase onset.  相似文献   

5.
Chromosomal passenger proteins associate with chromosomes early in mitosis and transfer to the spindle at ana/telophase. Recent results show that aurora B/AIM-1 (aurora and Ipl1-like midbody-associated protein kinase), which is responsible for mitotic histone H3 phosphorylation, INCENP (Inner Centromere protein) and Survivin/BIR are in a macromolecular complex as novel chromosomal passenger proteins. Aurora B/AIM-1 can bind to Survivin and the C-terminal region of INCENP, respectively, and colocalizes with both proteins to the centromeres, midzone and midbody. Disruption of either aurora B/AIM-1 or INCENP function leads to sever defects in chromosome segregation and cytokinesis. Moreover, the formation of the central spindle through anaphase to cytokinesis is also disrupted severely. These data suggest that chromosomal passenger complex is required for proper chromosome segregation by phosphorylating histone H3, and cytokinesis by ensuring the correct assembly of the midzone and midbody microtubule. Chromosomal passenger protein complex may couple chromosome segregation with cytokinesis.  相似文献   

6.
How kinetochores correct improper microtubule attachments and regulate the spindle checkpoint signal is unclear. In budding yeast, kinetochores harboring mutations in the mitotic kinase Ipl1 fail to bind chromosomes in a bipolar fashion. In C. elegans and Drosophila, inhibition of the Ipl1 homolog, Aurora B kinase, induces aberrant anaphase and cytokinesis. To study Aurora B kinase in vertebrates, we microinjected mitotic XTC cells with inhibitory antibody and found several related effects. After injection of the antibody, some chromosomes failed to congress to the metaphase plate, consistent with a conserved role for Aurora B in bipolar attachment of chromosomes. Injected cells exited mitosis with no evidence of anaphase or cytokinesis. Injection of anti-Xaurora B antibody also altered the microtubule network in mitotic cells with an extension of the astral microtubules and a reduction of kinetochore microtubules. Finally, inhibition of Aurora B in cultured cells and in cycling Xenopus egg extracts caused escape from the spindle checkpoint arrest induced by microtubule drugs. Our findings implicate Aurora B as a critical coordinator relating changes in microtubule dynamics in mitosis, chromosome movement in prometaphase and anaphase, signaling of the spindle checkpoint, and cytokinesis.  相似文献   

7.
Aurora-A, a member of the Aurora/Ipl1-related kinase family, is overexpressed in various types of cancer and considered to play critical roles in tumorigenesis. To better understand the pathological effect of Aurora-A activation, it is first necessary to elucidate the physiological functions of Aurora-A. Here, we have investigated the roles of Aurora-A in mitotic progression with the small interfering RNA, antibody microinjection, and time lapse microscopy using human cells. We demonstrated that suppression of Aurora-A by small interfering RNA caused multiple events to fail in mitosis, such as incorrect separation of centriole pairs, misalignment of chromosomes on the metaphase plate, and incomplete cytokinesis. Antibody microinjection of Aurora-A into late G2 cells induced dose-dependent failure in separation of centriole pairs at prophase, indicating that Aurora-A is essential for proper separation of centriole pairs. When we injected anti-Aurora-A antibodies into prometaphase cells that had separated their centriole pairs, chromosomes were severely misaligned on the metaphase plate, indicating that Aurora-A is required for proper movement of chromosomes on the metaphase plate. Furthermore, inhibition of Aurora-A at metaphase by microinjected antibodies prevented cells from completing cytokinesis, suggesting that Aurora-A also has important functions in late mitosis. These results strongly suggest that Aurora-A is essential for many crucial events during mitosis and that the phosphorylation of a series of substrates by Aurora-A at different stages of mitosis may promote diverse critical events in mitosis to maintain chromosome integrity in human cells.  相似文献   

8.
Cytokinesis is the final stage of cell division in which the daughter cells separate. Although a growing body of evidence suggests that cell migration-induced traction forces may be required to provide physical assistance for daughter cells to dissociate during abscission, the role of cell migration in cytokinesis has not been directly elucidated. Recently, we have demonstrated that Crk and paxillin, which are pivotal components of the cell migration machinery, localize to the midbody and are essential for the abscission. These findings provided an important link between the cell migration and cytokinesis machineries and prompted us to dissect the role of cell migration in cytokinesis. We show that cell migration controls the kinetics of cleavage furrowing, midbody extension and abscission and coordinates proper subcellular redistribution of Crk and syntaxin-2 to the midbody after ingression.Key words: cell migration, cytokinesis, midbody, abscission, cleavage furrow, Crk, paxillin, syntaxin-2, ExoT  相似文献   

9.
Previous studies demonstrated that the phosphorylated myosin II regulatory light chain (MRLC) is localized at the cleavage furrow of dividing cells, suggesting that phosphorylation of MRLC plays an important role in cytokinesis. However, it remains unclear which kinase(s) phosphorylate MRLC during cytokinesis. AIM-1, an Aurora/Ipl1p-related kinase from rat, is known as a serine/threonine kinase that is required for cytokinesis. Here we examined the possibility that AIM-1 is a candidate for a kinase that phosphorylates MRLC during cytokinesis. As a result, we showed that AIM-1 monophosphorylated MRLC at Ser19 using two-dimensional phosphopeptide mapping analysis and several MRLC mutants. Furthermore, AIM-1 was colocalized with monophosphorylated MRLC at the cleavage furrow of dividing cells. We propose here that AIM-1 may participate in monophosphorylation of MRLC during cytokinesis.  相似文献   

10.
An emerging family of kinases related to the Drosophila Aurora and budding yeast Ipl1 proteins has been implicated in chromosome segregation and mitotic spindle formation in a number of organisms. Unlike other Aurora/Ipl1-related kinases, the Caenorhabditis elegans orthologue, AIR-2, is associated with meiotic and mitotic chromosomes. AIR-2 is initially localized to the chromosomes of the most mature prophase I–arrested oocyte residing next to the spermatheca. This localization is dependent on the presence of sperm in the spermatheca. After fertilization, AIR-2 remains associated with chromosomes during each meiotic division. However, during both meiotic anaphases, AIR-2 is present between the separating chromosomes. AIR-2 also remains associated with both extruded polar bodies. In the embryo, AIR-2 is found on metaphase chromosomes, moves to midbody microtubules at anaphase, and then persists at the cytokinesis remnant. Disruption of AIR-2 expression by RNA- mediated interference produces entire broods of one-cell embryos that have executed multiple cell cycles in the complete absence of cytokinesis. The embryos accumulate large amounts of DNA and microtubule asters. Polar bodies are not extruded, but remain in the embryo where they continue to replicate. The cytokinesis defect appears to be late in the cell cycle because transient cleavage furrows initiate at the proper location, but regress before the division is complete. Additionally, staining with a marker of midbody microtubules revealed that at least some of the components of the midbody are not well localized in the absence of AIR-2 activity. Our results suggest that during each meiotic and mitotic division, AIR-2 may coordinate the congression of metaphase chromosomes with the subsequent events of polar body extrusion and cytokinesis.  相似文献   

11.
During cell division, chromosome segregation must be coordinated with cell cleavage so that cytokinesis occurs after chromosomes have been safely distributed to each spindle pole. Polo-like kinase 1 (Plk1) is an essential kinase that regulates spindle assembly, mitotic entry and chromosome segregation, but because of its many mitotic roles it has been difficult to specifically study its post-anaphase functions. Here we use small molecule inhibitors to block Plk1 activity at anaphase onset, and demonstrate that Plk1 controls both spindle elongation and cytokinesis. Plk1 inhibition did not affect anaphase A chromosome to pole movement, but blocked anaphase B spindle elongation. Plk1-inhibited cells failed to assemble a contractile ring and contract the cleavage furrow due to a defect in Rho and Rho-GEF localization to the division site. Our results demonstrate that Plk1 coordinates chromosome segregation with cytokinesis through its dual control of anaphase B and contractile ring assembly.  相似文献   

12.
The perpetuation of the species' genomic identity strongly depends on the accurate maintenance of chromosome number through countless cell generations. The synchronous entry and progression of all chromosomes through anaphase is fundamental for the quality of mitosis and is guaranteed by error prevention and correction mechanisms that ultimately certify the bipolar attachment of chromosomes to the mitotic spindle, the uniform distribution of forces amongst different chromosomes, and the simultaneity of sister-chromatid separation. The existence of a kinetochore-attachment checkpoint (KAC; also known as spindle-assembly checkpoint) ensures a delay in anaphase onset if any kinetochore remains unattached or devoid of a proper complement of microtubules. The stochastic nature of microtubule-kinetochore interactions predisposes the mitotic process to mistakes, but different molecular players cooperate by detecting and releasing incorrect attachments and thus delaying checkpoint satisfaction. Conversely, correct microtubule-kinetochore interactions become selectively stabilized. Once anaphase onset is triggered, the segregation velocities achieved by each chromosome should be similar, so that none of the chromosomes is lagged behind. This reflects the uniformity of forces acting on the different chromosomes and relies on a conspicuous mitotic spindle property known as microtubule poleward flux. Importantly, not all incorrect attachments are detected and resolved prior to anaphase leading to asynchronous chromosome segregation, but several mechanisms are in place to prevent aneuploidy. One of these mechanisms relies on anaphase spindle forces and another, known as the NoCut checkpoint, delays cell cleavage during cytokinesis until chromosomes can free the spindle mid-region. In this review we discuss how these different mechanisms act in concert to ensure the fidelity of the mitotic process.  相似文献   

13.
The conserved Ipl1 protein kinase is essential for proper chromosome segregation and thus cell viability in the budding yeast Saccharomyces cerevisiae. Its human homologue has been implicated in the tumorigenesis of diverse forms of cancer. We show here that sister chromatids that have separated from each other are not properly segregated to opposite poles of ipl1-2 cells. Failures in chromosome segregation are often associated with abnormal distribution of the spindle pole-associated Nuf2-GFP protein, thus suggesting a link between potential spindle pole defects and chromosome missegregation in ipl1 mutant cells. A small fraction of ipl1-2 cells also appears to be defective in nuclear migration or bipolar spindle formation. Ipl1 associates, probably directly, with the novel and essential Sli15 protein in vivo, and both proteins are localized to the mitotic spindle. Conditional sli15 mutant cells have cytological phenotypes very similar to those of ipl1 cells, and the ipl1-2 mutation exhibits synthetic lethal genetic interaction with sli15 mutations. sli15 mutant phenotype, like ipl1 mutant phenotype, is partially suppressed by perturbations that reduce protein phosphatase 1 function. These genetic and biochemical studies indicate that Sli15 associates with Ipl1 to promote its function in chromosome segregation.  相似文献   

14.
Members of the Aurora/Ipl1p family of mitotically regulated serine/threonine kinases are emerging as key regulators of chromosome segregation and cytokinesis. Proper chromosome segregation and cytokinesis ensure that each daughter cell receives the full complement of genetic material. Defects in these processes can lead to aneuploidy and the propagation of genetic abnormalities. This review discusses the Aurora/Ipl1p kinases in terms of their protein structure and proposed function in mitotic cells and also the potential role of aurora2 in human cancer.  相似文献   

15.
TD-60 and INCENP are two members of the chromosome passenger protein family, and each has been suggested to play a role in the control of cytokinesis. Here we demonstrate by confocal immunofluorescence microscopy that TD-60 and INCENP distribute identically throughout the cell cycle. Both appear coordinately in G2-phase nuclei and become concentrated at centromeres during prophase. TD-60 and INCENP both then leave the chromosome together during anaphase and redistribute to the spindle midzone, as do other chromosome passenger proteins, and traverse the entire equatorial diameter from cortex to cortex. By image overlay and pixel count analysis we show that TD-60 and INCENP are distinct among known chromosome passenger proteins in extending beyond the spindle to the cortex. Further, we show that the cytokinesis-associated protein kinase AIM-1 also shares this distribution property. We suggest that this redistribution is required to signal cytokinesis. TD-60 and INCENP also show identical localization in cells that exit mitosis in the presence of dihydrocytochalasin B (DCB), an inhibitor of actin assembly. Such cells can resume cleavage upon removal of DCB and in a recovery subpopulation that cleaves only on one side, these proteins both colocalize to the cortex only where a cleavage furrow forms. Given the coincident distribution of TD-60 and INCENP during both interphase and mitosis, we suggest that these proteins may cooperate, perhaps within a protein complex, in signalling cytokinesis. Such a mechanism, using chromosome passenger proteins, may ensure that cytokinesis occurs only between the separated chromatids, and only after they have segregated. Received: 12 August 1998; in revised form: 1 September 1998 / Accepted: 2 September 1998  相似文献   

16.
In yeast and metazoa, structural maintenance of chromosome (SMC) complexes play key roles in chromosome segregation, architecture and DNA repair. The main function of the cohesin complex is to hold replicated sister chromatids together until segregation at anaphase, which is dependent on proteolytic cleavage of the cohesin subunit SCC1. Analysis of trypanosomatid genomes showed that the core cohesin and condensin complexes are conserved, but SMC5/6 is absent. To investigate the functional conservation of cohesin in eukaryotes distantly related to yeast and metazoa, we characterized the Trypanosoma brucei SCC1 orthologue. TbSCC1 is expressed prior to DNA synthesis at late G1, remains in the nucleus throughout S- and G2-phases of the cell cycle and disappears at anaphase. Depletion of SCC1 by RNAi or expression of a non-cleavable SCC1 resulted in karyokinesis failure. Using the dominant negative phenotype of non-cleavable SCC1 we investigated checkpoint regulation of cytokinesis in response to mitosis failure at anaphase. In the absence of chromosome segregation, procyclic trypanosomes progressed through cytokinesis to produce one nucleated and one anucleate cell (zoid). In contrast, cytokinesis was incomplete in bloodstream forms, where cleavage was initiated but cells failed to progress to abscission. Kinetoplast duplication was uninterrupted resulting in cells with multiple kinetoplasts and flagella.  相似文献   

17.
Ipl1p is the budding yeast member of the Aurora family of protein kinases, critical regulators of genomic stability that are required for chromosome segregation, the spindle checkpoint, and cytokinesis. Using time-lapse microscopy, we found that Ipl1p also has a function in mitotic spindle disassembly that is separable from its previously identified roles. Ipl1-GFP localizes to kinetochores from G1 to metaphase, transfers to the spindle after metaphase, and accumulates at the spindle midzone late in anaphase. Ipl1p kinase activity increases at anaphase, and ipl1 mutants can stabilize fragile spindles. As the spindle disassembles, Ipl1p follows the plus ends of the depolymerizing spindle microtubules. Many Ipl1p substrates colocalize with Ipl1p to the spindle midzone, identifying additional proteins that may regulate spindle disassembly. We propose that Ipl1p regulates both the kinetochore and interpolar microtubule plus ends to regulate its various mitotic functions.  相似文献   

18.
An integral part of cell division is the separation of daughter cells via cytokinesis. There is now good evidence that the completion of cytokinesis requires coordinated membrane trafficking to deliver new membrane to the tip of the furrow and to complete the abscission. Here we have examined membrane traffic in cytokinesis and describe several novel observations. First, we show that Rab11- and FIP3-containing recycling endosomes accumulate near the cleavage furrow and are required for successful completion of cytokinesis. Second, we demonstrate that the Rab11-FIP3 protein complex is intimately involved in the delivery of endosomes to the cleavage furrow. Significantly, although FIP3 recruitment to endosomes is Rab11 dependent, we find that the targeting of FIP3 to the midbody is independent of Rab11. Third, we show that the Rab11-FIP3 complex is required for a late stage of cytokinesis, possibly abscission. Finally, we demonstrate that localization of FIP3 is subject to substantial spatial and temporal regulation. These data provide the first detailed analysis of recycling endosomes in cell division and provide a new model for membrane traffic to the furrow. We propose that the dynamic Rab11-FIP3 interaction controls the delivery, targeting, and fusion of recycling endosomes with furrow during late cytokinesis and abscission.  相似文献   

19.
In eukaryotic cells, recycling endosome-mediated trafficking contributes to the completion of cytokinesis, in a manner under the control of the centrosome. We report that the exocyst complex and its interacting GTPase RalA play a critical role in this polarized trafficking process. RalA resides in the recycling endosome and relocates from the pericentrosomal region to key cytokinetic structures including the cleavage furrow, and later, the abscission site. This event is coupled to the dynamic redistribution of the exocyst proteins. These associate with the centrosome in interphase and concentrate on the central spindle/midbody during cytokinesis. Disruption of RalA-exocyst function leads to cytokinesis failure in late stages, particularly abscission, resembling the cytokinesis defects induced by loss of centrosome function. These data suggest that RalA and the exocyst may regulate vesicle delivery to the centrosome-related abscission site during the terminal stage of cytokinesis, implicating RalA as a critical regulator of cell cycle progression.  相似文献   

20.
Aurora/Ipl1-related kinases are a conserved family of enzymes that have multiple functions during mitotic progression. Although it has been possible to use conventional genetic analysis to dissect the function of aurora, the founding family member in Drosophila (Glover, D.M., M.H. Leibowitz, D.A. McLean, and H. Parry. 1995. Cell. 81:95-105), the lack of mutations in a second aurora-like kinase gene, aurora B, precluded this approach. We now show that depleting Aurora B kinase using double-stranded RNA interference in cultured Drosophila cells results in polyploidy. aurora B encodes a passenger protein that associates first with condensing chromatin, concentrates at centromeres, and then relocates onto the central spindle at anaphase. Cells depleted of the Aurora B kinase show only partial chromosome condensation at mitosis. This is associated with a reduction in levels of the serine 10 phosphorylated form of histone H3 and a failure to recruit the Barren condensin protein onto chromosomes. These defects are associated with abnormal segregation resulting from lagging chromatids and extensive chromatin bridging at anaphase, similar to the phenotype of barren mutants (Bhat, M.A., A.V. Philp, D.M. Glover, and H.J. Bellen. 1996. Cell. 87:1103-1114.). The majority of treated cells also fail to undertake cytokinesis and show a reduced density of microtubules in the central region of the spindle. This is accompanied by a failure to correctly localize the Pavarotti kinesin-like protein, essential for this process. We discuss these conserved functions of Aurora B kinase in chromosome transmission and cytokinesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号