首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Xiong C  O'Keefe BR  Byrd RA  McMahon JB 《Peptides》2006,27(7):1668-1675
Scytovirin (SVN) is a novel anti-HIV protein isolated from aqueous extracts of the cultured cyanobacterium Scytonema varium. SVN contains two apparent domains, one comprising amino acids 1-48 and the second stretching from amino acids 49 to 95. These two domains display significant homology to each other and a similar pattern of disulfide bonds. Two DNA constructs encoding scytovirin 1-48 (Cys7Ser) (SD1) and 49-95 (Cys55Ser) (SD2) were constructed, and expressed in E. coli, with thioredoxin fused to their N-terminus. Purified recombinant products were tested for binding activities with the HIV surface envelope glycoproteins gp120 and gp41. Whole cell anti-HIV data showed that SD1 had similar anti-HIV activity to the full-length SVN, whereas SD2 had significantly less anti-HIV activity. Further deletion mutants of the SD1 domain (SVN(3-45)Cys7Ser, SVN(6-45)Cys7Ser, SVN(11-45)Cys7Ser) showed that the N-terminal residues are necessary for full anti-HIV activity of SD1 and that an eight amino acid deletion from the C-terminus (SVN(1-40)Cys7Ser) had a significant effect, decreasing the anti-HIV activity of SD1 by approximately five-fold.  相似文献   

2.
The heme-regulated phosphodiesterase (PDE) from Escherichia coli (Ec DOS) is a tetrameric protein composed of an N-terminal sensor domain (amino acids 1-201) containing two PAS domains (PAS-A, amino acids 21-84, and PAS-B, amino acids 144-201) and a C-terminal catalytic domain (amino acids 336-799). Heme is bound to the PAS-A domain, and the redox state of the heme iron regulates PDE activity. In our experiments, a H77A mutation and deletion of the PAS-B domain resulted in the loss of heme binding affinity to PAS-A. However, both mutant proteins were still tetrameric and more active than the full-length wild-type enzyme (140% activity compared with full-length wild type), suggesting that heme binding is not essential for catalysis. An N-terminal truncated mutant (DeltaN147, amino acids 148-807) containing no PAS-A domain or heme displayed 160% activity compared with full-length wild-type protein, confirming that the heme-bound PAS-A domain is not required for catalytic activity. An analysis of C-terminal truncated mutants led to mapping of the regions responsible for tetramer formation and revealed PDE activity in tetrameric proteins only. Mutations at a putative metal-ion binding site (His-590, His-594) totally abolished PDE activity, suggesting that binding of Mg2+ to the site is essential for catalysis. Interestingly, the addition of the isolated PAS-A domain in the Fe2+ form to the full-length wild-type protein markedly enhanced PDE activity (>5-fold). This activation is probably because of structural changes in the catalytic site as a result of interactions between the isolated PAS-A domain and that of the holoenzyme.  相似文献   

3.
We have elucidated the carbohydrate-binding profile of a non-monosaccharide-binding lectin named Eucheuma serra lectin (ESA)-2 from the red alga Eucheuma serra using a lectin-immobilized column and a centrifugal ultrafiltration-high performance liquid chromatography method with a variety of fluorescence-labeled oligosaccharides. In both methods, ESA-2 exclusively bound with high-mannose type (HM) N-glycans, but not with any of other N-glycans including complex type, hybrid type and core pentasaccharides, and oligosaccharides from glycolipids. These findings indicate that ESA-2 recognizes the branched oligomannosides of the N-glycans. However, ESA-2 did not bind with any of the free oligomannoses examined that are constituents of the branched oligomannosides implying that the portion of the core N-acetyl-D-glucosamine (GlcNAc) residue(s) of the N-glycans is also essential for binding. Thus, the algal lectin was strictly specific for HM N-glycans and recognized the extended carbohydrate structure with a minimum size of the pentasaccharide, Man(alpha1-3)Man(alpha1-6)Man(beta1-4)GlcNAc(beta1-4) GlcNAc. Kinetic analysis of binding with a HM heptasaccharide (M5) showed that ESA-2 has four carbohydrate-binding sites per polypeptide with a high association constant of 1.6x10(8) M-1. Sequence analysis, by a combination of Edman degradation and mass analyses of the intact protein and of peptides produced by its enzymic digestions, showed that ESA-2 is composed of 268 amino acids (molecular weight 27950) with four tandemly repeated domains of 67 amino acids. The number of repeats coincided with the number of carbohydrate-binding sites in the monomeric molecule. Surprisingly, the marine algal lectin was homologous to hemagglutinin from the soil bacterium Myxococcus xanthus.  相似文献   

4.
cDNA expression library screening revealed binding between the membrane distal catalytic domain (D2) of protein-tyrosine phosphatase alpha (PTPalpha) and calmodulin. Characterization using surface plasmon resonance showed that calmodulin bound to PTPalpha-D2 in a Ca(2+)-dependent manner but did not bind to the membrane proximal catalytic domain (D1) of PTPalpha, to the two tandem catalytic domains (D1D2) of PTPalpha, nor to the closely related D2 domain of PTPepsilon. Calmodulin bound to PTPalpha-D2 with high affinity, exhibiting a K(D) approximately 3 nm. The calmodulin-binding site was localized to amino acids 520-538 in the N-terminal region of D2. Site-directed mutagenesis showed that Lys-521 and Asn-534 were required for optimum calmodulin binding and that restoration of these amino acids to the counterpart PTPepsilon sequence could confer calmodulin binding. The overlap of the binding site with the predicted lip of the catalytic cleft of PTPalpha-D2, in conjunction with the observation that calmodulin acts as a competitive inhibitor of D2-catalyzed dephosphorylation (K(i) approximately 340 nm), suggests that binding of calmodulin physically blocks or distorts the catalytic cleft of PTPalpha-D2 to prevent interaction with substrate. When expressed in cells, full-length PTPalpha and PTPalpha lacking only D1, but not full-length PTPepsilon, bound to calmodulin beads in the presence of Ca(2+). Also, PTPalpha was found in association with calmodulin immunoprecipitated from cell lysates. Thus calmodulin does associate with PTPalpha in vivo but not with PTPalpha-D1D2 in vitro, highlighting a potential conformational difference between these forms of the tandem catalytic domains. The above findings suggest that calmodulin is a possible specific modulator of PTPalpha-D2 and, via D2, of PTPalpha.  相似文献   

5.
6.
The nucleocapsid (N) protein of hantavirus encapsidates viral genomic and antigenomic RNAs. Previously, deletion mapping identified a central, conserved region (amino acids 175 to 217) within the Hantaan virus (HTNV) N protein that interacts with a high affinity with these viral RNAs (vRNAs). To further define the boundaries of the RNA binding domain (RBD), several peptides were synthesized and examined for the ability to bind full-length S-segment vRNA. Peptide 195-217 retained 94% of the vRNA bound by the HTNV N protein, while peptides 175-186 and 205-217 bound only 1% of the vRNA. To further explore which residues were essential for binding vRNA, we performed a comprehensive mutational analysis of the amino acids in the RBD. Single and double Ala substitutions were constructed for 18 amino acids from amino acids 175 to 217 in the full-length N protein. In addition, Ala substitutions were made for the three R residues in peptide 185-217. An analysis of protein-RNA interactions by electrophoretic mobility shift assays implicated E192, Y206, and S217 as important for binding. Chemical modification experiments showed that lysine residues, but not arginine or cysteine residues, contribute to RNA binding, which agreed with bioinformatic predictions. Overall, these data implicate lysine residues dispersed from amino acids 175 to 429 of the protein and three amino acids located in the RBD as essential for RNA binding.  相似文献   

7.
Human lymphocyte-specific protein 1 (LSP1) is an F-actin binding protein, which has an acidic N-terminal half and a basic C-terminal half. In the basic C-terminal half, there are amino acid sequences highly homologous to the actin-binding domains of two known F-actin binding proteins: caldesmon and the villin headpieces (CI, CII, VI, VII). However, the exact numbers and locations of the F-actin binding domains within LSP1 are not clearly defined. In this report, we utilized 125I-labeled F-actin ligand blotting and high-speed F-actin cosedimentation assays to analyze the F-actin binding properties of truncated LSP1 peptides and to define the F-actin binding domains. Results show that LSP1 has at least three and potentially a fourth F-actin binding domain. All F-actin binding domains are located in the basic C-terminal half and correspond to the caldesmon and villin headpiece homologous regions. LSP1 181-245 and LSP1 246-295, containing sequences homologous to caldesmon F-actin binding site I and II, respectively (CI, CII), binds F-actin; similarly, LSP1 306-339 can bind F-actin and contains two inseparable villin headpiece-like F-actin binding domains (VI, VII). Although LSP1 1-305, which does not contain VI and VII regions, retains F-actin binding activity, its binding affinity for F-actin is much weaker than that of full-length LSP1. Site-directed mutagenesis of the basic amino acids in the KRYK (VI) or KYEK (VII) sequences to acidic amino acids create mutants that bind F-actin with lower affinity than full-length wild-type LSP1. High KCl concentrations decrease full-length LSP1 binding to F-actin, suggesting the affinity between LSP1 and F-actin is mainly through electrostatic interaction.  相似文献   

8.
9.
Molecular dissection of GT-1 from Arabidopsis.   总被引:4,自引:1,他引:3       下载免费PDF全文
K Hiratsuka  X Wu  H Fukuzawa    N H Chua 《The Plant cell》1994,6(12):1805-1813
We isolated and characterized an Arabidopsis cDNA encoding the DNA binding protein GT-1. This protein factor, which contains 406 amino acids, is highly homologous to the previously described tobacco DNA binding protein GT-1a/B2F but is 26 amino acids longer. Recombinant Arabidopsis GT-1, which was obtained from in vitro translation, bound to probes consisting of four copies of pea small subunit of ribulose bisphosphate carboxylase rbcS-3A box II and required the same GGTTAA core binding site as the binding activity of an Arabidopsis nuclear protein preparation. However, unlike the truncated tobacco GT-1a prepared from Escherichia coli extracts, the full-length Arabidopsis GT-1 bound to pea rbcS-3A box III and Arabidopsis chlorophyll a/b binding protein CAB2 light-responsive elements, both of which contain GATA motifs. Deletion and mutational analyses suggested that the predicted trihelix region of GT-1 is essential for DNA binding. Moreover, GT-1 binds to target DNA as a dimer, and its C-terminal region contains a putative dimerization domain that enhances the binding activity. Transient expression of the GT-1::beta-glucuronidase fusion protein in onion cells revealed the presence of a nuclear localization signal(s) within the first 215 amino acids of GT-1.  相似文献   

10.
Like the full-length histone deacetylase (HDAC) 4, its amino terminus (amino acids 1-208) without the carboxyl deacetylase domain is also known to effectively bind and repress myocyte enhancer factor 2 (MEF2). Within this repressive amino terminus, we further show that a stretch of 90 amino acids (119-208) displays MEF2 binding and repressive activity. The same region is also found to associate specifically with HDAC1 which is responsible for the repressive effect. The amino terminus of HDAC4 can associate with the DNA-bound MEF2 in vitro, suggesting that it does not repress MEF2 simply by disrupting the ability of MEF2 to bind DNA. In vivo, MEF2 induces nuclear translocation of both the full-length HDAC4 and HDAC4-(1-208), whereas the nuclear HDAC4 as well as HDAC4-(1-208) in turn specifically sequesters MEF2 to distinct nuclear bodies. In addition, we show that MyoD and HDAC4 functionally antagonize each other to regulate MEF2 activity. Combined with data from others, our data suggest that the full-length HDAC4 can repress MEF2 through multiple independent repressive domains.  相似文献   

11.
RGS (regulator of G protein signaling) proteins are GTPase-activating proteins (GAPs) for heterotrimeric G protein alpha subunits and negatively regulate G protein-mediated signal transduction. In this study, we determined the cDNA sequence of a novel Caenorhabditis elegans (C. elegans) RGS protein. The predicted protein, termed C2-RGS, consists of 782 amino acids, and contains a C2 domain and an RGS domain. C2 domains are typically known to be Ca(2+) and phospholipid binding sites, found in many proteins involved in membrane traffic or signal transduction, and most of their biological roles are not identified. To study the function of C2-RGS protein, a series of six truncated versions of C2-RGS were constructed. When the full-length protein of C2-RGS was expressed transiently in AT1a-293T cells, ET-1-induced Ca(2+) responses were strongly suppressed. When each of the mutants with either RGS domain or C2 domain was expressed, the Ca(2+) responses were suppressed moderately. Furthermore, we found that C2 domain of PLC-beta1 also had a similar moderate inhibitory effect. RGS domain of C2-RGS bound to mammalian and C. elegans Galphai/o and Galphaq subunits only in the presence of GDP/AlF(4)(-), and had GAP activity to Galphai3. On the other hand, C2 domains of C2-RGS and PLC-beta1 also bound strongly to Galphaq subunit, in the presence of GDP, GDP/AlF(4)(-), and GTPgammaS, suggesting the stable persistent association between these C2 domains and Galphaq subunit at any stage during GTPase cycle. These results indicate that both the RGS domain and the C2 domain are responsible for the inhibitory effect of the full-length C2-RGS protein on Galphaq-mediated signaling, and suggest that C2 domains of C2-RGS and PLC-beta1 may act as a scaffold module to organize Galphaq and the respective whole protein molecule in a stable signaling complex, both in the absence and presence of stimulus.  相似文献   

12.
The crystal structures of the natural and recombinant antiviral lectin scytovirin (SVN) were solved by single-wavelength anomalous scattering and refined with data extending to 1.3 A and 1.0 A resolution, respectively. A molecule of SVN consists of a single chain 95 amino acids long, with an almost perfect sequence repeat that creates two very similar domains (RMS deviation 0.25 A for 40 pairs of Calpha atoms). The crystal structure differs significantly from a previously published NMR structure of the same protein, with the RMS deviations calculated separately for the N- and C-terminal domains of 5.3 A and 3.7 A, respectively, and a very different relationship between the two domains. In addition, the disulfide bonding pattern of the crystal structures differs from that described in the previously published mass spectrometry and NMR studies.  相似文献   

13.
14.
15.
The solution structure of the potent 95 residue anti-HIV protein scytovirin has been determined and two carbohydrate-binding sites have been identified. This unique protein, containing five structurally important disulfide bonds, demonstrates a novel fold with no elements of extended regular secondary structure. Scytovirin contains two 39 residue sequence repeats, differing in only three amino acid residues, and each repeat has primary sequence similarity to chitin binding proteins. Both sequence repeats form similarly structured domains, with the exception of one region. The result is two carbohydrate-binding sites with substantially different affinities. The unusual fold clusters aromatic residues in both sites, suggesting a binding mechanism similar to other known hevein-like carbohydrate-binding proteins but differing in carbohydrate specificity. Scytovirin, originally isolated from the cyanobacterium Scytonema varium, holds potential as an HIV entry inhibitor for both therapeutic and prophylactic anti-HIV applications. The high-resolution structural studies reported are an important initial step in unlocking the therapeutic potential of scytovirin.  相似文献   

16.
Vacuolar H(+)-ATPase (V-ATPase) binds actin filaments with high affinity (K(d) = 55 nm; Lee, B. S., Gluck, S. L., and Holliday, L. S. (1999) J. Biol. Chem. 274, 29164-29171). We have proposed that this interaction is an important mechanism controlling transport of V-ATPase from the cytoplasm to the plasma membrane of osteoclasts. Here we show that both the B1 (kidney) and B2 (brain) isoforms of the B subunit of V-ATPase contain a microfilament binding site in their amino-terminal domain. In pelleting assays containing actin filaments and partially disrupted V-ATPase, B subunits were found in greater abundance in actin pellets than were other V-ATPase subunits, suggesting that the B subunit contained an F-actin binding site. In overlay assays, biotinylated actin filaments also bound to the B subunit. A fusion protein containing the amino-terminal half of B1 subunit bound actin filaments tightly, but fusion proteins containing the carboxyl-terminal half of B1 subunit, or the full-length E subunit, did not bind F-actin. Fusion proteins containing the amino-terminal 106 amino acids of the B1 isoform or the amino-terminal 112 amino acids of the B2 isoform bound filamentous actin with K(d) values of 130 and 190 nm, respectively, and approached saturation at 1 mol of fusion protein/mol of filamentous actin. The B1 and B2 amino-terminal fusion proteins competed with V-ATPase for binding to filamentous actin. In summary, binding sites for F-actin are present in the amino-terminal domains of both isoforms of the B subunit, and likely are responsible for the interaction between V-ATPase and actin filaments in vivo.  相似文献   

17.
Immunocontraceptive vaccines against zona pellucida (ZP) proteins are being developed for brushtail possum (Trichosurus vulpecula) management in New Zealand. Mapping of B cell epitopes on the ZP2 protein of possums was undertaken in this study to define the antigenic regions that may be crucial to sperm-egg binding. The amino acid sequence of the full-length possum ZP2 protein (712 amino acids) was used to synthesize a complete set of 71 (15-mer) biotinylated peptides with an offset of five amino acids. The peptides were used in a modified enzyme-linked immunosorbent assay (ELISA) to identify continuous epitopes recognized by antibodies in the sera of possums immunized with recombinant possum ZP2 (rZP2) constructs. Seventeen continuous epitopes were located on possum ZP2 protein. Comparisons of the peptide binding pattern of antibodies in individual sera with the fertility status of the same immunized possums revealed three significant infertility-relevant peptide epitopes (amino acids 111-125, 301-315, and 431-445). One of these (amino acids 431-445) bound to possum spermatozoa from the caudal epididymis. The implications of these findings for developing immunocontraceptive vaccines for possum control are discussed.  相似文献   

18.
Johnson JE  Giorgione J  Newton AC 《Biochemistry》2000,39(37):11360-11369
Protein kinase C is specifically activated by binding two membrane lipids: the second messenger, diacylglycerol, and the amino phospholipid, phosphatidylserine. This binding provides the energy to release an autoinhibitory pseudosubstrate from the active site. Interaction with these lipids recruits the enzyme to the membrane by engaging two membrane-targeting modules: the C1 domain (present as a tandem repeat in most protein kinase Cs) and the C2 domain. Here we dissect the contribution of each domain in recruiting protein kinase C betaII to membranes. Binding analyses of recombinant domains reveal that the C2 domain binds anionic lipids in a Ca(2+)-dependent, but diacylglycerol-independent, manner, with little selectivity for phospholipid headgroup beyond the requirement for negative charge. The C1B domain binds membranes in a diacylglycerol/phorbol ester-dependent, but Ca(2+)-independent manner. Like the C2 domain, the C1B domain preferentially binds anionic lipids. However, in striking contrast to the C2 domain, the C1B domain binds phosphatidylserine with an order of magnitude higher affinity than other anionic lipids. This preference for phosphatidylserine is, like that of the full-length protein, stereoselective for sn-1, 2-phosphatidyl-L-serine. Quantitative analysis of binding constants of individual domains and that of full-length protein reveals that the full-length protein binds membranes with lower affinity than expected based on the binding affinity of isolated domains. In addition to entropic and steric considerations, the difference in binding energy may reflect the energy required to expel the pseudosubstrate from the substrate binding cavity. This study establishes that each module is an independent membrane-targeting module with each, independently of the other, containing determinants for membrane recognition. The presence of each of these modules, separately, in a number of other signaling proteins epitomizes the use of these modules as discreet membrane targets.  相似文献   

19.
The F-domain of rat HNF-4alpha1 has a crucial impact on the ligand binding affinity, ligand specificity and secondary structure of HNF-4alpha. (i) Fluorescent binding assays indicate that wild-type, full-length HNF-4alpha (amino acids 1-455) has high affinity (Kd=0.06-12 nm) for long chain fatty acyl-CoAs (LCFA-CoA) and low affinity (Kd=58-296 nm) for unesterified long chain fatty acids (LCFAs). LCFA-CoA binding was due to close molecular interaction as shown by fluorescence resonance energy transfer (FRET) from full-length HNF-4alpha tryptophan (FRET donor) to bound cis-parinaroyl-CoA (FRET acceptor), which yielded an intermolecular distance of 33 A, although no FRET to cis-parinaric acid was detected. (ii) Deleting the N-terminal A-D-domains, comprising the AF1 and DNA binding functions, only slightly affected affinities for LCFA-CoAs (Kd=0.9-4 nm) and LCFAs (Kd=93-581 nm). (iii) Further deletion of the F-domain robustly reduced affinities for LCFA-CoA and reversed ligand specificity (i.e. high affinity for LCFAs (Kd=1.5-32 nm) and low affinity for LCFA-CoAs (Kd=54-302 nm)). No FRET from HNF-4alpha-E (amino acids 132-370) tryptophan (FRET donor) to bound cis-parinaroyl-CoA (FRET acceptor) was detected, whereas an intermolecular distance of 28 A was calculated from FRET between HNF-4alpha-E and cis-parinaric acid. (iv) Circular dichroism showed that LCFA-CoA, but not LCFA, altered the secondary structure of HNF-4alpha only when the F-domain was present. (v) cis-Parinaric acid bound to HNF-4alpha with intact F-domain was readily displaceable by S-hexadecyl-CoA, a nonhydrolyzable thioether analogue of LCFA-CoAs. Truncation of the F-domain significantly decreased cis-parinaric acid displacement. Hence, the C-terminal F-domain of HNF-4alpha regulated ligand affinity, ligand specificity, and ligand-induced conformational change of HNF-4alpha. Thus, characteristics of F-domain-truncated mutants may not reflect the properties of full-length HNF-4alpha.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号