首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The conformation and stability of Sendai virus fusion (F) protein were studied by circular dichroism spectroscopy, and the protein predictive models of Chou and Fasman and Robson and Suzuki were used to elucidate the secondary structure of Sendai virus F protein. The F protein conformation is predicted to contain 33% alpha-helix, 53% beta-sheet and 15% beta-turn by the Chou and Fasman model, and 30% alpha-helix, 55% beta-sheet, 9% beta-turn and 7% random coil by the Robson and Suzuki model. C.d. studies of F protein purified in the presence of the non-ionic detergent, n-octylglucoside, indicated the presence of 49% alpha-helix and 31% beta-sheet at pH 7.0, 54% alpha-helix and 28% beta-sheet at pH 9.0 and 50% alpha-helix and 23% beta-sheet at pH 5.4. A small change in conformation of the protein occurred when the pH was titrated from 7.0 to 5.4 and from 7.0 to 9.0 and a more pronounced conformational change occurred when the pH was changed from 9.0 to 5.4. The F protein in 0.2% n-octylglucoside was resistant to denaturation by 4 M guanidine hydrochloride, the reducing agent 20 mM mercaptoethanol, and to increases in temperature from 5 to 80 degrees C. Monoclonal anti-F protein antibody showed an increased binding to whole virus when the pH was changed from 7.0 to 9.0. The antibody binding was decreased when the pH was shifted from 9.0 to 5.4 Maximum haemolytic activity was observed with virus that was preincubated at pH 8.0.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
Effect of low pH on the conformation of Pseudomonas exotoxin A   总被引:7,自引:0,他引:7  
Previously we examined factors involved in the entry mechanism of Pseudomonas exotoxin A (PTx) at the level of lipid-protein interactions (Farahbakhsh, Z. T., Baldwin, R. L., and Wisnieski, B. J. (1986) J. Biol. Chem. 261, 11404-11408). Exposure to a low pH environment appears to be an obligatory trigger of the entry pathway. In this report we describe the effect of pH upon the conformation of PTx. We have found that the intrinsic fluorescence of PTx is strongly dependent on pH, decreasing between pH 7.4 and 4.0 with a red shift in the emission lambda max. The changes are reversible and associated with the acquisition of a binding site for the fluorescent dye 1-anilino-8-naphthalenesulfonic acid (ANS). The fluorescence intensity of ANS in the presence of PTx increases with decreasing pH and is accompanied by a blue shift in emission spectra, indicative of exposure of hydrophobic surfaces. These changes are also reversible. Both the intrinsic fluorescence and ANS binding profiles show a dramatic dependence on pH, with the transitions centered on pH 5.0 and 4.5, respectively. Circular dichroism studies reveal a 9% decrease in alpha-helicity between pH 7.7 and 4. The susceptibility of toxin to trypsin cleavage is also a function of pH, increasing with decreasing pH. The pH 7.4 cleavage profile is regained when the acid-treated samples are brought back to pH 7.4. The conformational changes observed in these pH shift experiments are likely to be physiologically significant because the conditions closely resemble those that the toxin would encounter if entry into the cytoplasm of a cell involves escape from an endosomal compartment.  相似文献   

3.
Cystatins essentially regulate lysosomal cysteine protease besides affecting several physiological processes. In the present study, denaturation of a high molecular weight cystatin (Mr 66.4 kDa) purified from goat lung (GLC-I) has been studied by monitoring its inhibitory activity, intrinsic fluorescence, circular dichroism (CD), and binding of ANS. It was found that increasing concentration of GdnHCl significantly enhances the inactivation and unfolding of the purified inhibitor (GLC-I) with complete loss of inhibitory activity at 4 M GdnHCl. Denaturation of GLC-I in the presence of GdnHCl is accompanied by red shift (15 nm) of the emission maximum as shown by intrinsic fluorescence. The inhibitory activity of GLC-I was increased by 1.5 fold at 2 M urea; however, it decreased with further increased of the urea concentration. Intrinsic fluorescence studies of GLC-I in the presence of 0–3 M urea shows blue shift of 5 nm, suggesting stabilization of the inhibitor followed by 5 nm red shift at higher concentration. ANS binding studies in the presence of urea indicate significant changes in the tertiary structure of the inhibitor. Thus, our result shows denaturation profile of GLC-I following simple two state transitions in the presence of GdnHCl while it proceeds through an intermediate state in the presence of urea.  相似文献   

4.
A cellulose hydrolytic enzyme was isolated from the stomach juice of Ampullaria crossean, a kind of herbivorous mollusca. The enzyme was purified 45.3-fold to homogenety by ammonium sulfate precipitation, DEAE-Sephadex A-50 column, Bio-gel P-100 gel filtration column, and phenyl-Sepharose CL-4B column chromatography. The enzyme was designated as cellulase EGX. The purified enzyme is a multi-functional enzyme with the activities of exo-beta-1,4-glucanase (14.84 U/mg for p-nitrophenyl beta-D-cellobioside), endo-beta-1,4-glucanase (40.3 U/mg for carboxymethyl cellulose), and endo-beta-1,4-xylanase (196 U/mg for soluble xylan from birchwood). The monovalent anions such as F(-), Cl(-), Br(-), I(-), and NO(3)(-) are essential for its exo-beta-1,4-glucanase activity but have no effect on the activity for xylan, while I(-) higher than 5mM would inhibit the exo-beta-1,4-glucanase activity. The monovalent anions Cl(-) and Br(-) activate its endo-beta-1,4-glucanase activity. Binding of Cl(-) enhances the thermostability of EGX, but does not affect its fluorescence emission spectrum. The molecular mass of EGX is 41.5 kDa, as determined by SDS-PAGE. The pI value is about pH 7.35. The xylan hydrolytic activity of EGX reaches to the maximum between pH 4.8 and 6.0 and the pNPC hydrolytic activity reaches the maximum between pH 4.8 and 5.6, while that for CMC hydrolytic activity is between pH 4.4 and 4.8. Preliminary results showed that the enzyme was secreted by the mollusca itself.  相似文献   

5.
Parkinson EJ  Morris MB  Bastiras S 《Biochemistry》2000,39(40):12345-12354
We have investigated the conformational changes incurred during the acid-induced unfolding and self-association of recombinant porcine growth hormone (pGH). Acidification (pH 8 to pH 2) of pGH resulted in intrinsic fluorescence, UV absorbance, and near-UV CD transitions centered at pH 4.10. At pH 2.0, a red shift in the fluorescence emission maximum of approximately 3 nm and a 15% loss of the far-UV CD signal at 222 nm imply that the protein did not become extensively unfolded. Acidification in the presence of 4 M urea resulted in similar pH-dependent transitions. However, these occurred at a higher pH (approximately 5.2). At pH 2.0 + 4 M urea, an 8 nm red shift in the fluorescence emission maximum suggests that unfolding was greater than in the absence of urea. The presence of a prominent peak centered at 298 nm in the near-UV CD spectrum, which is absent without urea, signifies further differences in the intermediates generated at pH 2. Sedimentation equilibrium experiments in the analytical ultracentrifuge showed that native pGH and the partially unfolded intermediates reversibly self-associate. Self-association was strongly promoted at pH 2 while urea reduced self-association at both pH 8 and pH 2. These results demonstrate that acidification of pGH in the absence or presence of 4 M urea induced the formation of molten globule-like states with measurable differences in conformation. Similarities and differences in these structural conformations with respect to other growth hormones are discussed.  相似文献   

6.
A systematic investigation on the effects of trifluoroethanol and acetonitrile at various concentrations on cellulase (EC 3.2.1.4) was studied by enzyme assay, intrinsic fluorescence, ANS binding, circular dichroism and ATR-Fourier transform infra red spectroscopy. The results show the presence of molten globule states at 3% (v/v) TFE and 80% (v/v) ACN. Cellulase aggregates at 25% (v/v) TFE and 90% (v/v) ACN, as detected by decrease in intrinsic and ANS fluorescence, loss in tertiary structure and enzyme activity, increase non-native β-sheet structure as evident from far-UV CD and FTIR spectra, increase in Thioflavin T fluorescence and shift in Congo red assay.  相似文献   

7.
The refolding process and the equilibrium intermediates of urea-denatured arginine kinase (AK) were investigated by 1-anilino-8-naphthalenesulfonate (ANS) intrinsic fluorescence, far-UV circular dichroism (CD), size-exclusion chromatography (SEC), and enzymatic activity. In dilute denaturant, two equilibrium refolding intermediates (I and N') were discovered, and a refolding scheme of urea-denatured AK was proposed. During the refolding of urea-denatured AK, the fluorescence intensity increased remarkably, accompanied by a significant blue shift of the emission maximum and a pronounced increase in molar ellipticity of CD at 222 nm. The first folding intermediate (I) was inactive in urea solution ranging between 2.4 and 3.0 M. The second (N') existed between a 0.4- and 0.8-M urea solution, with slightly increased activity. Neither the blue shift emission maximum nor the molar ellipticity of CD at 222 nm showed significant changes in these two regions. The two intermediates were characterized by monitoring the ANS binding ability in various residual urea solutions, and two peaks of the emission intensity were observed in urea solutions of 0.6 and 2.8 M, respectively. The SEC results indicated that a distribution coefficient (K(D)) platform existed in urea solutions ranging between 2.4 and 3.0 M urea, suggesting that there was a similarly apparent protein profile and size in the urea solution region. The refolding kinetics showed that the urea-denatured AK was in two-phase refolding. Proline isomerization occurred in the unfolding process of AK, which blocked the slow phase of refolding. These results suggested that the refolding process of urea-denatured AK contained at the least two equilibrium refolding intermediates.  相似文献   

8.
In this work, we explored the acid-induced unfolding pathway of non-porin outer membrane protein (OMP), an immunogenic protein from Salmonella Typhi, by monitoring the conformational changes over a pH range of 1.0–7.0 by circular dichroism, intrinsic fluorescence, ANS binding, acrylamide quenching, and dynamic light scattering. The spectroscopic measurements showed that OMP in its native state at pH 7.0 exists in more stable and compact conformation. In contrast, at pH 2.0, OMP retains substantial amount of secondary structure, disrupted side chain interactions, increased hydrodynamic radii, and nearly four-fold increase in ANS fluorescence with respect to the native state, indicating that MG state exists at pH 2.0. Quenching of tryptophan fluorescence by acrylamide further confirmed the accumulation of a partially unfolded state between native and unfolded state. The effect of pH on the conformation and thermostability of OMP points towards its heat resistance at neutral pH (T m?~?69 °C at pH 7.0, monitored by change in MRE222 nm). Acid unfolded state was also characterized by the lack of a cooperative thermal transition. All these results suggested that acid-induced unfolded state of OMP at pH 2.0 represented the molten globule state. The chemical denaturation studies with GuHCl and urea as denaturants showed dissimilar results. The chemical unfolding experiments showed that in both far-UV CD and fluorescence measurements, GuHCl is more efficient than urea. GuHCl is characterized by low C m (~1 M), while urea is characterized by high C m (~3 M). The fully unfolded states were reached at 2 M GuHCl and 4 M urea concentration, respectively. This study adds to several key considerations of importance in the development of therapeutic agents against typhoid fever for clinical purposes.  相似文献   

9.
Equilibrium denaturation of streptomycin adenylyltransferase (SMATase) has been studied by CD spectroscopy, fluorescence emission spectroscopy, and binding of the hydrophobic dye 1-anilino-8-naphthalene sulfonic acid (ANS). Far-UV CD spectra show retention of 90% native-like secondary structure at 0.5 M guanidine hydrochloride (GdnHCl). The mean residue ellipticities at 222 nm and enzyme activity plotted against GdnHCl concentration showed loss of about 50 and 75% of secondary structure and 35 and 60% of activity at 0.75 and 1.5 M GdnHCl, respectively. At 6 M GdnHCl, there was loss of secondary structure and activity leading to the formation of GdnHCl-induced unfolded state as evidenced by CD and fluorescence spectroscopy as well as by measuring enzymatic activity. The denaturant-mediated decrease in fluorescence intensity and 5 nm red shift of λmax point to gradual unfolding of SMATase when GdnHCl is added up from 0.5 M to a maximum of 6 M. Decreasing of ANS binding and red shift (∼5 nm) were observed in this state compared to the native folded state, indicating the partial destruction of surface hydrophobic patches of the protein molecule on denaturation. Disruption of disulfide bonds in the protein resulted in sharp decrease in surface hydrophobicity of the protein, indicating that the surface hydrophobic patches are held by disulfide bonds even in the GdnHCl denatured state. Acrylamide and potassium iodide quenching of the intrinsic tryptophan fluorescence of SMATase showed that the native protein is in folded conformation with majority of the tryptophan residues exposed to the solvent, and about 20% of them are in negatively charged environment. Published in Russian in Biokhimiya, 2006, Vol. 71, No. 11, pp. 1514–1523.  相似文献   

10.
We report that the presence of very low concentrations (<0.1 M) of urea, a widely used chemical denaturant, induces structure formation in the water-soluble globular protein human serum albumin (HSA) at pH 7. We have presented results suggesting an almost 8% and 5% increase in alpha-helix in the presence of 10 mM urea (U) and 20 mM monomethylurea (MMU), respectively. Far and near-UV circular dichroism studies along with tryptophan fluorescence and 1-anilino-8-naphthalenesulphonicacid (ANS) binding support our view. We hypothesize that both U and MMU, at such low concentrations, modify the solvent structure, increase the dielectric constant and consequently increase hydrophobic forces resulting in enhanced alpha-helical content. The implications of these results of the lower urea regime are significant because the physiological blood urea ranges from 2.5 to 7.5 mM.  相似文献   

11.
The structural and functional aspects of ervatamin B were studied in solution. Ervatamin B belongs to the alpha + beta class of proteins. The intrinsic fluorescence emission maximum of the enzyme was at 350 nm under neutral conditions, and at 355 nm under denaturing conditions. Between pH 1.0- 2.5 the enzyme exists in a partially unfolded state with minimum or no tertiary structure, and no proteolytic activity. At still lower pH, the enzyme regains substantial secondary structure, which is predominantly a beta-sheet conformation and shows a strong binding to 8-anilino-1- napthalene-sulfonic acid (ANS). In the presence of salt, the enzyme attains a similar state directly from the native state. Under neutral conditions, the enzyme was stable in urea, while the guanidine hydrochloride (GuHCl) induced equilibrium unfolding was cooperative. The GuHCl induced unfolding transition curves at pH 3.0 and 4.0 were non-coincidental, indicating the presence of intermediates in the unfolding pathway. This was substantiated by strong ANS binding that was observed at low concentrations of GuHCl at both pH 3.0 and 4.0. The urea induced transition curves at pH 3.0 were, however, coincidental, but non-cooperative. This indicates that the different structural units of the enzyme unfold in steps through intermediates. This observation is further supported by two emission maxima in ANS binding assay during urea denaturation. Hence, denaturant induced equilibrium unfolding pathway of ervatamin B, which differs from the acid induced unfolding pathway, is not a simple two-state transition but involves intermediates which probably accumulate at different stages of protein folding and hence adds a new dimension to the unfolding pathway of plant proteases of the papain superfamily.  相似文献   

12.
The urea and guanidine hydrochloride (GdnHCl)-induced denaturation of tetrameric concanavalin A (ConA) at pH 7.2 has been studied by using intrinsic fluorescence, 8-anilino-1-naphthalenesulfonate (ANS) binding, far-UV circular dichroism (CD), and size-exclusion chromatography. The equilibrium denaturation pathway of ConA, as monitored by steady state fluorescence, exhibits a three-state mechanism involving an intermediate state, which has been characterized as a structured monomer of the protein by ANS binding, far-UV CD and gel filtration size analysis. The three-state equilibrium is analyzed in terms of two distinct and separate dissociation (native tetramer<-->structured monomer) and unfolding (structured monomer<-->unfolded monomer) reaction steps, with the apparent transition midpoints (C(m)), respectively, at 1.4 and 4.5 M in urea, and at 0.8 and 2.4 M in GdnHCl. The results show that the free energy of stabilization of structured monomer relative to the unfolded state (-DeltaG(unf, aq)), is 4.4-5.5 kcal mol(-1), and that of native tetramer relative to structured monomer (-DeltaG(dis, aq)) is 7.2-7.4 kcal mol(-1), giving an overall free energy of stabilization (-DeltaG(dis&unf, aq)) of 11.6-12.9 kcal mol(-1) (monomer mass) for the native protein. However, the free energy preference at the level of quaternary tetrameric structure is found to be far greater than that at the tertiary monomeric level, which reveals that the structural stability of ConA is maintained mostly by subunit association.  相似文献   

13.
Khan F  Ahmad A  Khan MI 《IUBMB life》2007,59(1):34-43
The effect of urea, guanidine thiocyanate, temperature and pH was studied on the conformational stability of Fusarium solani lectin. Equilibrium unfolding with chemical denaturants showed that the lectin was least stable at pH 12 and maximally stable at pH 8.0 near its pI (8.7). Guanidine thiocyanate (the concentration of denaturant at which the protein is half folded, D1/2 = 0.49 M at pH 12) was found to be an eight times stronger denaturant than urea (D1/2 = 3.88 M at pH 12). The unfolding curves obtained with fluorescence and CD measurements showed good agreement indicating a monophasic nature of unfolding and excluded the possibility of formation of any stable intermediate. The effect of pH on the lectin was found to be unusual as at acidic pH, the lectin showed a flexible tertiary structure with pronounced secondary structure, and retained its hemagglutinating activity. On the other hand, the lectin did not show any loss of conformation or activity upto 70 degrees C for 15 min. Moreover, thermal denaturation did not result in the aggregation or precipitation of the protein even at high temperatures. Thermal denaturation was also carried out in the presence of a low concentration of guanidine thiocyanate. Change in the enthalpy of transition (DeltaHm) varied linearly with transition temperature (Tm), which indicated that the heat capacity (DeltaCp = 3.95 kJ . mol-1 . K-1) of the lectin remained constant during the unfolding.  相似文献   

14.
Kinetically stable homodimeric serine protease milin reveals high conformational stability against temperature, pH and chaotrope [urea, guanidine hydrochloride (GuHCl) and guanidine isothiocynate (GuSCN)] denaturation as probed by circular dichroism, fluorescence, differential scanning calorimetry and activity measurements. GuSCN induces complete unfolding in milin, whereas temperature, urea and GuHCl induce only partial unfolding even at low pH, through several intermediates with distinct characteristics. Some of these intermediates are partially active (viz. in urea and 2 M GuHCl at pH 7.0), and some exhibited strong ANS binding as well. All three tryptophans in the protein seem to be buried in a rigid, compact core as evident from intrinsic fluorescence measurements coupled to equilibrium unfolding experiments. The protein unfolds as a dimer, where the unfolding event precedes dimer dissociation as confirmed by hydrodynamic studies. The solution studies performed here along with previous biochemical characterization indicate that the protein has α-helix and β-sheet rich regions or structural domains that unfold independently, and the monomer association is isologous. The complex unfolding pathway of milin and the intermediates has been characterized. The physical, physiological and probable therapeutic importance of the results has been discussed.  相似文献   

15.
The conformational stability of RNase Rs was determined with chemical and thermal denaturants over the pH range of 1-10. Equilibrium unfolding with urea showed that values of D(1/2) (5.7 M) and DeltaG(H(2)O) (12.8 kcal/mol) were highest at pH 5.0, its pI and the maximum conformational stability of RNase Rs was observed near pH 5.0. Denaturation with guanidine hydrochloride (GdnHCl), at pH 5.0, gave similar values of DeltaG(H(2)O) although GdnHCl was 2-fold more potent denaturant with D(1/2) value of 3.1 M. The curves of fraction unfolded (f(U)) obtained with fluorescence and CD measurements overlapped at pH 5.0. Denaturation of RNase Rs with urea in the pH range studied was reversible but the enzyme denatured irreversibly >pH 11.0. Thermal denaturation of RNase Rs was reversible in the pH range of 2.0-3.0 and 6.0-9.0. Thermal denaturation in the pH range 4.0-5.5 resulted in aggregation and precipitation of the protein above 55 degrees C. The aggregate was amorphous or disordered precipitate as observed in TE micrographs. Blue shift in emission lambda(max) and enhancement of fluorescence intensity of ANS at 70 degrees C indicated the presence of solvent exposed hydrophobic surfaces as a result of heat treatment. Aggregation could be prevented partially with alpha-cyclodextrin (0.15 M) and completely with urea at concentrations >3 M. Aggregation was probably due to intermolecular hydrophobic interaction favored by minimum charge-charge repulsion at the pI of the enzyme. Both urea and temperature-induced denaturation studies showed that RNase Rs unfolds through a two-state F right arrow over left arrow U mechanism. The pH dependence of stability described by DeltaG(H(2)O) (urea) and DeltaG (25 degrees C) suggested that electrostatic interactions among the charged groups make a significant contribution to the conformational stability of RNase Rs. Since RNase Rs is a disulfide-containing protein, the major element for structural stability are the covalent disulfide bonds.  相似文献   

16.
Dubey VK  Jagannadham MV 《Biochemistry》2003,42(42):12287-12297
The structural and functional aspects along with equilibrium unfolding of procerain, a cysteine protease from Calotropis procera, were studied in solution. The energetic parameters and conformational stability of procerain in different states were also estimated and interpreted. Procerain belongs to the alpha + beta class of proteins. At pH 2.0, procerain exists in a partially unfolded state with characteristics of a molten globule-like state, and the protein is predominantly a beta-sheet conformation and exhibits strong ANS binding. GuHCl and temperature denaturation of procerain in the molten globule-like state is noncooperative, contrary to the cooperativity seen with the native protein, suggesting the presence of two parts in the molecular structure of procerain, possibly domains, with different stability that unfolds in steps. Moreover, tryptophan quenching studies suggested the exposure of aromatic residues to solvent in this state. At lower pH, procerain unfolds to the acid-unfolded state, and a further decrease in the pH drives the protein to the A state. The presence of 0.5 M salt in the solvent composition directs the transition to the A state while bypassing the acid-unfolded state. GuHCl-induced unfolding of procerain at pH 3.0 seen by various methods is cooperative, but the transitions are noncoincidental. Besides, a strong ANS binding to the protein is observed at low concentrations of GuHCl, indicating the presence of an intermediate in the unfolding pathway. On the other hand, even in the presence of urea (8 M), procerain retains all the activity as well as structural parameters at neutral pH. However, the protein is susceptible to unfolding by urea at lower pH, and the transitions are cooperative and coincidental. Further, the properties of the molten globule-like state and the intermediate state are different, but both states have the same conformational stability. This indicates that these intermediates may be located on parallel folding routes of procerain.  相似文献   

17.
胰蛋白酶与ANS的相互作用   总被引:7,自引:0,他引:7  
利用荧光光谱法研究了在不同pH、压力及不同浓度的脲作用时荧光探针1,8-ANS(1-anilionnaphthalene-8-sulfonicacid)与胰蛋白酶的相互作用.发现在低pH时ANS可以结合到胰蛋白酶上,其中以pH2.0、3.0时结合最强.进一步的研究发现脲变性对胰蛋白酶结合ANS的能力有很大的影响:1.5mol/L的脲即可使得胰蛋白酶结合ANS的能力大大降低,但有趣的是即使高达4mol/L的脲对胰蛋白酶色氨酸残基荧光也无明显影响.另外,在pH猝变、脲变性、及逐渐改变压力时,胰蛋白酶色氨酸残基荧光和结合到胰蛋白酶分子上的ANS的荧光的变化大不相同.上述结果暗示胰蛋白酶的色氨酸残基所在的区域和其结合ANS的区域是两个不相同的区域.  相似文献   

18.
The effects of urea and several methylamine solutes on the catalytic stability and aggregation properties of rabbit muscle phosphofructokinase were assessed at physiologically realistic concentrations of the solutes under several pH and temperature regimes. The loss of catalytic activity observed under conditions of pH-induced cold lability was significantly reduced in the presence of trimethylamine-N-oxide, N-trimethylglycine and N-methylglycine (order of decreasing effectiveness). The concentration-dependent methylamine stabilization of the enzyme, seen with as little as 50 mM trimethylamine-N-oxide, was accompanied by increased aggregation of the enzyme to molecular weights greater than the tetramer (polytetramer) as solute concentration was raised to 400 mM. At pH 6.5-6.7 and 25 degrees C, concentrations of urea greater than 25 mM promoted a time-dependent inactivation of the enzyme which was enhanced at lower temperatures. The urea sensitivity of the enzyme exhibited with 0.8 M urea for 1 h at pH 8.0 did not result in measurable inactivation. The fluorescence emission wavelength maximum of the enzyme was shifted to longer wavelengths and the fluorescence intensity was increased as pH was lowered to 7.0, suggesting the occurrence of a protein conformation change as specific amino acid residues of the tetramer became protonated. Measurements of enzyme light scattering indicated that perturbation by urea was correlated with tetramer dissociation, which was irreversible by dialysis at 25 degrees C. The urea and methylamine influences on phosphofructokinase activity and structure were not counteracting. The synergistic interactions among pH, temperature, and solutes observed with phosphofructokinase are compared to effects on other associating-dissociating protein systems in order to evaluate possible mechanisms of action of these low molecular weight solutes.  相似文献   

19.
The unfolding of bovine thyroglobulin (Tg) in guanidine hydrochloride (GuHCl) solution was studied by following the fluorescence and circular dichroism. With increasing GuHCl concentrations, the emission maximum of the intrinsic fluorescence clearly red-shifted in two stages. At concentrations of GuHCl less than 1.2 M or more than 1.6 M, the red shift showed a cooperative manner. At concentrations of GuHCl between 1.2 and 1.6 M, an unfolding intermediate was observed. It was further characterized by the increased binding of the fluorescence probe 1-anilinonaphthalene-8-sulfonic acid (ANS). No significant changes of the secondary structure were indicated by CD spectra at the concentrations of GuHCl between 1.2 and 1.6 M. The conformation of this state has properties similar to those of a molten globule state which may exist in the folding pathway of the protein. Further changes in fluorescence properties occurred at concentrations of denaturant higher than 1.6 M with a significant red shift of the emission maximum from 340 to 347 nm and a marked decrease in ANS binding. This in vitro study gave a clue to understand the biochemical mechanism for the occurrence of aggregation and molecular chaperone binding during Tg maturation in vivo.  相似文献   

20.
Protein stabilizing potential of simulated honey sugar cocktail (SHSC) against chemical and thermal denaturations was studied using bovine serum albumin (BSA) as the model protein. The two-step, three-state transition of urea denaturation of BSA became a single-step, two-state transition along with the shift in the whole transition curve towards higher urea concentrations in the presence of increasing SHSC concentrations [8–20% (w/v)] as revealed by far-UV CD, fluorescence and UV difference spectroscopic results. Far-UV and near-UV CD spectra, UV difference spectra, ANS fluorescence and three-dimensional fluorescence results suggested significant retention of native-like conformation in 4.6 M urea-denatured BSA in the presence of 20% (w/v) SHSC. A significant shift was also noticed in thermal and GdnHCl denaturation curves of BSA in the presence of 20% (w/v) SHSC. Taken together, all these results suggested significant stabilization of BSA against urea, GdnHCl and thermal denaturations by SHSC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号