首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Reproductive phenological traits of great agronomical interest in apricot species, including flowering date, ripening date and fruit development period, were studied during 3 years in two F1 progenies derived from the crosses ‘Bergeron’ × ‘Currot’ (B × C) and ‘Goldrich’ × ‘Currot’ (G × C). Results showed great variability and segregation in each population, confirming the polygenic nature and quantitative inheritance of all the studied traits. Genetic linkage maps were constructed combining SSR and SNP markers, using 87 markers in the ‘B × C’ population and 89 markers in ‘G × C’. The genetic linkage maps in both progenies show the eight linkage groups (LGs) of apricot, covering a distance of 394.9 cM in ‘Bergeron’ and of 414.3 cM in ‘Currot’. The ‘Goldrich’ and ‘Currot’ maps were of 353.5 and 422.3 cM, respectively. The average distance obtained between markers was thus 7.59 cM in ‘Bergeron’ and 7.53 cM in ‘Currot’, whereas the ‘Goldrich’ and ‘Currot’ averages were 5.6 and 7.5 cM, respectively. According to the polygenic nature of the studied phenology traits, QTLs linked to flowering date, ripening date and the fruit development period were identified during the 3 years of the study in all LGs except for LG 8. Among the QTLs identified, major QTLs for flowering and ripening date and the fruit development period were identified in LG 4, especially important in the ‘G × C’ population.  相似文献   

2.
The construction of the first genetic map in autotetraploid blueberry has been made possible by the development of new SNP markers developed using genotyping by sequencing in a mapping population created from a cross between two key highbush blueberry cultivars, Draper × Jewel (Vaccinium corymbosum). The novel SNP markers were supplemented with existing SSR markers to enable the alignment of parental maps.  In total, 1794 single nucleotide polymorphic (SNP) markers and 233 simple sequence repeat (SSR) markers exhibited segregation patterns consistent with a random chromosomal segregation model for meiosis in an autotetraploid. Of these, 700 SNPs and 85 SSRs were utilized for construction of the ‘Draper’ genetic map, and 450 SNPs and 86 SSRs for the ‘Jewel’ map.  The ‘Draper’ map comprises 12  linkage groups (LG), associated with the haploid chromosome number for blueberry, and totals 1621 cM while the ‘Jewel’ map comprises 20 linkage groups totalling 1610 cM. Tentative alignments of the two parental maps have been made on the basis of shared SSR alleles and linkages to double-simplex markers segregating in both parents. Tentative alignments of the two parental maps have been made on the basis of shared SSR alleles and linkages to double-simplex markers segregating in both parents.  相似文献   

3.
An F1 mapping population was bred by crossing an accession of wild cardoon with a single Argentinian globe artichoke plant of the variety Estrella del Sur FCA with a view to generating new Cynara cardunculus linkage maps. Genotyping was conducting using a set of 553 SRAP, SSR, AFLP and SNP markers. The 1,465.5 cM map based on the segregation of alleles present in the wild cardoon parent comprised 214 loci distributed across 16 linkage groups (LGs), while the 910.1 cM globe artichoke-based map featured 141 loci falling into 12 LGs covering the total length. Three of the morphological traits (head spininess, leaf spininess and head color) for which the parents contrasted were inherited monogenically, and the genes conditioning them were mapped. A set of 48 co-dominant loci was used to align the LGs with those derived from a reference SSR-based consensus map of the species.  相似文献   

4.
The development of single nucleotide polymorphism (SNP) markers in maize offers the opportunity to utilize DNA markers in many new areas of population genetics, gene discovery, plant breeding and germplasm identification. However, the steps from sequencing and SNP discovery to SNP marker design and validation are lengthy and expensive. Access to a set of validated SNP markers is a significant advantage to maize researchers who wish to apply SNPs in scientific inquiry. We mined 1,088 loci sequenced across 60 public inbreds that have been used in maize breeding in North America and Europe. We then selected 640 SNPs using generalized marker design criteria that enable utilization with several SNP chemistries. While SNPs were found on average every 43 bases in 1,088 maize gene sequences, SNPs that were amenable to marker design were found on average every 623 bases; representing only 7% of the total SNPs discovered. We also describe the development of a 768 marker multiplex assay for use on the Illumina® BeadArray? platform. SNP markers were mapped on the IBM2 intermated B73 × Mo17 high resolution genetic map using either the IBM2 segregating population, or segregation in multiple parent-progeny triplets. A high degree of colinearity was found with the genetic nested association map. For each SNP presented we give information on map location, polymorphism rates in different heterotic groups and performance on the Illumina® platform.  相似文献   

5.
6.
An integrated consensus genetic map for apple was constructed on the basis of segregation data from four genetically connected crosses (C1?=?Discovery × TN10-8, C2?=?Fiesta × Discovery, C3?=?Discovery × Prima, C4?=?Durello di Forli × Fiesta) with a total of 676 individuals using CarthaGene® software. First, integrated female–male maps were built for each population using common female–male simple sequence repeat markers (SSRs). Then, common SSRs over populations were used for the consensus map integration. The integrated consensus map consists of 1,046 markers, of which 159 are SSR markers, distributed over 17 linkage groups reflecting the basic chromosome number of apple. The total length of the integrated consensus map was 1,032 cM with a mean distance between adjacent loci of 1.1 cM. Markers were proportionally distributed over the 17 linkage groups (χ 2?=?16.53, df?=?16, p?=?0.41). A non-uniform marker distribution was observed within all of the linkage groups (LGs). Clustering of markers at the same position (within a 1-cM window) was observed throughout LGs and consisted predominantly of only two to three linked markers. The four integrated female–male maps showed a very good colinearity in marker order for their common markers, except for only two (CH01h01, CH05g03) and three (CH05a02z, NZ02b01, Lap-1) markers on LG17 and LG15, respectively. This integrated consensus map provides a framework for performing quantitative trait locus (QTL) detection in a multi-population design and evaluating the genetic background effect on QTL expression.  相似文献   

7.
A total of 122 F1 individuals from a single full-sib interspecific hybrid family crossed between Pinus elliottii var. elliottii (PEE) and P. caribaea var. hondurensis (PCH) were used to construct a detailed genetic linkage maps using four types of molecular markers: sequence-related amplified polymorphism (SRAP), microsatellite (SSR), expressed sequence tag polymorphism (ESTP) and inter-simple sequence repeat (ISSR). There were 381 SRAP, 108 SSR, 25 ESTP and 32 ISSR loci, segregating in the interspecific F1 hybrid individuals. Framework maps were constructed at a LOD score threshold of 4.0 using the JoinMap® 3.0. The map for the male parent (PCH) had 108 markers in 16 linkage groups (LGs), with a total length of 1,065.9 cM (Kosambi) and an average marker interval of 9.87 cM. The map for the female parent (PEE) contained 93 markers in 19 LGs, with a total length of 1,006.7 cM (Kosambi) and an average marker interval of 10.82 cM. The maps for PCH and PEE covered 56.5 and 70.3 % of their respective genomes. Based on the position of 36 loci segregating in both parents, 8 homologous LGs between PEE and PCH were identified.  相似文献   

8.
With a "two-way pseudo-testcross" mapping strategy, we applied the amplified fragment length polymorphism (AFLP) markers to construct two moderate density genetic linkage maps for Laminaria. The linkage maps were generated from the 60 progenies of the F1 cross family (Laminaria iongissima Aresch. × L. Japonica Miyabe) with twenty pairs of primer combinations. Of the 333 polymorphic loci scored in 60 progenies, 173 segregated in a 1:1 ratio, corresponding to DNA polymorphisms heterozygous in a single parent, and the other 58 loci existing in both parents followed a 3:1 Mendelian segregation ratio. Among the loci with 1:1 segregating ratios, 79 loci were ordered in 14 linkage groups (648.6 cM) of the paternal map, and 72 loci were ordered in 14 linkage groups (601.9 cM) of the maternal map. The average density of loci was approximately 1 per 8 cM. To Investigate the homologies between two parental maps, we used 58 loci segregated 3:1 for further analysis, and deduced one homologous linkage group. The linkage data developed in these maps will be useful for detecting loci-controlling commercially important traits for Laminaria.  相似文献   

9.
Tobacco (Nicotiana tabacum L., 2n = 48) is an important agronomic crop and model plant. Flue-cured tobacco is the most important type and accounts for approximately 80 % of tobacco production worldwide. The low genetic diversity of flue-cured tobacco impedes the construction of a high-density genetic linkage map using simple sequence repeat (SSR) markers and warrants the exploitation of single nucleotide polymorphic (SNP) markers from genomic regions. In this article, initially using specific locus-amplified fragment sequencing, we discovered 10,891 SNPs that were subsequently used as molecular markers for genetic map construction. Combined with SSR markers, a final high-density genetic map was generated containing 4215 SNPs and 194 SSRs distributed on 24 linkage groups (LGs). The genetic map was 2662.43 cM in length, with an average distance of 0.60 cM between adjacent markers. Furthermore, by mapping the SNP markers to the ancestral genomes of Nicotiana tomentosiformis and Nicotiana sylvestris, a large number of genome rearrangements were identified as occurring after the polyploidization event. Finally, using this novel integrated map and mapping population, two major quantitative trait loci (QTLs) were identified for flue-curing and mapped to the LG6 of tobacco. This is the first report of SNP markers and a SNP-based linkage map being developed in tobacco. The high-density genetic map and QTLs related to tobacco curing will support gene/QTL fine mapping, genome sequence assembly and molecular breeding in tobacco.  相似文献   

10.
The Chinese jujube (Ziziphus jujuba Mill., 2n = 2 × = 24), one of the most popular fruit trees in China, is widely cultivated and utilized in Asia. High-density genetic linkage maps are valuable resources for molecular breeding and functional genomics; however, they are still under-developed for the jujube. The genotyping by sequencing (GBS) strategy could be an efficient and cost-effective tool for single nucleotide polymorphism (SNP) discovery based on the sequenced jujube genome. Here, we report a new high-density genetic map constructed using GBS technology. An F1 population with 145 progenies and their parents (‘Dongzao’ × ‘Zhongningyuanzao’) were sequenced on the Illumina HiSeq 4000 platform. In total, 79.8 Gb of raw data containing 256,708,177 paired-end reads were generated. After data filtering and SNP genotyping, 40,372 polymorphic SNP markers were developed between the parents and 2540 (1756 non-redundant) markers were mapped onto the integrated genetic linkage map. The map spanned 1456.53 cM and was distributed among 12 linkage groups, which is consistent with the haploid chromosome number of the jujube. The average marker interval was 0.88 cM. The genetic map allowed us to anchor 224 Mb (63.7 %) of scaffolds from the sequenced ‘Junzao’ genome, containing 52 newly anchored scaffolds, which extended the genome assembly by 7 Mb. In conclusion, GBS technology was applied efficiently for SNP discovery in this study. The high-density genetic map will serve as a unique tool for molecular-assisted breeding and genomic studies, which will contribute to further research and improvement of the jujube in the near future.  相似文献   

11.

Background

Restriction-site associated DNA sequencing (RADseq) technology was recently employed to identify a large number of single nucleotide polymorphisms (SNP) for linkage mapping of a North American and Eastern Asian Populus species. However, there is also the need for high-density genetic linkage maps for the European aspen (P. tremula) as a tool for further mapping of quantitative trait loci (QTLs) and marker-assisted selection of the Populus species native to Europe.

Results

We established a hybrid F1 population from the cross of two aspen parental genotypes diverged in their phenological and morphological traits. We performed RADseq of 122 F1 progenies and two parents yielding 15,732 high-quality SNPs that were successfully identified using the reference genome of P. trichocarpa. 2055 SNPs were employed for the construction of maternal and paternal linkage maps. The maternal linkage map was assembled with 1000 SNPs, containing 19 linkage groups and spanning 3054.9 cM of the genome, with an average distance of 3.05 cM between adjacent markers. The paternal map consisted of 1055 SNPs and the same number of linkage groups with a total length of 3090.56 cM and average interval distance of 2.93 cM. The linkage maps were employed for QTL mapping of one-year-old seedlings height variation. The most significant QTL (LOD = 5.73) was localized to LG5 (96.94 cM) of the male linkage map, explaining 18% of the phenotypic variation.

Conclusions

The set of 15,732 SNPs polymorphic in aspen and high-density genetic linkage maps constructed for the P. tremula intra-specific cross will provide a valuable source for QTL mapping and identification of candidate genes facilitating marker-assisted selection in European aspen.
  相似文献   

12.
Chrysanthemum (Dendranthema morifolium) is an economically important ornamental species and comprises a large proportion of the flower industry in south-east Asian and European countries. In this study, a segregating population of 142 F1 progeny of the cross between the two chrysanthemum cultivars ??Yuhualuoying?? and ??Aoyunhanxiao?? was used to construct two separate genetic linkage maps via a double pseudo-testcross mapping strategy. Genotyping was performed using 500 SRAP primer combinations, of which about 50% were informative. This allowed the definition of 896 SRAP loci, of which about 23% showed some segregation distortion. The ??Yuhualuoying?? map consisted of 333 testcross markers arranged into 57 linkage groups (LGs). It covered >1,900 cM with a mean inter-marker distance of 6.9 cM. The map constructed from ??Aoyunhanxiao?? comprised 342 test cross markers arranged into 55 LGs. It spanned nearly 1,900 cM, with a mean inter-marker distance of 6.6 cM. The markers were distributed rather uniformly along both maps. A quantitative trait loci analysis was conducted to investigate the pattern of inheritance of three inflorescence traits. This led to the detection of 12 putative loci at a LOD score >2.5, of which four each specified flower diameter, ray floret layer number, and ray floret length. This study provides molecular mapping information on marker-assisted selection programs for the improvement of multiple traits of interest.  相似文献   

13.
Single nucleotide polymorphisms (SNPs) were used to construct an integrated SNP linkage map of peach (Prunus persica (L.) Batsch). A set of 1,536 SNPs were evaluated with the GoldenGate® Genotyping assay in two mapping populations, Pop-DF, and Pop-DG. After genotyping and filtering, a final set of 1,400 high quality SNPs in Pop-DF and 962 in Pop-DG with full map coverage were selected and used to construct two linkage maps with JoinMap®4.0. The Pop-DF map covered 422 cM of the peach genome and included 1,037 SNP markers, and Pop-DG map covered 369 cM and included 738 SNPs. A consensus map was constructed with 588 SNP markers placed in eight linkage groups (n?=?8 for peach), with map coverage of 454 cM and an average distance of 0.81 cM/marker site. Placements of SNPs on the “peach v1.0” physical map were compared to placement on the linkage maps and several differences were observed. Using the SNP linkage map of Pop-DG and phenotypic data collected for three harvest seasons, a QTL analysis for fruit quality traits and chilling injury symptoms was carried out with the mapped SNPs. Significant QTL effects were detected for mealiness (M) and flesh bleeding (FBL) QTLs on linkage group 4 and flesh browning (FBr) on linkage group 5. This study represents one of the first examples of QTL detection for quality traits and chilling injury symptoms using a high-density SNP map in a single peach F1 family.  相似文献   

14.
The development of single nucleotide polymorphism (SNP) markers in Japanese pear (Pyrus pyrifolia Nakai) offers the opportunity to use DNA markers for marker-assisted selection in breeding programs because of their high abundance, codominant inheritance, and potential for automated high-throughput analysis. We developed a 1,536-SNP bead array without a reference genome sequence from more than 44,000 base changes on the basis of a large-scale expressed sequence tag (EST) analysis combined with 454 genome sequencing data of Japanese pear ‘Housui’. Among the 1,536 SNPs on the array, 756 SNPs were genotyped, and 609 SNP loci were mapped to linkage groups on a genetic linkage map of ‘Housui’, based on progeny of an interspecific cross between European pear (Pyrus communis L.) ‘Bartlett’ and ‘Housui’. The newly constructed genetic linkage map consists of 951 loci, comprising 609 new SNPs, 110 pear genomic simple sequence repeats (SSRs), 25 pear EST–SSRs, 127 apple SSRs, 61 pear SNPs identified by the “potential intron polymorphism” method, and 19 other loci. The map covers 22 linkage groups spanning 1341.9 cM with an average distance of 1.41 cM between markers and is anchored to reference genetic linkage maps of European pears and apples. A total of 514 contigs containing mapped SNP loci showed significant similarity to known proteins by functional annotation analysis.  相似文献   

15.

Background

Walnut (Juglans regia, 2n = 32, approximately 606 Mb per 1C genome) is an economically important tree crop. Resistance to anthracnose, caused by Colletotrichum gloeosporioides, is a major objective of walnut genetic improvement in China. The recently developed specific length amplified fragment sequencing (SLAF-seq) is an efficient strategy that can obtain large numbers of markers with sufficient sequence information to construct high-density genetic maps and permits detection of quantitative trait loci (QTLs) for molecular breeding.

Results

SLAF-seq generated 161.64 M paired-end reads. 153,820 SLAF markers were obtained, of which 49,174 were polymorphic. 13,635 polymorphic markers were sorted into five segregation types and 2,577 markers of them were used to construct genetic linkage maps: 2,395 of these fell into 16 linkage groups (LGs) for the female map, 448 markers for the male map, and 2,577 markers for the integrated map. Taking into account the size of all LGs, the marker coverage was 2,664.36 cM for the female map, 1,305.58 cM for the male map, and 2,457.82 cM for the integrated map. The average intervals between two adjacent mapped markers were 1.11 cM, 2.91 cM and 0.95 cM for three maps, respectively. ‘SNP_only’ markers accounted for 89.25 % of the markers on the integrated map. Mapping markers contained 5,043 single nucleotide polymorphisms (SNPs) loci, which corresponded to two SNP loci per SLAF marker. According to the integrated map, we used interval mapping (Logarithm of odds, LOD > 3.0) to detect our quantitative trait. One QTL was detected for anthracnose resistance. The interval of this QTL ranged from 165.51 cM to 176.33 cM on LG14, and ten markers in this interval that were above the threshold value were considered to be linked markers to the anthracnose resistance trait. The phenotypic variance explained by each marker ranged from 16.2 to 19.9 %, and their LOD scores varied from 3.22 to 4.04.

Conclusions

High-density genetic maps for walnut containing 16 LGs were constructed using the SLAF-seq method with an F1 population. One QTL for walnut anthracnose resistance was identified based on the map. The results will aid molecular marker-assisted breeding and walnut resistance genes identification.

Electronic supplementary material

The online version of this article (doi:10.1186/s12864-015-1822-8) contains supplementary material, which is available to authorized users.  相似文献   

16.
Previously, an interspecific cross between Fusarium circinatum and Fusarium subglutinans was used to generate a genetic linkage map. A ca. 55 % of genotyped markers displayed transmission ratio distortion (TRD) that demonstrated a genome-wide distribution. The working hypothesis for this study was that TRD would be non-randomly distributed throughout the genetic linkage map. This would indicate the presence of distorting loci. Using a genome-wide threshold of α = 0.01, 79 markers displaying TRD were distributed on all 12 linkage groups (LGs). Eleven putative transmission ratio distortion loci (TRDLs), spanning eight LGs, were identified in regions containing three or more adjacent markers displaying distortion. No epistatic interactions were observed between these TRDLs. Thus, it is uncertain whether the genome-wide TRD was due to linkage between markers and genomic regions causing distortion. The parental origins of markers followed a non-random distribution throughout the linkage map, with LGs containing stretches of markers originating from only one parent. Thus, due to the nature of the interspecific cross, the current hypothesis to explain these observations is that the observed genome-wide segregation was caused by the high level of genomic divergence between the parental isolates. Therefore, homologous chromosomes do not align properly during meiosis, resulting in aberrant transmission of markers. This also explains previous observations of the preferential transmission of F. subglutinans alleles to the F1 progeny.  相似文献   

17.
Allotetraploid (2n = 4x = 32) white clover (Trifolium repens L.) is the most commonly cultivated legume component of temperate pastures, sown in swards with a companion grass species. Genetic control of growth performance of white clover on saline land is highly important for dairy industries, due to increasing soil salinity problems. The objective of this study was to identify quantitative trait loci (QTLs) for salinity tolerance in terms of vegetative growth under stress. Two parental genetic maps consisting of 213 and 159 marker loci and spanning 1,973.0 and 1,837.6 cM, respectively, were constructed using simple sequence repeat (SSR) and single nucleotide polymorphism (SNP) markers from a two-way pseudo-test cross F1 population derived from pair-crossing of the Haifa2 and LCL2 genotypes. A total of 8 unique genomic regions on 8 linkage groups (LGs) of the Haifa2 parental map and 6 unique regions on 5 LGs in the LCL2 parental map were associated with plant growth under salt stress and relative growth under stress, as compared to control conditions. The results of this study indicate that salt tolerance in white clover is controlled by multiple QTLs, some at common locations, but each of limited magnitude. Location of these QTLs provides the genetic basis and potential for pyramiding of salt tolerance genes in breeding improvement.  相似文献   

18.
Watermelon (Citrullus lanatus var. lanatus) is one of the most important vegetable crops in the world. Molecular markers have become the tools of choice for resolving watermelon taxonomic relationships and evolution. Increased numbers of single nucleotide polymorphism (SNP) markers together with simple sequence repeat (SSR) markers would be useful for phylogenetic analyses of germplasm accessions and for linkage mapping for marker-assisted breeding with quantitative trait loci and single genes. We aimed to construct a genetic map based on SNPs (generated by Illumina Veracode multiplex assays for genotyping) and SSR markers and evaluate relationships inferred from SNP genotypes between 130 watermelon accessions collected throughout the world. We incorporated 282 markers (232 SNPs and 50 SSRs) into the linkage map. The genetic map consisted of 11 linkage groups spanning 924.72 cM with an average distance of 3.28 cM between markers. Because all of the SNP-containing sequences were assembled with the whole-genome sequence draft for watermelon, chromosome numbers could be readily assigned for all the linkage groups. We found that 134 SNPs were polymorphic in 130 watermelon accessions chosen for diversity studies. The current 384-plex SNP set is a powerful tool for characterizing genetic relatedness and for developing medium-resolution genetic maps.  相似文献   

19.
The progeny of 87 BC(1) hybrids of 'Murcott' tangor and 'Pera' sweet orange, genotyped with fluorescent amplified fragment length polymorphism (fAFLP) markers, was used for the construction of genetic maps for both citrus varieties. Mapping strategies, considering the progeny as a result of backcrossing and cross-pollination, were exploited in Mapmaker 2.0 (LOD score >or= 3.0 and or= 3.0 and theta 相似文献   

20.
A pseudo-testcross mapping strategy was used in combination with the random amplified polymorphism DNA (RAPD) and amplified fragment length polymorphism (AFLP) genotyping methods to develop two moderately dense genetic linkage maps for Betula platyphylla Suk. (Asian white birch) and B. pendula Roth (European white birch). Eighty F1 progenies were screened with 291 RAPD markers and 451 AFLP markers. We selected 230 RAPD and 362 AFLP markers with 1:1 segregation and used them for constructing the parent-specific linkage maps. The resultant map for B. platyphylla was composed of 226 markers in 24 linkage groups (LGs), and spanned 2864.5 cM with an average of 14.3 cM between adjacent markers. The linkage map for B. pendula was composed of 226 markers in 23 LGs, covering 2489.7 cM. The average map distance between adjacent markers was 13.1 cM. Clustering of AFLP markers was observed on several LGs. The availability of these white birch linkage maps will contribute to the molecular genetics and the implementation of marker-assisted selection in these important forest species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号