首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Both wild type and cr-1 mutant (adenylate cyclase and cyclic AMP-deficient) strains of Neurospora crassa contain fructose 2,6-bisphosphate at levels of 27 nmol/g dry tissue weight. This level decreases by about 50% in both strains upon depriving the cells of carbon or nitrogen sources for 3 h. An increase in cyclic AMP levels produced by addition of lysine to nitrogen-starved cells produced no increase in fructose 2,6-bisphosphate levels. Both strains respond to short-term addition of salicylate, acetate, or 2,4-dinitrophenol with an increase in fructose 2,6-bisphosphate. Thus, the above-described regulation of fructose 2,6-bisphosphate levels is cyclic AMP-independent. A suspension of the wild type produces a transient increase of fructose 2,6-bisphosphate in response to administration of glucose, whereas the mutant strain does not respond unless it is fed exogenous cyclic AMP. Substitution of acetate for sucrose as a sole carbon source for growth leads to a differential decrease in fructose 2,6-bisphosphate levels between the two strains: the wild type strain has 63% and the cr-1 mutant strain has 37% of the levels of fructose 2,6-bisphosphate on acetate as compared to sucrose-grown controls. This may be the basis for an advantage of cr-1 over wild type in growth on acetate. Thus, although most regulation of fructose 2,6-bisphosphate is cyclic AMP-independent, the levels can be regulated by a combination of carbon source and cyclic AMP levels.  相似文献   

2.
The occurrence of fructose 2,6-bisphosphate was detected in Dictyostelium discoideum. The levels of this compound were compared with those of cyclic AMP and several glycolytic intermediates during the early stages of development. Removal of the growth medium and resuspension of the organism in the differentiation medium decreased the content of fructose 2,6-bisphosphate to about 20% within 1 h, remaining low when starvation-induced development was followed for 8 h. The content of cyclic AMP exhibited a transient increase that did not correlate with the change in fructose 2,6-bisphosphate. If after 1 h of development 2% glucose was added to the differentiation medium, fructose 2,6-bisphosphate rapidly rose to similar levels to those found in the vegetative state, while the increase in cyclic AMP was prevented. The contents of hexose 6-phosphates, fructose 1,6-bisphosphate and triose phosphates changed in a way that was parallel to that of fructose 2,6-bisphosphate, and addition of sugar resulted in a large increase in the levels of these metabolites. The content of fructose 2,6-bisphosphate was not significantly modified by the addition of the 8-bromo or dibutyryl derivatives of cyclic AMP to the differentiation medium. These results provide evidence that the changes in fructose 2,6-bisphosphate levels in D. discoideum development are not related to a cyclic-AMP-dependent mechanism but to the availability of substrate. Fructose 2,6-bisphosphate was found to inhibit fructose-1,6-bisphosphatase activity of this organism at nanomolar concentrations, while it does not affect the activity of phosphofructokinase in the micromolar range. The possible physiological implications of these phenomena are discussed.  相似文献   

3.
When glucose was added to a suspension of Saccharomyces cerevisiae in stationary phase, it caused a transient increase in the concentration of cyclic AMP and a more persistent increase in the concentration of hexose 6-phosphate and of fructose 2,6-bisphosphate. These effects of glucose on cyclic AMP and fructose 2,6-bisphosphate but not that on hexose 6-phosphate were greatly decreased in the presence of 0.15 mM acridine orange or when a temperature-sensitive mutant deficient in adenylate cyclase was used at the restrictive temperature. Incubation of the cells in the presence of dinitrophenol and in the absence of glucose increased the concentration of both cyclic AMP and fructose 2,6-bisphosphate, but with a minimal change in that of hexose 6-phosphate. Glucose induced also in less than 3 min a severalfold increase in the activity of 6-phosphofructo-2-kinase and this effect was counteracted by the presence of acridine orange. When a cell-free extract of yeast in the stationary phase was incubated with ATP-Mg and cyclic AMP, there was a 10-fold activation of 6-phosphofructo-2-kinase. Finally, the latter enzyme was purified 150-fold and its activity could then be increased about 10-fold upon incubation with ATP-Mg and the catalytic subunit of cyclic-AMP-dependent protein kinase. This activation resulted from a 4.3-fold increase in V and a 2-fold decrease in Km. Both forms of the enzyme were inhibited by sn-glycerol 3-phosphate. From these results it is concluded that the effect of glucose in increasing the concentration of fructose 2,6-bisphosphate in S. cerevisiae is mediated by the successive activation of adenylate cyclase and of cyclic-AMP-dependent protein kinase and by the phosphorylation of 6-phosphofructo-2-kinase by the latter enzyme. In deep contrast with what is known of the liver enzyme, yeast 6-phosphofructo-2-kinase is activated by phosphorylation instead of being inactivated.  相似文献   

4.
Vanadate counteracts glucagon effects in isolated rat hepatocytes   总被引:1,自引:0,他引:1  
The incubation of isolated rat hepatocytes with vanadate increased the concentration of fructose 2,6-bisphosphate without modifying 6-phosphofructo-2-kinase activity. Vanadate also reverted and prevented the decrease of fructose 2,6-bisphosphate levels, of the "active" form of the 6-phosphofructo 2-kinase and of the pyruvate kinase activity ratio produced by glucagon, by probably counteracting the increase in cyclic AMP concentration.  相似文献   

5.
Kinetic data have been collected suggesting that heterotropic activation by fructose 2,6-bisphosphate and AMP is a result not only of the relief of allosteric inhibition by ATP but is also the result of an increase in the affinity of phosphofructokinase for fructose 6-phosphate. Modification of the Ascaris suum phosphofructokinase at the ATP inhibitory site produces a form of the enzyme that no longer has hysteretic time courses or homotropic positive (fructose 6-phosphate) cooperativity or substrate inhibition (ATP) (Rao, G.S. J., Wariso, B.A., Cook, P.F., Hofer, H.W., and Harris, B.G. (1987a) J. Biol. Chem. 262, 14068-14073). This form of phosphofructokinase is Michaelis-Menten in its kinetic behavior but is still activated by fructose 2,6-bisphosphate and AMP and by phosphorylation using the catalytic subunit of cyclic AMP-dependent protein kinase (cAPK). Fructose 2,6-bisphosphate activates by decreasing KF-6-P by about 15-fold and has an activation constant of 92 nM, while AMP decreases KF-6-P about 6-fold and has an activation constant of 93 microM. Double activation experiments suggest that fructose 2,6-bisphosphate and AMP are synergistic in their activation. The desensitized form of the enzyme is phosphorylated by cAPK and has an increased affinity for fructose 6-phosphate in the absence of MgATP. The increased affinity results in a change in the order of addition of reactants from that with MgATP adding first for the nonphosphorylated enzyme to addition of fructose 6-phosphate first for the phosphorylated enzyme. The phosphorylated form of the enzyme is also still activated by fructose 2,6-bisphosphate and AMP.  相似文献   

6.
A new procedure for the purification of phosphofructokinase using Blue Dextran-Sepharose is described. This allowed an approx. 1000-fold purification of phosphofructokinase from rat white and brown adipose tissue to be achieved in essentially a single step. The purified enzymes from both tissues were found to exhibit hyperbolic kinetics with fructose 6-phosphate, to be inhibited by ATP and citrate, and to be activated by 5'-AMP, phosphate and fructose 2,6-bisphosphate. The enzymes were phosphorylated by the catalytic subunit of cyclic AMP-dependent protein kinase, and phosphorylation was found to be associated with increases in activity when the enzymes were assayed under appropriate sub-optimal conditions. In particular, the phosphorylated enzymes exhibited less inhibition by ATP and the white-adipose-tissue enzyme was more sensitive to activation by fructose 2,6-bisphosphate. It is suggested that an increase in the cytoplasmic concentration of cyclic AMP in tissues other than liver may result in an increase in glycolysis through the phosphorylation of phosphofructokinase by cyclic AMP-dependent protein kinase.  相似文献   

7.
Glucagon and dibutyryl cyclic AMP inhibited glucose utilization and lowered fructose 2,6-bisphosphate levels of hepatocytes prepared from fed chickens. Partially purified preparations of chicken liver 6-phosphofructo-1-kinase and fructose 1,6-bisphosphatase were activated and inhibited by fructose 2,6-bisphosphate, respectively. The sensitivities of these enzymes and the changes observed in fructose 2,6-bisphosphate levels are consistent with an important role for this allosteric effector in hormonal regulation of carbohydrate metabolism in chicken liver. In contrast, oleate inhibition of glucose utilization by chicken hepatocytes occurred without change in fructose, 2,6-bisphosphate levels. Likewise, pyruvate inhibition of lactate gluconeogenesis in chicken hepatocytes cannot be explained by changes in fructose 2,6-bisphosphate levels. Exogenous glucose caused a marked increase in fructose 2,6-bisphosphate content of hepatocytes from fasted but not fed birds. Both glucagon and lactate prevented this glucose effect. Fasted chicken hepatocytes responded to lower glucose concentrations than fasted rat hepatocytes, perhaps reflecting the species difference in hexokinase isozymes.  相似文献   

8.
The effect of ACTH on glycolysis has been studied in Y-1 tumor adrenal cells. ACTH caused a sustained increase in the liberation of lactate as well as a stimulation of both basal and glucose-induced fructose 2,6-bisphosphate content. ACTH produces changes also in the activities of phosphofructokinase-1 and phosphofructokinase-2. The addition of Ca2+ or dibutyryl cyclic AMP did not modify neither lactate production nor fructose 2,6-bisphosphate levels. The results suggest that fructose 2,6-bisphosphate regulates ACTH-induced glycolysis at the phosphofructokinase-1 step, although the biochemical mechanism of phosphofructokinase-2 activation remains elusive.  相似文献   

9.
The intragastric administration of ethanol to fed rats caused in their liver, within about 1 h, a 20-fold decrease in the concentration of fructose 2,6-bisphosphate, an activation of fructose 2,6-bisphosphatase, an inactivation of phosphofructo-2-kinase but no change in the concentration of cyclic AMP. Incubation of isolated hepatocytes in the presence of ethanol caused a rapid increase in the concentration of sn-glycerol 3-phosphate and a slower and continuous decrease in the concentration of fructose 2,6-bisphosphate with no change in that of hexose 6-phosphates. There was also a relatively slow activation of fructose 2,6-bisphosphatase and inactivation of phosphofructo-2-kinase. Glycerol and acetaldehyde had effects similar to those of ethanol on the concentration of phosphoric esters in the isolated liver cells. 4-Methylpyrazole cancelled the effect of ethanol but reinforced those of acetaldehyde. High concentrations of glucose or of dihydroxyacetone caused an increase in the concentration of hexose 6-phosphates and counteracted the effect of ethanol to decrease the concentration of fructose 2,6-bisphosphate. As a rule, hexose 6-phosphates had a positive effect and sn-glycerol 3-phosphate had a negative effect on the concentration of fructose 2,6-bisphosphate in the liver, so that, at a given concentration of hexose 6-phosphates, there was an inverse relationship between the concentration of fructose 2,6-bisphosphate and that of sn-glycerol 3-phosphate. These effects could be explained by the ability of sn-glycerol 3-phosphate to inhibit phosphofructo-2-kinase and to counteract the inhibition of fructose 2,6-bisphosphatase by fructose 6-phosphate. sn-Glycerol 3-phosphate had also the property to accelerate the inactivation of phosphofructo-2-kinase by cyclic AMP-dependent protein kinase whereas fructose 2,6-bisphosphate had the opposite effect. The changes in the activity of phosphofructo-2-kinase and fructose 2,6-bisphosphatase appear therefore to be the result rather than the cause of the decrease in the concentration of fructose 2,6-bisphosphate.  相似文献   

10.
Glycogen and fructose 2,6-bisphosphate levels in rat liver decreased quickly after partial hepatectomy. After 7 days the glycogen level was normalized and fructose 2,6-bisphosphate concentration still remained low. The 'active' (non-phosphorylated) form of 6-phosphofructo-2-kinase varied in parallel with fructose 2,6-bisphosphate levels, whereas the 'total' activity of the enzyme decreased only after 24 h, similarly to glucokinase. The response of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase from hepatectomized rats (96 h) to sn-glycerol 3-phosphate and to cyclic AMP-dependent protein kinase was different from that of the enzyme from control animals and similar to that of the foetal isoenzyme.  相似文献   

11.
The interaction of AMP and fructose 2,6-bisphosphate with rabbit liver fructose-1,6-bisphosphatase has been investigated by proton nuclear magnetic resonance spectroscopy (1H NMR). The temperature dependence of the line widths of the proton resonances of AMP as a function of fructose-1,6-bisphosphatase concentration indicates that the nucleotide C2 proton is in fast exchange on the NMR time scale while the C8 proton is exchange limit. The exchange rate constant, koff, has been calculated for the adenine C8 proton and is 1900 s-1. Binding of fructose 6-phosphate and inorganic phosphate, or the regulatory inhibitor, fructose 2,6-bisphosphate, results in a decrease in the dissociation rate constant for AMP from fructose-1,6-bisphosphatase, as indicated by the sharpened AMP signals. A temperature dependence experiment indicates that the AMP protons are in slow exchange when AMP dissociates from the ternary complex. The rate constant for dissociation of AMP from the enzyme.AMP.fructose 2,6-bisphosphate complex is 70 s-1, 27-fold lower than that of AMP from the binary complex. These results are sufficient to explain the enhanced binding of AMP in the presence of fructose 2,6-bisphosphate and, therefore, the synergistic inhibition of fructose-1,6-bisphosphatase observed with these two regulatory ligands. Binding of fructose 2,6-bisphosphate to the enzyme results in broadening of the ligand proton signals. The effect of AMP on the binding of fructose 2,6-bisphosphate to the enzyme has also been investigated. An additional line width broadening of all the fructose 2,6-bisphosphate protons has been observed in the presence of AMP. The assignment of these signals to the sugar was accomplished by two-dimensional proton-proton correlated spectra (two-dimensional COSY) NMR. From these data, it is concluded that AMP can also affect fructose 2,6-bisphosphate binding to fructose-1,6-bisphosphatase.  相似文献   

12.
Fructose 2,6-bisphosphate is present in the rat mammary gland, rising from a value of 1.4 nmol/g in pregnancy to 4.3 nmol/g tissue at 14 days lactation; the equivalent values calculated/ml intracellular water are 5.2 and 11.6 nmol, respectively. The tissue content of fructose 6-phosphate, fructose 1,6-bisphosphate, ATP and phosphoenolpyruvate remain relatively constant in the transition from pregnancy to the height of lactation. The changes in AMP, cyclic AMP, and citrate content of the mammary gland during lactation are such as to promote an increase in fructose 2,6-bisphosphate formation and flux through phosphofructokinase.  相似文献   

13.
《Experimental mycology》1991,15(1):44-54
DormantPilobolus longipes spores metabolized fructose primarily to ethanol, CO2, and trehalose. Cyclic AMP-induced spore activation was accompanied by a large stimulation of glycolytic activity. Mobilization of reserves, which was cyclic AMP dependent, accounted for a portion of the glycolytic product. The remaining product was derived from exogenous fructose. Increases in both fructose transport activity and hexose 6-phosphate levels were associated with 6-deoxyglucose-induced spore activation. Phosphofructokinase-1 activity in spore extracts was almost totally dependent upon fructose, 2,6-bisphosphate. High fructose 2,6-bisphosphate levels were correlated with rapid fructose metabolism. However, fructose alone caused a rise in fructose 2,6-bisphosphate content (sufficient to fully stimulate phosphofructokinase-1 activity) but there was no concurrent stimulation of glycolysis. These results suggest that glycolytic rates are determined mainly by hexose 6-phosphate levels and that cyclic AMP regulation of transport is an important determinant of hexose 6-phosphate concentration.  相似文献   

14.
The presence of adenosine (25-250 microM) or of 2-chloroadenosine (2.5-100 microM) in the incubation medium caused a marked decrease in the concentration of fructose 2,6-bisphosphate in isolated hepatocytes. This effect was accompanied by an increase in the concentration of cyclic AMP, an activation of phosphorylase and of fructose 2,6-bisphosphatase, and an inactivation of pyruvate kinase and of 6-phosphofructo-2-kinase. As a rule, the changes in the fructose 2,6-bisphosphate-modifying system were slower but more persistent than those in the activities of phosphorylase and pyruvate kinase. The effect of the nucleoside to decrease the concentration of fructose 2,6-bisphosphate was not affected by an inhibitor of adenosine transport and could not be obtained in a liver high-speed supernatant. These data indicate that the effect of adenosine to decrease the concentration of fructose 2,6-bisphosphate is mediated by the stimulation of adenylate cyclase, secondary to the binding of adenosine to membranous receptors. Like glucagon, 2-chloroadenosine stimulated gluconeogenesis in isolated hepatocytes, whereas adenosine had an opposite effect.  相似文献   

15.
Rat hepatic 6-phosphofructo-1-kinase (ATP:d-fructose-6-phosphate 1-phosphotransferase) was purified to homogeneity and its phosphorylation by the catalytic subunit of the cyclic AMP-dependent protein kinase examined. Up to 4 mol of phosphate could be incorporated per mole of tetrameric enzyme, and the phosphate was incorporated into seryl residues. Phosphorylation did not alter the affinity of the enzyme for fructose 6-phosphate or fructose 2,6-bisphosphate. The rate of phosphorylation was enhanced by allosteric activators of 6-phosphofructo-1-kinase such as AMP and fructose 2,6-bisphosphate, and it was decreased by the allosteric inhibitors ATP and H+. The phosphopeptide region of the enzyme subunit was susceptible to limited proteolysis by trypsin. Removal of the phosphopeptide did not affect the subunit molecular weight nor the maximum activity of the enzyme, but it enhanced the apparent affinity of the enzyme for both fructose 6-phosphate and fructose 2,6-bisphosphate. It is concluded that the phosphopeptide region of the enzyme subunit is an important determinant of the affinity of the enzyme for its substrate as well as for the allosteric activator fructose 2,6-bisphosphate.  相似文献   

16.
Addition of the uncoupler and protonophore carbonyl cyanide m-chlorophenylhydrazone (CCCP) to starved yeast cells starts endogenous alcoholic fermentation lasting about 20 min. Hexose 6-phosphates, fructose 2,6-bisphosphate, and pyruvate accumulate in less than 2 min after addition of CCCP from almost zero concentration to concentrations which correspond to 1/5-1/10 of the steady-state concentrations during fermentation of glucose. CCCP immediately causes a decrease of the intracellular cytosolic pH from 6.9 to 6.4. This change activates adenylate cyclase (Purwin, C., Nicolay, K., Scheffers, W.A., and Holzer, H. (1986) J. Biol. Chem. 261, 8744-8749) and leads to the previously observed transient increase of cyclic AMP. It is shown here that the following enzymes known from in vitro experiments to be activated by cyclic AMP-dependent phosphorylation are activated in the CCCP-treated starved yeast cells in vivo: glycogen phosphorylase, trehalase (pH 7), 6-phosphofructo-2-kinase. The activation of 6-phosphofructo-2-kinase leads to an accumulation of fructose 2,6-bisphosphate, which is known from in vitro experiments to activate 6-phosphofructo-1-kinase and to inhibit fructose-1,6-bisphosphatase. All effects observed in the intact yeast cells fit with the idea that the CCCP-initiated activation of adenylate cyclase leads to a sequence of events which by protein phosphorylation and allosteric effects initiates endogenous alcoholic fermentation.  相似文献   

17.
In rat liver perfused in situ stimulation of the nerve plexus around the hepatic artery and the portal vein caused an increase in glucose output and a shift from lactate uptake to output. The effects of nerve stimulation on some key enzymes, metabolites and effectors of carbohydrate metabolism were determined and compared to the actions of glucagon, which led to an increase not only of glucose output but also of lactate uptake. 1. Nerve stimulation caused an enhancement of the activity of glycogen phosphorylase a to 300% and a decrease of the activity of glycogen synthase I to 40%, while it left the activity of pyruvate kinase unaltered. Glucagon, similarly to nerve action, led to a strong increase of glycogen phosphorylase and to a decrease of glycogen synthase; yet in contrast to the nerve effect it lowered pyruvate kinase activity clearly. 2. Nerve stimulation increased the levels of glucose 6-phosphate and of fructose 6-phosphate to 200% and 170%, respectively; glucagon enhanced the levels to about 400% and 230%, respectively. The levels of ATP and ADP were not altered, those of AMP were increased slightly by nerve stimulation. 3. Nerve stimulation enhanced the levels of the effectors fructose 2,6-bisphosphate and cyclic AMP only slightly to 140% and 125%, respectively; glucagon lowered the level of fructose 2,6-bisphosphate to 15% and increased the level of cyclic AMP to 300%. 4. In calcium-free perfusions the metabolic responses to nerve stimulation showed normal kinetics, if calcium was re-added 3 min before, but delayed kinetics, if it was re-added 2 min after the onset of the stimulus. The delay may be due to the time required to refill intracellular calcium stores. The hemodynamic alterations dependent on extracellular calcium were normal in both cases. The activation of glycogen phosphorylase, the inhibition of glycogen synthase and the increase of glucose 6-phosphate can well explain the enhancement of glucose output following nerve stimulation. The unaltered activity of pyruvate kinase and the marginal increase of fructose 2,6-bisphosphate cannot be the cause of the nerve-stimulation-dependent shift from lactate uptake to output. The very slight increase of the level of cyclic AMP after nerve stimulation cannot elicit the observed activation of glycogen phosphorylase.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

18.
Glucagon stimulates gluconeogenesis in part by decreasing the rate of phosphoenolpyruvate disposal by pyruvate kinase. Glucagon, via cyclic AMP (cAMP) and the cAMP-dependent protein kinase, enhances phosphorylation of pyruvate kinase, phosphofructokinase, and fructose-1,6-bisphosphatase. Phosphorylation of pyruvate kinase results in enzyme inhibition and decreased recycling of phosphoenolpyruvate to pyruvate and enhanced glucose synthesis. Although phosphorylation of 6-phosphofructo 1-kinase and fructose-1,6-bisphosphatase is catalyzed in vitro by the cAMP-dependent protein kinase, the role of phosphorylation in regulating the activity of and flux through these enzymes in intact cells is uncertain. Glucagon regulation of these two enzyme activities is brought about primarily by changes in the level of a novel sugar diphosphate, fructose 2,6-bisphosphate. This compound is an activator of phosphofructokinase and an inhibitor of fructose-1,6-bisphosphatase; it also potentiates the effect of AMP on both enzymes. Glucagon addition to isolated liver systems results in a greater than 90% decrease in the level of this compound. This effect explains in large part the effect of glucagon to enhance flux through fructose-1,6-bisphosphatase and to suppress flux through phosphofructokinase. The discovery of fructose 2,6-bisphosphate has greatly furthered our understanding of regulation at the fructose 6-phosphate/fructose 1,6-bisphosphate substrate cycle.  相似文献   

19.
The following parameters were determined in the rabbit psoas muscle after perfusion in the presence of either insulin, propranolol, or isoproterenol: Concentrations of cyclic AMP, glucose 1,6-bisphosphate, fructose 2,6-bisphosphate, glucose-1-phosphate, glucose 6-phosphate, and fructose-1,6-bisphosphate. Maximum and "regulatory" activities of the enzymes glycogen phosphorylase, glycogen synthase, phosphofructokinase, and histone-phosphorylating protein kinase.  相似文献   

20.
The addition of glucose to a suspension of yeast initiated glycogen synthesis and ethanol formation. Other effects of the glucose addition were a transient rise in the concentration of cyclic AMP and a more prolonged increase in the concentration of hexose 6-monophosphate and of fructose 2,6-bisphosphate. The activity of glycogen synthase increased about 4-fold and that of glycogen phosphorylase decreased 3-5-fold. These changes could be reversed by the removal of glucose from the medium and induced again by a new addition of the sugar. These effects of glucose were also obtained with glucose derivatives known to form the corresponding 6-phosphoester. Similar changes in glycogen synthase and glycogen phosphorylase activity were induced by glucose in a thermosensitive mutant deficient in adenylate cyclase (cdc35) when incubated at the permissive temperature of 26 degrees C, but were much more pronounced at the nonpermissive temperature of 35 degrees C. Under the latter condition, glycogen synthase was nearly fully activated and glycogen phosphorylase fully inactivated. Such large effects of glucose were, however, not seen in another adenylate-cyclase-deficient mutant (cyr1), able to incorporate exogenous cyclic AMP. When a nitrogen source or uncouplers were added to the incubation medium after glucose, they had effects on glycogen metabolism and on the activity of glycogen synthase and glycogen phosphorylase which were directly opposite to those of glucose. By contrast, like glucose, these agents also caused, under most experimental conditions, a detectable rise in cyclic AMP concentration and a series of cyclic-AMP-dependent effects such as an activation of phosphofructokinase 2 and of trehalase and an increase in the concentration of fructose 2,6-bisphosphate and in the rate of glycolysis. Under all experimental conditions, the rate of glycolysis was proportional to the concentration of fructose 2,6-bisphosphate. Uncouplers, but not a nitrogen source, also induced an activation of glycogen phosphorylase and an inactivation of glycogen synthase when added to the cdc35 mutant incubated at the restrictive temperature of 35 degrees C without affecting cyclic AMP concentration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号