首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Genomic DNA extraction protocol with relatively high quantity and purity is prerequisite for the successful molecular identification and characterisation of plant pathogens. Conventional DNA extraction methods are often time-consuming and yield only very poor quantity of genomic DNA for samples with higher mycelial age. In our laboratory, we have aimed at establishing an efficient DNA isolation procedure, exclusively for the oomycete pathogen Phytophthora colocasiae causing serious leaf blight disease in taro. For this a phenol free protocol was adopted, which involves SDS/Proteinase K-based inactivation of protein contaminants, extraction of nucleic acids using chloroform: isoamyl alcohol and later precipitation of genomic DNA using isopropanol and sodium acetate. The purity of the isolated DNA was analysed by A260/280 and A260/230 spectrophotometric readings and confirmed by restriction digestion with restriction enzyme Eco RI. In this study, a comparative assessment was done with CTAB method and the commercial genomic DNA purification kit (Thermo Fisher Scientific, Fermentas, EU). The extracted DNA was found to be suitable for further downstream applications like ITS amplification of the rDNA ITS region and PCR amplification with species-specific primers.  相似文献   

2.
Large‐scale DNA molecular studies require reliable and efficient tools for DNA extractions. However, for some plant species and brown algae, isolation of high‐quality DNA is difficult. We developed a novel method for isolating high‐quality DNA from the polysaccharide‐rich and polyphenol‐rich brown algae based on a commercial kit and protocol (Qiagen) by optimizing the lysis step and including a chloroform/isoamyl alcohol supplementary purification step. DNAs from 24 brown algal species extracted using the original and the modified Qiagen protocol were compared for yield, quality, and effectiveness in PCR amplification. There was no significant difference in the yields between protocols. However, a statistically significant increase in DNA purity was obtained with the modified protocol, for which the A260/A280 and A260/A230 absorbance ratios averaged 1.66 ± 0.05 and 1.31 ± 0.01, respectively, compared to 1.37 ± 0.04 and 0.52 ± 0.04 with the original protocol. DNAs extracted by the modified procedure were more successfully amplified by PCR (nuclear, mitochondrial, and chloroplastic regions) than DNAs extracted using the original commercial kit and protocol. Importantly, the modified protocol can be applied in a high‐throughput (e.g., 96‐well plate) format, allowing a higher efficiency for downstream molecular analysis. In addition, improved DNA quality could increase its stability for long‐term storage.  相似文献   

3.
A comparative performance evaluation of DNA extraction methods from anti-diabetic botanical supplements using various commercial kits was conducted, to determine which produces the best quality DNA suitable for PCR amplification, sequencing and species identification. All plant materials involved were of suboptimal quality showing various levels of degradation and therefore representing real conditions for testing herbal supplements. Eight different DNA extraction methods were used to isolate genomic DNA from 13 medicinal plant products. Two methods for evaluation, DNA concentration measurements that included absorbance ratios as well as PCR amplifiability, were used to determine quantity and quality of extracted DNA. We found that neither DNA concentrations nor commonly used UV absorbance ratio measurements at A 260/A 280 between 1.7 and 1.9 are suitable for globally predicting PCR success in these plant samples, and that PCR amplifiablity itself was the best indicator of extracted product quality. However, our results suggest that A 260/A 280 ratios below about 1.3 and above 2.3 indicated a DNA quality too poor to amplify. Therefore, A 260/A 280 measurements are not useful to identify samples that likely will amplify but can be used to exclude samples that likely will not amplify reducing the cost for unnecessarily subjecting samples to PCR. The two Nucleospin® plant II kit extraction methods produced the most pure and amplifiable genomic DNA extracts. Our results suggest that there are clear, discernable differences between extraction methods for low quality plant samples in terms of producing contamination-free, high-quality genomic DNA to be used for further analysis.  相似文献   

4.
Owing to the presence of higher amount of polyphenolic and polysaccharide compounds, Terminalia arjuna (Roxburgh) is a significant medicinal plant in the Indian primeval medicine system. Polyphenolic and polysaccharide compounds also acts as inhibitors during Genomic DNA isolation from young leaves of T. arjuna, resulting in recovery of low quality genomic DNA, which affects downstream applications like PCR, restriction digestion’s, etc. In this study, nine different methods of genomic DNA isolation were used, out of which two methods were modified CTAB based methods, third one was HEPES based method and remaining six methods was FTA Plant Saver Card based. Out of the six FTA card based methods, in the first method, leaves were directly pressed inside the circle of FTA card. In the second and third methods, the leaves were homogenized with PBS and DNase RNase free water and the sample was applied on the FTA card. In the fourth and fifth methods: finally recovered DNA from two modified CTAB based methods was directly applied to the FTA card. In the sixth method, DNA precipitated after first phenol:chloroform:isoamyl alcohol precipitation of modified CTAB based methods dissolved in DNase RNase free water and applied to FTA Card. To optimize the PCR conditions, BSA (400 ng/μl), formamide (2.5%), DMSO (5% and 10%) and glycerol (5%, 10%, 15%, and 20%) was added into the PCR mix as enhancement agents for amplification of low quality genomic DNA (A260/A280 – 1.27 ± 0.090) of T. arjuna recovered using the HEPES Based method. It was found that the BSA was the best among them followed by 10% glycerol. In addition of BSA to the PCR mixture, it specifically enhances the amplification of the low quality DNA. It reduces the noise in-between the amplified bands and increases the intensity of PCR product.  相似文献   

5.
6.
Improved and efficient methods were developed for isolating high quality DNA and RNA from different sources of Iranian Yew (Taxus baccata L.). The methods were based on CTAB extraction buffer added with high levels of polyvinylpyrrolidone (PVP) and β-mercaptoethanol to properly remove polysaccharides and prevent oxidation of phenolics. The pellets obtained by ethanol precipitation were washed only with Chloroform: isoamyl alcohol (24:1). So, we could successfully eliminate the dangerous phenol/chloroform extraction steps from the isolation procedure. Both spectrophotometric (A260/A280 and A260/A230 ratios) and agarose electrophoresis analysis of isolated nucleic acids (DNA and RNA) indicated good results. DNA with the average yield of 100–300 μg/g leaf and stem tissue and total RNA with an average yield of 20–30 μg/g cell culture and 80–100 μg/g leaf and stem tissue of Iranian yew could be obtained. Successful amplification of pam and pds by PCR and RT-PCR, showed the integrity of isolated DNA and RNA, respectively.  相似文献   

7.
We present a modified method for DNA minipreparation suitable for large-scale screening of transgenic plants. The method is rapid and efficient—one person can prepare DNA from approximately 50 samples per day. The average yield was about 40 μg DNA per 100 mg of fresh tissue, and the A260/A280 was 1.89–2.03. The total DNA extracted by this method could be used for PCR, restriction enzyme digestion, and Southern blotting.  相似文献   

8.
Acinetobacter baumannii has been prevalent in nosocomial infections, often causing outbreaks in intensive care units. ISAba1 is an insertion sequence that has been identified only in A. baumannii and its copy number varies among strains. It has been reported that ISAba1 provides a promoter for blaOXA-51-like, blaOXA-23-like, and blaampC, which are associated with the resistance of A. baumannii to carbapenems and cephalosporins. The main purpose of this study was to develop a novel inverse PCR method capable of typing A. baumannii strains. The method involves three major steps: cutting of genomic DNA with a restriction enzyme, ligation, and PCR. In the first step, bacterial genomic DNA was digested with DpnI. In the second step, the digested genomic DNAs were ligated to form intramolecular circular DNAs. In the last step, the ligated circular DNAs were amplified by PCR with primers specific for ISAba1 and the amplified PCR products were electrophoresed. Twenty-two clinical isolates of A. baumannii were used for the evaluation of the inverse PCR (iPCR) typing method. Dendrogram analysis revealed two major clusters, similar to pulsed-field gel electrophoresis (PFGE) results. Three ISAba1-associated genes — blaampC, blaOXA-66-like, and csuD — were amplified and detected in the clinical isolates. This novel iPCR typing method is comparable to PFGE in its ability to discriminate A. baumannii strains, and is a promising molecular epidemiological tool for investigating A. baumannii carrying ISAba1.  相似文献   

9.
王汉中   《微生物学通报》2002,29(4):72-76
分别利用硫氰酸胍(Guanidine thiocyanate,GuScN)抽提法、螯合树脂处理法和蛋白酶K-酚/氯仿抽提法从粪便样品中制备腺病毒DNA(dsDNA)或细小病毒DNA(ssDNA)然后进行PCR检测。结果显示硫氰酸胍抽提法、螯合树脂处理法能有效地去除粪便中影响PCR扩增的抑制物,提高PCR检测的敏感性,而传统蛋白酶K-酚/氯仿抽提法不能有效地去除PCR扩增的抑制物,影响PCR检测结果。在检测粪便中腺病毒时,硫氰酸胍、螯合树脂和蛋白酶-酚/氯仿抽提法分别允许检测5TCID50相似文献   

10.
A modified procedure using the commercial DNAzol reagent was successfully applied to extract genomic DNA from 25 fungal species. The DNA yield varied from 306 to 1,927 g g-1 dry mycelia and the A260/A280 ratio from 1.59 to 1.93. Compared with the method of J.L. Cenis (Nucleic Acids Res. 1992, 20: 2380) this procedure generated a higher DNA yield from 17 species and a higher A260/A280 ratio from 23 species. But for four species, Cenis (1992) method was more suitable. No inhibitor of polymerase chain reaction was evident for the DNA extracted by the modified procedure, whereas some inhibitors remained in DNA of eight species extracted by the previous method.Revisions requested 8 September 2004; Revisions received 1 November 2004  相似文献   

11.
A simple and easy protocol for extracting high-quality DNA from microorganisms and plants is presented. The method involves inactivating proteins by using SDS/proteinase K and precipitating polysaccharides in the presence of high salt. Further purification is based on differential solubility of DNA and high-molecular-weight polysaccharides in aqueous media. The procedure does not use the toxic and potentially hazardous phenol and chloroform, and as many as 100 samples can be processed per day. Absorbency ratios (A260/A280) of 1.6–2.0 indicated a minimal presence of contaminating metabolites. The DNA was completely digested with 5 restriction enzymes:EcoR I,RsaI,TaqI,EcoR V, andHind III. PCR analysis using enterobacterial repetitive intergenic consensus (ERIC) sequence, sequence-characterized amplified region (SCAR), and random amplified microsatellite (RAMS) primers showed the DNA's compatibility with downstream applications. This procedure is applicable to a range of pathogens and plants and thus may find wide application in quarantine services and marker-assisted selection (MAS) breeding.  相似文献   

12.
High-quality plant DNA extraction for PCR: an easy approach   总被引:1,自引:0,他引:1  
Polymerase chain reaction has found wide applications in modern research involving transformations and other genomic studies. For reproducible PCR results, however, the quantity and quality of template DNA is of considerable importance. A simple and efficient plant DNA extraction procedure for isolation of high-quality DNA from plant tissues is presented here. It requires maceration of plant tissue of about 1.0 cm2 (e.g. of a leaf blade) in DNA extraction buffer (100 mM Tris-HCl, 100 mM EDTA, 250 mM NaCl) using 1.5-mL microfuge tubes, followed by cell lysis with 20% SDS, and DNA extraction with phenol: chloroform: iso-amyl alcohol (25:24:1). Hydrated ether is then used to remove polysaccharides and other contaminants from the DNA preparation. Average DNA yield is 20–30 μg cm−2 for fresh tissues, and ratio of absorbance at 260 nm to absorbance at 280 nm is 1.5–1.8. The DNA is quite suitable for PCR using microsatellites, RAPD and specific markers for recombinant selection. Amplifications have been obtained for these markers by using template DNA extracted from fresh as well as frozen leaf tissues of various plants, including barley, oat, potato and tomato. DNA stored for more than 2 years has been successfully amplified with microsatellite markers, which shows suitability of this method after long-term storage of DNA. Besides, the ease of use and cost-effectiveness make the procedure attractive.  相似文献   

13.
We present a simple method for extracting DNA from the marine bacteria Hahella chejuensis, a Streptomyces sp., and a Cytophaga sp. Previously, DNA purification from these strains was hindered by the presence of extracellular materials. In our extraction method, the marine bacteria are lysed by freezing and grinding in liquid nitrogen, and treated with SDS. The extracted DNA is purified using a phenol/chloroform mixture, and precipitated in isopropanol. The extracted DNA is of high quality and suitable for molecular analyses, such as PCR, restriction enzyme digestion, genomic DNA blot hybridization, and genomic DNA library construction. We used this method to extract genomic DNA from several other marine bacteria. Our method is a reproducible, simple, and rapid technique for routine DNA extractions from marine bacteria. Furthermore, the low cost of this method makes it attractive for large-scale studies.  相似文献   

14.
The intactness of DNA is the keystone of genome-based clinical investigations, where rapid molecular detection of life-threatening bacteria is largely dependent on the isolation of high-quality DNA. Various protocols have been so far developed for genomic DNA isolation from bacteria, most of which have been claimed to be reproducible with relatively good yields of high-quality DNA. Nonetheless, they are not fully applicable to various types of bacteria, their processing cost is relatively high, and some toxic reagents are used. The routine protocols for DNA extraction appear to be sensitive to species diversity, and may fail to produce high-quality DNA from different species. Such protocols remain time-consuming and tedious, thus to resolve some of these impediments, we report development of a very simple, rapid, and high-throughput protocol for extracting of high-quality DNA from different bacterial species. Based upon our protocol, interfering phenolic compounds were removed from extraction using polyvinylpyrrolidone (PVP) and RNA contamination was precipitated using LiCl. The UV spectrophotometry and gel electrophoresis analysis resulted in high A 260/A 280 ratio (>1.8) with high intactness of DNA. Subsequent evaluations were performed using some quality-dependent techniques (e.g., RAPD marker and restriction digestions). The isolated DNA from 9 different bacterial species confirmed the accuracy of this protocol which requires no enzymatic processing and accordingly its low-cost making it an appropriate method for large-scale DNA isolation from various bacterial species.  相似文献   

15.
The genomic DNA isolation from mature leaf midrib is a tough job, because of the abundance of polysaccharides and secondary metabolites, which interferes with DNA isolation as well as polymerase chain reaction (PCR) studies. The leaf midrib of 3rd leaf from 3-moths old, ex-vitro developing banana [AAA, Dwarf Cavendish-Basrai (Sindhri banana)] plants (healthy and BBTV infected) was grinded in liquid N2. Exact 0.3 g of leaf midrib powder was washed with washing buffer (100 mM Tris-Cl, 5 mM EDTA, 0.35 M sorbitol, 1% 2-mercaptoethanol) then homogenized in 0.8 ml of three different pre-heated (60°C) DNA isolation buffers. Supernatant was extracted through phenol: chloroform:isoamyl alcohol (25:24, v/v), chloroform: isoamyl alcohol (24:1, v/v) and finally with chloroform (100%) one by one. Maximum yields were ranged from 49.33 and 27.73 μg mg ?1 DNA with impurities 5.67 and 5.87 μg mg?1 through buffer I, while 45.77 and 25.53 μg mg?1 DNA with 6.13 and 6.16 μg mg?1 impurities through buffer III from healthy and infected plants respectively. Best one RAPD was observed in all the DNA samples isolated with different buffers, while viral amplification was good in DNA isolated with buffer I and II, when 10 (RAPD) and 25 ng DNA (C 1 gene) was used as a template in a reaction of 25 μl. Meanwhile, buffer II is limited for viral DNA isolation while buffer I (1M Tris-Cl, 5M NaCl, 2 % cTAB, 50mM EDTA, 1 % PVP, 0.2 % 2-mercaptoethanol) has dual capacity for plant and virus DNA isolation. This described protocol is economic in terms of times, labor and cost.  相似文献   

16.
We have developed a protocol for isolating milligram quantities of highly purified DNA from tomato nuclei. The protocol utilizes fresh seedlings or leaves without freezing. Tissues are treated with ethyl ether, thoroughly washed, and placed in a buffer containing the nuclear-stabilizing agent 2-methyl-1,4-pentanediol. Nuclei are liberated from tomato cells by homogenization in a Waring blender. The interaction of nuclear DNA with oxidized polyphenols is inhibited by compounds that adsorb polyphenols or prevent oxidation reactions. Chloroplasts and mitochondria are preferentially eliminated with Triton X-100. Nuclei are concentrated using a Percoll gradient and lysed with SDS. DNA is subsequently purified by RNase and protease digestions and phenol/chloroform extractions. The isolated DNA is essentially free of polyphenols and other major contaminants based upon its lack of coloration, A260/A280 ratio, digestibility with restriction enzymes, melting profile, and reassociation properties.  相似文献   

17.
Gupta AK  Harish  Rai MK  Phulwaria M  Shekhawat NS 《Gene》2011,487(2):156-159
Isolation of intact and pure genomic DNA (gDNA) is essential for many molecular biology applications. It is difficult to isolate pure DNA from mature trees of hot and dry desert regions because of the accumulation of high level of polysaccharides, phenolic compounds, tannins etc. We hereby report the standardized protocol for the isolation and purification of gDNA from seven ecologically and medically important tree species of Combretaceae viz. Anogeissus (Anogeissus sericea var. nummularia, Anogeissus pendula, and Anogeissus latifolia) and Terminalia (Terminalia arjuna, Terminalia bellirica, Terminalia catappa and Terminalia chebula). This method involves (i) washing the sample twice with Triton buffer (2%) then (ii) isolation of gDNA by modified-CTAB (cetyl trimethyl ammonium bromide) method employing a high concentration (4%) of PVP (Polyvinylpyrrolidone) and 50 mM ascorbic acid, and (iii) purification of this CTAB-isolated gDNA by spin-column. gDNA isolated by modified CTAB or spin-column alone were not found suitable for PCR amplification. The Triton washing step is also critical. The quality of DNA was determined by the A260/A280 absorbance ratio. gDNA was also observed for its intactness by running on 0.8% agarose gel. The suitability of extracted DNA for PCR was tested by amplification with RAPD primers, which was successful. Further, rbcLa (barcoding gene) was amplified and sequenced to check the quality of extracted gDNA for its downstream applications.  相似文献   

18.
Genetic studies and pathogen detection in plants using molecular methods require the isolation of DNA from a large number of samples in a short time span. A rapid and versatile protocol for extracting high-quality DNA from different plant species is described. This method yields from 1 to 2 mg of DNA per gram of tissue. The absorbance ratios (A260/A280) obtained ranged from 1.6 to 2.0. A minimal presence of contaminating metabolites (as polymerase chain reaction [PCR] inhibitors) in samples and a considerable savings in reagents are characteristics of this protocol, as well as the low cost of the analysis per sample. The quality of the DNA was suitable for PCR amplification.  相似文献   

19.
A simple method was developed for extracting DNA from brown algae Laminaria japonica, which possess large amounts of acidic polysaccharides. Firstly, the sporophyte were washed by eliminating polysaccaride buffer to remove the polysaccharides and then ground in liquid nitrogen. Secondly, the powders were treated with lysing buffer. Thirdly, KAc was used to eliminate the remaining acidic polysaccharides. The extracted DNA was purified using a chloroform-isoamyl alcohol (24:1 v/v), and precipitated in cold isopropanol. The yield was from 18.7 to 37.5 μg g−1 (wet weight) and the purity of total DNA was determined spectrophotometrically as the ratio of A260/A280, which was about 1.7–1.9. The extracted DNA was of high quality and suitable for molecular analyses, such as PCR, restriction enzyme digestion. This method is a reproducible, simple, and rapid technique for routine DNA extraction from sporophyte in Laminaria japonica. Furthermore, the low cost of this method makes it attractive for large-scale studies.  相似文献   

20.
An improved protocol was developed to isolate total RNA in good yield and integrity from Ginkgo biloba leaves containing high levels of flavonoid glycosides, terpene lactones, carbohydrates and polyphenolic secondary metabolites. Polyvinylpolypyrrolidone at 2% and β-mercaptoethanol at 4% were added to the standard CTAB extraction buffer and, after chloroform and phenol extraction, the pellet obtained by ethanol/acetate precipitation was washed and a second phenol/chloroform extraction was introduced to remove co-precipitated polysaccharides. Both A260/A230 and A260/A280 absorbancy ratios of isolated RNA were around 2 and the yield was about 0.4 mg g--1 fresh weight. At least seven distinct rRNA bands were detected by denaturing gel electrophoresis. Sharp hybridization signals were obtained from Northern blots with both nuclear and plastid gene probes. Two gene fragments: nuclear-encoded cab and chloroplast encoded rbcL were successfully amplified by RT-PCR, suggesting the integrity of isolated RNA. The total RNA isolated by this protocol is of sufficient quality for subsequent molecular applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号