首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
A novel halophilic actinomycete strain, H23T, was isolated from a Saharan soil sample collected in Djamâa (Oued Righ region), El-Oued province, South Algeria. Strain H23T was identified as a member of the genus Actinopolyspora by a polyphasic approach. Phylogenetic analysis showed that strain H23T had 16S rRNA gene sequence similarities ranging from 97.8 % (Actinopolyspora xinjiangensis TRM 40136T) to 94.8 % (Actinopolyspora mortivallis DSM 44261T). The strain grew optimally at pH 6.0–7.0, 28–32 °C and in the presence of 15–25 % (w/v) NaCl. The substrate mycelium was well developed and fragmented with age. The aerial mycelium produced long, straight or flexuous spore chains with non-motile, smooth-surfaced and rod-shaped spores. Strain H23T had MK-10 (H4) and MK-9 (H4) as the predominant menaquinones. The whole micro-organism hydrolysates mainly consisted of meso-diaminopimelic acid, galactose and arabinose. The diagnostic phospholipid detected was phosphatidylcholine. The major cellular fatty acids were anteiso-C17:0 (37.4 %), iso-C17:0 (14.8 %), iso-C15:0 (14.2 %), and iso-C16:0 (13.9 %). The genotypic and phenotypic data show that the strain represents a novel species of the genus Actinopolyspora, for which the name Actinopolyspora righensis sp. nov. is proposed, with the type strain H23T (=DSM 45501T = CCUG 63368T = MTCC 11562T).  相似文献   

2.
A novel halophilic actinomycete, strain H32T, was isolated from a Saharan soil sample collected in El-Oued province, south Algeria. The isolate was characterized by means of polyphasic taxonomy. Optimal growth was determined to occur at 28–32 °C, pH 6.0–7.0 and in the presence of 15–25 % (w/v) NaCl. The strain was observed to produce abundant aerial mycelium, which formed long chains of rod-shaped spores at maturity, and fragmented substrate mycelium. The cell wall was determined to contain meso-diaminopimelic acid and the characteristic whole-cell sugars were arabinose and galactose. The predominant menaquinones were found to be MK-10(H4) and MK-9(H4). The predominant cellular fatty acids were determined to be anteiso C17:0, iso-C15:0 and iso-C16:0. The diagnostic phospholipid detected was phosphatidylcholine. Phylogenetic analyses based on the 16S rRNA gene sequence showed that this strain formed a distinct phyletic line within the radiation of the genus Actinopolyspora. The 16S rRNA gene sequence similarity indicated that strain H32T was most closely related to ‘Actinopolyspora algeriensis’ DSM 45476T (98.8 %) and Actinopolyspora halophila DSM 43834T (98.5 %). Furthermore, the result of DNA–DNA hybridization between strain H32T and the type strains ‘A. algeriensis’ DSM 45476T, A. halophila DSM 43834T and Actinopolyspora mortivallis DSM 44261T demonstrated that this isolate represents a different genomic species in the genus Actinopolyspora. Moreover, the physiological and biochemical data allowed the differentiation of strain H32T from its closest phylogenetic neighbours. Therefore, it is proposed that strain H32T represents a novel species of the genus Actinopolyspora, for which the name Actinopolyspora saharensis sp. nov. is proposed. The type strain is H32T (=DSM 45459T=CCUG 62966T).  相似文献   

3.
A taxonomic study was carried out on strain HYC-10T, which was isolated from the intestinal tract contents of a flathead mullet, Mugil cephalus, captured from the sea off Xiamen Island, China. The bacterium was observed to be Gram positive, oxidase and catalase positive, rod shaped, and motile by subpolar flagella. The bacterium was found to grow at salinities of 0–12 % and at temperatures of 8–45 °C. The isolate was found to hydrolyze aesculin and gelatin, but was unable to reduce nitrate to nitrite. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain HYC-10T belongs to the genus Bacillus, with highest sequence similarity (99.3 %) to Bacillus aerophilus 28KT, Bacillus stratosphericus 41KF2aT and Bacillus altitudinis DSM 21631T, followed by Bacillus safensis DSM 19292T (99.5 %) and Bacillus pumilus DSM 27T (99.5 %), while the sequence similarities to others were all below 97.6 %. The genomic ANIm values between strain HYC-10T and three type strains (B. altitudinis DSM 21631T, B. safensis DSM 19292T and B. pumilus DSM 27T) were determined to range from 89.11 to 91.53 %. The DNA–DNA hybridization estimate values between strain HYC-10T and the three type strains were from 36.60 to 44.00 %. The principal fatty acids identified were iso-C15:0 (39.1 %), anteiso-C15:0 (22.7 %), iso-C17:0 (13.1 %), C16:0 (6.1 %), anteiso-C17:0 (5.8 %) and iso-C16:0 (5.1 %). The G+C content of the chromosomal DNA was determined from the draft genome sequence to be 41.3 mol%. The respiratory quinone was determined to be MK-7 (100 %). Phosphatidylglycerol, diphosphatidylglycerol, aminoglycolipid, two glycolipids and two unknown phospholipids were found to be present. The combined genotypic and phenotypic data show that strain HYC-10T represents a novel species of the genus Bacillus, for which the name Bacillus xiamenensis sp. nov. is proposed, with the type strain HYC-10T (=CGMCC NO.1.12326T = LMG 27143T = MCCC 1A00008T).  相似文献   

4.
The taxonomic position of an orange coloured bacterium, strain K22–26T isolated from a soil sample was studied using a polyphasic approach. The organism had phenotypic and chemotaxonomic properties consistent with its allocation into the genus Exiguobacterium. Phylogenetic analysis of the 16S rRNA gene sequence showed that strain K22–26T belongs to the genus Exiguobacterium and was related to Exiguobacterium aurantiacum DSM 6208T (99.0 %) Exiguobacterium mexicanum DSM 16483T (98.6 %), Exiguobacterium aquaticum (98.6 %), Exiguobacterium aestuarii DSM 16306T (98.1 %), Exiguobacterium profundum DSM 17289T (98.1 %) and Exiguobacterium marinum DSM 16483T (97.9 %), whereas sequence similarity values with respect to other Exiguobacterium species with validly published names were between 92.5–94.0 %. The major polar lipids detected were phosphatidylglycerol, diphosphatidylglycerol and phosphatidylethanolamine. The major menaquinone was determined to be MK-7 (83 %) whereas MK-8 (11 %) and MK-6 (6 %) occur in smaller amounts. The peptidoglycan of the strain was found to contain l-lysine as the diagnostic diamino acid. The major fatty acids detected were iso C13:0 (11.2 %), anteiso C13:0 (15.4 %), iso C15:0 (13.2 %) and iso C17:0 (16.1 %). However, analysis of the DNA–DNA relatedness confirmed that strain K22–26T belongs to a novel species. The G + C content of the strain K22–26T was determined to be 50.1 mol %. The novel strain was distinguished from closely related type species of the genus Exiguobacterium using DNA–DNA relatedness and phenotypic data. Based on these differences, the strain K22–26T should be classified as a novel species of the genus Exiguobacterium, for which the name Exiguobacterium himgiriensis sp. nov. strain K22–26T (= MTCC 7628T = JCM 14260T) is proposed.  相似文献   

5.
A novel actinomycete strain, designated PAL84, was isolated from a Saharan soil sample collected from Béni-Isguen, Ghardaïa (South of Algeria). This strain was studied for its taxonomic position using a polyphasic approach and was identified as a member of the genus Actinokineospora. Phylogenetic analysis showed that strain PAL84 had 16S rRNA gene sequence similarities with members of the genus Actinokineospora ranging from 96.2 % (Actinokineospora inagensis DSM 44258T) to 97.8 % (Actinokineospora baliensis NBRC 104211T). The strain was observed to produce pinkish-purple aerial mycelium and purplish red substrate mycelium, which fragmented readily into chains of non-motile elements. The optimum growth temperature and pH were found to be 25–30 °C and 5.0–7.0, respectively. The cell-wall hydrolysate of strain PAL84 was found to contain meso-diaminopimelic acid and the diagnostic whole-cell sugars were identified as arabinose and galactose. The predominant menaquinone was identified as MK-9 (H4). The major fatty acids were found to be iso-C16:0, iso-C15:0, iso-C16:1 H and iso-C16:0 2OH. The diagnostic phospholipid detected was phosphatidylethanolamine. The genotypic and phenotypic data show that the strain represents a novel species of the genus Actinokineospora, for which the name Actinokineospora mzabensis sp. nov. is proposed, with the type strain PAL84T (=DSM 45961T = CECT 8578T).  相似文献   

6.
Two actinomycete strains, designated YIM M11168T and YIM M11177, were isolated from marine sediment samples from Little Andaman, Indian Ocean, and their taxonomic position was determined by a polyphasic approach. The two Gram-positive, aerobic strains were observed to produce branched substrate mycelium and aerial hyphae but did not fragment, and no diffusible pigment was produced on the media tested. At maturity, spores were formed singly or in pairs on aerial hyphae and substrate mycelium, and occasionally the single ones were borne on long sporophores. The optimum growth was determined to occur at 28 °C, 0–4 % (w/v) NaCl and pH 7.0–8.0. Whole-cell hydrolysates of both strains contained meso-diaminopimelic acid and the diagnostic sugars were determined to be galactose, glucose and arabinose. Their predominant menaquinone was found to be MK-9(H4). The polar lipids detected in the two strains were diphosphatidylglycerol, phosphatidylglycerol, phosphatidylinositol mannoside, phosphatidylinositol, phosphatidylmethylethanolamine, phosphatidylethanolamine and two unknown phosphoglycolipids. The major fatty acids (>10 %) identified were iso-C16:0, iso-C16:1 H, iso-C16:0, C17:1 ω6c for strain YIM M11168T, iso-C16:0 and Summed Feature 3 for strain YIM M11177. The G + C contents of the genomic DNAs of both strains were determined to be 71.4 %. DNA–DNA hybridization relatedness values (78.4 ± 3.7 %) of these two isolates supported the conclusion that they belong to the same species. Based on phylogenetic analysis, phenotypic and genotypic data, it is concluded that the two isolates belong to a novel species of the genus Saccharomonospora of the family Pseudonocardiaceae. The name Saccharomonospora oceani sp. nov. (Type strain YIM M11168T = DSM 45700T = JCM 18128T) is proposed for the novel species.  相似文献   

7.
A Streptomyces-like actinomycete strain, designated as YIM 78087T, was isolated from a sediment sample collected from Hehua hot spring in Tengchong, Yunnan province, south-west China. The taxonomic position of strain YIM 78087T was investigated by a polyphasic approach. Phylogenetic analyses based on 16S rRNA gene sequences showed that strain YIM 78087T belongs to the genus Streptomyces and is closely related to Streptomyces fimbriatus DSM 40942T, Streptomyces marinus DSM 41968T and Streptomyces qinglanensis DSM 42035T (97.18, 97.05 and 97.1 % similarity, respectively). Combined with the low values of DNA–DNA hybridization between strain YIM 78087T and its closest neighbours, these analyses indicated that this new isolate represents a different genomic species in the genus Streptomyces. The predominant menaquinones of strain YIM 78087T were identified as MK-9 (H4) and MK-9 (H6). The major fatty acids were identified as anteiso-C15:0 (28.4 %), anteiso-C17:0 (23.0 %) and iso-C16:0 (15.1 %). The whole-cell hydrolysates found to contain glucose, mannose and ribose. The DNA G+C content was determined to be 73.0 mol%. Based on the comparative analysis of phenotypic and genotypic characteristics, it is proposed that strain YIM 78087T represents a novel species of the genus Streptomyces, for which the name Streptomyces calidiresistens sp. nov., is proposed. The type strain is YIM 78087T (=BCRC 16955T=DSM 42108T=JCM 19629T).  相似文献   

8.
A novel Gram-positive, rod-shaped, motile, spore-forming, nitrogen-fixing bacterium, designated strain 112T, was isolated from cabbage rhizosphere in Beijing, China. The strain was found to grow at 10–40 °C and pH 4–11, with an optimum of 30 °C and pH 7.0, respectively. Phylogenetic analysis based on a fragment of the full-length 16S rRNA gene sequence revealed that strain 112T is a member of the genus Paenibacillus. High levels of 16S rRNA gene similarities were found between strain 112T, Paenibacillus sabinae DSM 17841T (97.82 %) and Paenibacillus forsythiae DSM 17842T (97.22 %). However, the DNA–DNA hybridization values between strain 112T and the type strains of these two species were 10.36 and 6.28 %, respectively. The predominant menaquinone was found to be menaquinone 7 (MK-7). The major fatty acids were determined to be anteiso-C15:0 and C16:0. The major polar lipids were found to be diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol and unknown aminophospholipids. The cell wall peptidoglycan was found to contain meso-diaminopimelic acid. The DNA G+C content was determined to be 55.4 mol%. On the basis of its phenotypic characteristics, 16S rRNA gene sequence analysis and the value of DNA–DNA hybridization, strain 112T is considered to represent a novel species of the genus Paenibacillus, for which the name Paenibacillus brassicae sp. nov. is proposed. The type strain is 112T (= ACCC 01125T = DSM 24983T).  相似文献   

9.
A slightly halophilic bacterium (strain NEAU-ST10-25T) was isolated from saline–alkaline soils in Zhaodong City, Heilongjiang Province, China. The strain is a Gram-negative, aerobic motile rod. It accumulates poly-β-hydroxyalkanoate and produces exopolysaccharide. It produces beige-yellow colonies. Growth occurs at NaCl concentrations (w/v) of 0–15 % (optimum 3 %), at temperatures of 4–60 °C (optimum 35 °C) and at pH 6–12 (optimum pH 9). Its G+C content is 53.8 mol%. Phylogenetic analyses based on the separate 16S rRNA gene and concatenation of the 16S rRNA, gyrB and rpoD genes indicate that it belongs to the genus Halomonas in the class Gammaproteobacteria. The most phylogenetically related species is Halomonas alkaliphila DSM 16354T, with which strain NEAU-ST10-25T showed 16S rRNA, gyrB and rpoD gene sequence similarities of 99.2, 82.3 and 88.2 %, respectively. The results of DNA–DNA hybridization assays showed 60.47 ± 0.69 % DNA relatedness between strain NEAU-ST10-25T and H. alkaliphila DSM 16354T, 42.43 ± 0.37 % between strain NEAU-ST10-25T and Halomonas venusta DSM 4743T and 30.62 ± 0.43 % between strain NEAU-ST10-25T and Halomonas hydrothermalis DSM 15725T. The major fatty acids are C18:1 ω7c (62.3 %), C16:0 (17.6 %), C16:1 ω7c/C16:1 ω6c (7.7 %), C14:0 (2.9 %), C12:0 3-OH (2.8 %), C10:0 (2.1 %) and C18:1 ω9c (1.6 %) and the predominant respiratory quinone is ubiquinone 9 (Q-9). The proposed name is Halomonas zhaodongensis, NEAU-ST10-25T (=CGMCC 1.12286T = DSM 25869T) being the type strain.  相似文献   

10.
A Gram-positive, thermophilic, strictly aerobic bacterium, designated WP-1T, was isolated from a sediment sample from a hot spring in Fujian province of China and subjected to a polyphasic taxonomic study. Cells of strain WP-1T were rods (~0.6–0.8 × 2.5–3.5 μm) and motile by means of peritrichous flagella. Endospores were ellipsoidal in terminal or subterminal positions. Strain WP-1T grew at 37–60 °C (optimum 42–45 °C), 0–3 % NaCl (optimum 1 %, w/v) and pH 3.0–9.0 (optimum pH 6.5–7.0). The predominant menaquinone was MK-7. The major fatty acids were anteiso-C15:0, iso-C16:0, C16:0 and anteiso-C17:0. The polar lipids consisted of diphosphatidylglycerol, phosphatidylglycerol, two glycolipids, two unidentified phospholipids and two unknown polar lipids. The cell-wall peptidoglycan contained meso-diaminopimelic acid (meso-DAP). The G + C content of the genomic DNA was 52.5 %. Phylogenetic analysis based on the 16S rRNA gene sequence showed that strain WP-1T is a member of the genus Paenibacillus and exhibited sequence similarity of 99.3 % to Paenibacillus macerans DSM 24T and both strains represented a separate lineage from all other Paenibacillus species. However, the level of DNA–DNA relatedness between strain WP-1T and P. macerans DSM 24T was 34.0 ± 4.7 %. On the basis of phylogenetic, physiological and chemotaxonomic analysis data, strain WP-1T is considered to represent as a novel species of the genus Paenibacillus, for which the name Paenibacillus thermophilus sp. nov., is proposed, with the type strain WP-1T (=DSM 24746T = JCM 17693T = CCTCC AB 2011115T).  相似文献   

11.
A Gram-positive, alkaliphilic bacterium, designated strain Zby6T, was isolated from Zhabuye Lake in Tibet, China. The strain was able to grow at pH 8.0–11.0 (optimum at pH 10.0), in 0–8 % (w/v) NaCl (optimum at 3 %, w/v) and at 10–45 °C (optimum at 37 °C). Cells of the isolate were facultatively anaerobic and spore-forming rods with polar flagellum. The predominant isoprenoid quinone was MK-7, and its cell wall peptidoglycan contained meso-diaminopimelic acid. The major cellular fatty acids were iso-C15:0, C16:0 and anteiso-C15:0. The major polar lipids consisted of phosphatidylglycerol, diphosphatidylglycerol, and phosphatidylethanolamine. The genomic DNA G+C content of the isolate was 38.9 mol%. Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain Zby6T was a member of the genus Bacillus and most closely related to Bacillus cellulosilyticus DSM 2522T (97.7 % similarity). The DNA–DNA relatedness value between strain Zby6T and B. cellulosilyticus DSM 2522T was 59.2 ± 1.8 %. Comparative analysis of genotypic and phenotypic features indicated that strain Zby6T represents a novel species of the genus Bacillus, for which the name Bacillus alkalicola sp. nov. is proposed; the type strain is Zby6T (=CGMCC 1.10368T = JCM 17098T = NBRC 107743T).  相似文献   

12.
A novel bacterial strain designated as NIO-1008T was isolated from marine sediments sample in Chorao Island India. Cells of the strains were gram positive and non-motile, displayed a rod–coccus life cycle and formed cream to light grey colonies on nutrient agar. Strain NIO-1008T had the chemotaxonomic markers that were consistent for classification in the genus Arthrobacter, i.e. MK-9(H2) (50.3 %), as the major menaquinone, and the minor amount of MK-7 (H2-27.5 %), MK-8 (H4-11.6 %) and MK-8 (H2-10.4 %). anteiso-C15:0, iso-C15:0, iso-C16:0 and C15:0 were the predominant fatty acids. Galactose, glucose and rhamnose are the cell-wall sugars, and DNA G+C content was 61.3 mol%. Phylogenetic analysis, based on 16S rRNA gene sequencing, showed that the strains were most similar to Arthrobacter equi IMMIB L-1606T, Arthrobacter chlorophenolicus DSM 12829T, Arthrobacter defluvii KCTC 19209T and Arthrobacter niigatensis CCTCC AB 206012T with 98.5, 98.4, 98.0 and 97.8 %, respectively, and formed a separate lineage. Combined phenotypic data and DNA–DNA hybridization data supported the conclusion that strains NIO-1008T represent a novel species within the genus Arthrobacter, for which the name Arthrobacter enclensis sp. nov., is proposed. The type strain is NIO-1008T = (NCIM 5488T = DSM 25279T).  相似文献   

13.
A novel actinobacterium, strain DB165T, was isolated from cold waters of Llullaillaco Volcano Lake (6170 m asl) in Chile. Phylogenetic analysis based on 16S rRNA gene sequences identified strain DB165T as belonging to the genus Subtercola in the family Microbacteriaceae, sharing 97.4% of sequence similarity with Subtercola frigoramans DSM 13057T, 96.7% with Subtercola lobariae DSM 103962T, and 96.1% with Subtercola boreus DSM 13056T. The cells were observed to be Gram-positive, form rods with irregular morphology, and to grow best at 10–15 °C, pH 7 and in the absence of NaCl. The cross-linkage between the amino acids in its peptidoglycan is type B2γ; 2,4-diaminobutyric acid is the diagnostic diamino acid; the major respiratory quinones are MK-9 and MK-10; and the polar lipids consist of phosphatidylglycerol, diphosphatidylglycerol, 5 glycolipids, 2 phospholipids and 5 additional polar lipids. The fatty acid profile of DB165T (5% >) contains iso-C14:0, iso-C16:0, anteiso-C15:0, anteiso-C17:0, and the dimethylacetal iso-C16:0 DMA. The genomic DNA G+C content of strain DB165T was determined to be 65 mol%. Based on the phylogenetic, phenotypic, and chemotaxonomic analyses presented in this study, strain DB165T (= DSM 105013T = JCM 32044T) represents a new species in the genus Subtercola, for which the name Subtercola vilae sp. nov. is proposed.  相似文献   

14.
A Gram-positive, moderately halotolerant, rod-shaped, spore forming bacterium, designated strain FJAT-14515T was isolated from a soil sample in Cihu area, Taoyuan County, Taiwan. The strain grew at 10–35 °C (optimum at 30 °C), pH 5.7–9.0 (optimum at pH 7.0) and at salinities of 0–5 % (w/v) NaCl (optimum at 1 % w/v). The diagnostic diamino acid of the peptidoglycan of the isolated strain was meso-diaminopimelic acid and major respiratory isoprenoid quinone was MK-7. Major cellular fatty acids were anteiso-C15:0 (40.6 %), iso-C15:0 (20.7 %) and the DNA G+C content of strain FJAT-14515T was 37.1 mol %. A phylogenetic analysis based on 16S rRNA gene sequences indicated that strain FJAT-14515T belongs to the genus Bacillus, and was most closely related to the reference strains of Bacillus muralis DSM 16288T (97.6 %) and Bacillus simplex DSM 1321T (97.5 %). Levels of DNA–DNA relatedness between strain FJAT-14515T and the reference strains of B. muralis DSM 16288T and B. simplex DSM 1321T were 27.9 % ± 3.32 and 44.1 % ± 0.57, respectively. Therefore, on the basis of phenotypic, chemotaxonomic and genotypic properties, strain FJAT-14515T represents a novel species of the genus Bacillus, for which the name Bacillus cihuensis sp. nov. is proposed. The type strain is FJAT-14515T (=DSM 25969T = CGMCC 1.12697T).  相似文献   

15.
A novel actinomycete, designated strain NEAU-zh8T, was isolated from a root of Viola philippica Car collected in China and characterized using a polyphasic approach. 16S rRNA gene sequence similarity studies showed that strain NEAU-zh8T belongs to the genus Micromonospora, being most closely related to Micromonospora chokoriensis 2-9(6)T (99.9 %), Micromonospora saelicesensis Lupac 09T (99.3 %) and Micromonospora lupini Lupac 14NT (99.0 %). gyrB gene analysis also indicated that strain NEAU-zh8T should be assigned to the genus Micromonospora. The cell-wall peptidoglycan consisted of meso-diaminopimelic acid and glycine. The major menaquinones were MK-10(H4), MK-10(H2) and MK-10(H6). The phospholipid profile contained diphosphatidylglycerol, phosphatidylethanolamine and phosphatidylinositol. The major fatty acids were iso-C15:0, C16:0 and C17:0 10-methyl. A combination of DNA–DNA hybridization results and some physiological and biochemical properties indicated that strain NEAU-zh8T could be readily distinguished from the closest phylogenetic relatives. Therefore, it is proposed that strain NEAU-zh8T represents a novel Micromonospora species, for which the name Micromonospora violae sp. nov. is proposed. The type strain is NEAU-zh8T (=CGMCC 4.7102T=DSM 45888T).  相似文献   

16.
Three halophilic mycelium-forming actinobacteria, strains H195T, H150 and H151, were isolated from a Saharan soil sample collected from Béni-isguen in the Mzab region (Ghardaïa, South of Algeria) and subjected to a polyphasic taxonomic characterisation. These strains were observed to show an aerial mycelium differentiated into coccoid spore chains and fragmented substrate mycelium. Comparative analysis of the 16S rRNA gene sequences revealed that the highest sequence similarities were to Saccharopolyspora qijiaojingensis YIM 91168T (92.02 % to H195T). Phylogenetic analyses showed that the strains H195T, H150 and H151 represent a distinct phylogenetic lineage. The cell-wall hydrolysate was found to contain meso-diaminopimelic acid, and the diagnostic whole-cell sugars were identified as arabinose and galactose. The major cellular fatty acids were identified as iso-C15:0, iso-C16:0, iso-C17:0 and anteiso-C17:0. The diagnostic phospholipid detected was phosphatidylcholine and MK-9 (H4) was found to be the predominant menaquinone. The genomic DNA G+C content of strain H195T was 68.2 mol%. On the basis of its phenotypic features and phylogenetic position, we propose that strain H195T represents a novel genus and species, Mzabimyces algeriensis gen. nov., sp. nov., within a new family, Mzabimycetaceae fam. nov. The type strain of M. algeriensis is strain H195T (=DSM 46680T = MTCC 12101T).  相似文献   

17.
A Gram-positive, aerobic, non-motile actinobacterial strain, designated YIM C01235T, was isolated from a soil sample collected from the Swallow Cave, Yunnan province, south-west China. The isolate grew at 10–30 °C, pH 6.0–9.0 and 0–8 % (w/v) NaCl. Phylogenetic analysis based on 16S rRNA gene sequences revealed highest similarity to Saccharopolyspora gloriosae YIM 60513T (96.8 %), and lower 16S rRNA gene sequence similarities (95.1–96.7 %) with the other species of the genus Saccharopolyspora. The whole-cell hydrolysates contained meso-diaminopimelic acid (meso-DAP), arabinose and galactose. The polar lipids were diphosphatidylglycerol, phosphatidylglycerol, phosphatidylcholine, phosphatidylethanolamine, phosphatidylmethylethanolamine, two unknown glycolipids, two unknown phospholipids and one polar lipid. MK-9(H4) was the predominant menaquinone. The major fatty acids were iso-C15:0, iso-C16:0, anteiso-C15:0 and anteiso-C17:0. Mycolic acids were not detected. The genomic DNA G+C content was 69.1 mol%. These chemotaxonomic data, together with its morphological properties, were consistent with the assignment of strain YIM C01235T to the genus Saccharopolyspora. The results of physiological and biochemical tests allowed strain YIM C01235T to be differentiated phenotypically from all the recognized Saccharopolyspora species. On the basis of evidence from this polyphasic study, the novel species Saccharopolyspora cavernae sp. nov. is proposed. The type strain is YIM C01235T (=DSM 45825T = CCTCC AA 2012022T).  相似文献   

18.
A Gram-positive, non-motile actinomycete, designated strain NEAU-FJL1T, was isolated from tomato root (Solanum lycopersicum L.) collected from Harbin, Heilongjiang province, north China. The strain formed single spores with smooth surfaces from substrate mycelia. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain NEAU-FJL1T should be affiliated with the genus Plantactinospora and forms a distinct branch with its close neighbour Plantactinospora soyae NEAU-gxj3T (99.2% sequence similarity). The cell wall was found to contain meso-diaminopimelic acid and the whole cell sugars were identified as xylose, glucose, arabinose and galactose. The predominant menaquinones were identified as MK-10(H6) and MK-10(H4). The phospholipid profile was found to consist of diphosphatidylglycerol, phosphatidylethanolamine and phosphatidylinositol. The major fatty acids were identified as C15:0, iso-C16:0, anteiso-C17:0, C17:0 and iso-C15:0. With reference to phenotypic characteristics, phylogenetic data and DNA–DNA hybridization results, strain NEAU-FJL1T can be distinguished from its most closely related strain and classified as a new species, for which the name Plantactinospora solaniradicis sp. nov. is proposed. The type strain is NEAU-FJL1T (= DSM 100596T = CGMCC 4.7284T).  相似文献   

19.
A novel actinomycete, designated strain NEAU-P5T, was isolated from dandelion root (Taraxacum mongolicum Hand.-Mazz.). Strain NEAU-P5T showed closest 16S rRNA gene sequence similarity to Micromonospora chokoriensis 2–19/6T (99.5 %), and phylogenetically clustered with Micromonospora violae NEAU-zh8T (99.3 %), M. saelicesensis Lupac 09T (99.0 %), M. lupini Lupac 14NT (98.8 %), M. zeae NEAU-gq9T (98.4 %), M. jinlongensis NEAU-GRX11T (98.3 %) and M. zamorensis CR38T (97.9 %). Phylogenetic analysis based on the gyrB gene sequence also indicated that the isolate clustered with the above type strains except M. violae NEAU-zh8T. The cell-wall peptidoglycan consisted of meso-diaminopimelic acid and glycine. The major menaquinones were MK-9(H8), MK-9(H6) and MK-10(H2). The phospholipid profile contained diphosphatidylglycerol, phosphatidylethanolamine and phosphatidylinositol. The major fatty acids were C16:0, iso-C15:0 and C17:0. Furthermore, some physiological and biochemical properties and low DNA–DNA relatedness values enabled the strain to be differentiated from members of closely related species. Therefore, it is proposed that strain NEAU-P5T represents a novel species of the genus Micromonospora, for which the name Micromonospora taraxaci sp. nov. is proposed. The type strain is NEAU-P5T (=CGMCC 4.7098T = DSM 45885T).  相似文献   

20.
A novel Gram stain-negative, catalase- and oxidase-positive, strictly aerobic bacterium, designated strain H50T, was isolated from an amphioxus breeding zone in the coastal region of the Yellow Sea, China. Cells were observed to be ovoid or short rods, lacked flagella and were found to contain bacteriochlorophyll a. Poly-beta-hydroxybutyrate was found to be accumulated. The temperature range for growth was determined to be 0–37 °C (optimum 28–37 °C). The halotolerance range for growth is 1–15 % NaCl (optimum 2–7 %). The pH range for growth is 6.0–8.0 (optimum 7.0). The major fatty acids were identified as C18:1ω7c and C16:0. The following polar lipids were found to be present: diphosphatidylglycerol, phosphatidylglycerol and a lipid. The predominant respiratory quinone was determined to be Q-10. DNA G+C content was determined to be 57.7 mol%. Strain H50T exhibited the highest 16S rRNA gene sequence similarity to Pelagicola litoralis DSM 18290T (96.1 %), Roseovarius mucosus DSM 17069T (95.8 %) and Roseovarius tolerans DSM 11457T (95.7 %). In the phylogenetic trees, strain H50T was clustered with the genus Roseovarius but not Pelagicola. On the basis of phenotypic, chemotaxonomic and genotypic data, strain H50T is considered to represent a novel species in the genus Roseovarius, for which the name Roseovarius marisflavi sp. nov. is proposed. The type strain is H50T (=CGMCC 1.10799T=JCM 17553T).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号