首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background and Aims

The major economic product of Hevea brasiliensis is a rubber-containing cytoplasm (latex), which flows out of laticifers (latex cells) when the bark is tapped. The latex yield is stimulated by ethylene. Sucrose, the unique precursor of rubber synthesis, must cross the plasma membrane through specific sucrose transporters before being metabolized in the laticifers. The relative importance of sucrose transporters in determining latex yield is unknown. Here, the effects of ethylene (by application of Ethrel®) on sucrose transporter gene expression in the inner bark tissues and latex cells of H. brasiliensis are described.

Methods

Experiments, including cloning sucrose transporters, real time RT-PCR and in situ hybridization, were carried out on virgin (untapped) trees, treated or untreated with the latex yield stimulant Ethrel.

Key Results

Seven putative full-length cDNAs of sucrose transporters were cloned from a latex-specific cDNA library. These transporters belong to all SUT (sucrose transporter) groups and differ by their basal gene expression in latex and inner soft bark, with a predominance of HbSUT1A and HbSUT1B. Of these sucrose transporters, only HbSUT1A and HbSUT2A were distinctly increased by ethylene. Moreover, this increase was shown to be specific to laticifers and to ethylene application.

Conclusion

The data and all previous information on sucrose transport show that HbSUT1A and HbSUT2A are related to the increase in sucrose import into laticifers, required for the stimulation of latex yield by ethylene in virgin trees.Key words: Hevea brasiliensis, laticifers, latex production, ethylene, sucrose transporters  相似文献   

2.
3.
4.
The flowers of Pyrethrum (Chrysanthemum cinerariaefolium) are known to contain Pyrethrins that are naturally occurring potential insecticide. Hairy roots were induced from leaves of C. cinerariaefolium using Agrobacterium rhizogenes strain A4. The root clones were characterized in to four groups i.e. thick, unbranched (D2 and D5), thin, highly branched (D3), thick, branched (B2) and thick, highly branched (D1, D6). Six established hairy root clones showed the presence of pyrethrin and were selected for elicitation studies. Growth kinetics studies revealed highest growth index in hairy root clone D1 (592.0) followed by D6 and D3 on dry weight basis after 40 days of culture. The maximum pyrethrin content was found in the clone D3 (7.2 mg/g dw) which is comparable to the flowers obtained from the variety “Avadh”. Hairy root clone D2 (5.2 mg/g dw) and D6 (1.3 mg/g dw) contained pyrethrin but in less amount as compared to clone D3. The PCR analysis showed the presence of rol B and rol C genes in all the six hairy root clones while rol A was detected only in D2 clone. The methanolic extract of D3 clone showed antifungal activities against phytopathogenic fungal strains which were found maximum against Curvuleria andropogonis followed by Colletotrichum acutatum and Rhizoctonia solani. Hairy root clones D2, D3 and D6 were elicited with culture filtrate of endophytic fungus (Fusarium oxysporum) and bacteria (Bacillus subtilis). The culture filtrate (4.0?%v/v) of both the fungal and bacterial origin was found to be effective in enhancing the pyrethrin content in all the tested hairy root clones. Clone D3 showed maximum pyrethrin content on elicitation with F. oxysporum (9.7 mg/g dw) and B. subtilis (9.7 mg/g dw) culture filtrate, which is 32?% higher than the non elicited D3 hairy roots (7.2 mg/g dw). F. oxysporum also enhanced the hairy root growth resulting into the higher biomass yield of D3 (50?%) and D2 (76?%) in comparison to control non elicited hairy root clones of D3 and D2, respectively leading to higher pyrethrin yield.  相似文献   

5.
The sucrose non-fermenting 1-related protein kinase 2 (SnRK2) gene family belongs to a group of plant-specific serine/threonine kinase family involved in abscisic acid (ABA) signaling and biotic and abiotic stress response. Although genome-wide analyses of the SnRK2 gene family have been conducted in some species, little is known about the SnRK2 gene family in rubber tree (Hevea brasiliensis). In this study, we identified 10 SnRK2s designated as HbSnRK2.1 to HbSnRK2.10 in the rubber tree genome. The subsequently constructed phylogenetic tree demonstrated that HbSnRK2s have three subfamilies that correlate well with those of Arabidopsis sp. and rice subfamilies. All SnRK2 genes contained nine exons and eight introns. Although the C-terminus was divergent, eight conserved motifs were found. Motifs 1–6 were common to all HbSnRK2s. Expression analysis results showed that 7 of the 10 HbSnRK2s were highly expressed in latex. HbSnRK2.7 was predominantly expressed and simultaneously regulated by abscisic acid, jasmonic acid, and ethylene treatment in laticifers. HbSnRK identification and characterization provided further understanding on the role of ABA signal in the rubber tree.  相似文献   

6.
7.
8.
Yeast abundance and species diversity in the latex of rubber tree Hevea brasiliensis (Willd. ex Juss.) Müll. Arg., on its green leaves, and in soil below the plant were studied. The yeasts present in the fresh latex in numbers of up to 5.5 log(CFU/g) were almost exclusively represented by the species Candida heveicola. This species was previously isolated from Hevea latex in China. In the course of natural modification of the latex (turned from liquid to solid form), yeast diversity increased, while yeast abundance decreased. The yeasts in thickened and solidified latex were represented by typical epiphytic and ubiquitous species: Kodamea ohmeri, Debaryomyces hansenii, Rhodotorula mucilaginosa, and synanthropic species Candida parapsilosis and Cutaneotrichosporon arboriformis. The role of yeasts in latex modification at the initial stages of succession and their probable role in development of antifungal activity in the latex are discussed.  相似文献   

9.

Key message

The homologous genes to OsSUT1-5 in wheat were identified and detailed analysed. TaSUT1 was the predominant sucrose transporter group and it illustrated the genotypic variations towards drought during grain filling.

Abstract

Sucrose transporters (SUT) play crucial roles in wheat stem water soluble carbohydrate (WSC) remobilization to grain. To determine the major functional SUT gene groups in shoot parts of wheat during grain development, drought tolerant varieties, Westonia and Kauz, were investigated in field drought experiments. Fourteen homologous genes to OsSUT1-5 were identified on five homeologous groups, namely TaSUT1_4A, TaSUT1_4B, TaSUT1_4D; TaSUT2_5A, TaSUT2_5B, TaSUT2_5D; TaSUT3_1A, TaSUT3_1D; TaSUT4_6A, TaSUT4_6B, TaSUT4_6D; TaSUT5_2A, TaSUT5_2B, and TaSUT5_2D, and their gene structures were analysed. Wheat plants above the ground were harvested from pre-anthesis to grain maturity and the stem, leaf sheath, rachis, lemma and developing grain were used for analysing TaSUT gene expression. Grain weight, thousand grain weight, kernel number per spike, biomass and stem WSC were characterized. The study showed that among the five TaSUT groups, TaSUT1 was the predominant sucrose transporting group in all organs sampled, and the expression was particularly high in the developing grain. In contrast to TaSUT1, the gene expression levels of TaSUT2, TaSUT3 and TaSUT4 were lower, except for TaSUT3 which showed preferential expression in the lemma before anthesis. The TaSUT5 gene group was very weakly expressed in all tissues. The upregulated gene expression of TaSUT1 Westonia type in stem and grain reveal a crucial role in stem WSC remobilization to grain under drought. The high TaSUT1 gene expression and the significant correlations with thousand grain weight (TGW) and kernel number per spike demonstrated the contribution in Kauz’s high grain yield in an irrigated environment and high TGW in Westonia under drought stress. Further molecular level identification is required for gene marker development.
  相似文献   

10.
11.
Hevea brasiliensis Muell. Arg (Para rubber tree) is a tropical tree species of Amazonian origin widely cultivated in several parts of the world for natural rubber, a highly priced commodity inevitable for the world rubber industry. Large, tree to tree variation in growth and latex yield among individual plants of high yielding Hevea clones is a common phenomenon observed in mature rubber plantations. The genetic heterogeneity of the seedlings which are used as rootstocks for propagation through budgrafting is considered as a major factor  responsible for this variation. In order to minimize this variation, attempts were made to develop highly uniform rootstock material via an in vitro technique by inducing zygotic polyembryony in Hevea. Immature open pollinated fruits of a high yielding clone RRII 105 were cultured by half ovulo embryo culture technique. Multiple embryos were induced from the 8–10-week-old zygote with a novel combination of gibberellic acid (GA3), kinetin, and zeatin. Plantlets were successfully generated from the multiple embryos and raised in the field post hardening. Screening using genetic and epigenetic molecular markers revealed that the multiple seedlings developed are highly uniform and are of single zygotic origin. Development of plants having genetic and epigenetic uniformity suggests that this technique is ideal for raising uniform rootstock material in Hevea which may significantly reduce intraclonal variations. Moreover, these plants could serve as ideal material for physiological and molecular investigations towards the understanding of  stock–scion interaction process in rubber.  相似文献   

12.
Sucrose non-fermenting-1-related protein kinase 1 (SnRK1) has been shown to play an essential role in regulating saccharide metabolism and starch biosynthesis of plant. The regulatory role of StSnRK1 from potato in regulating carbohydrate metabolism and starch accumulation has not been investigated. In this work, a cDNA encoding the SnRK1 protein, named StSnRK1, was isolated from potato. The open reading frame contained 1545 nucleotides encoding 514 amino acids. Subcellular localization analysis in onion epidermal cells indicated that StSnRK1 protein was localized to the nucleus. The coding region of StSnRK1 was cloned into a binary vector under the control of 35S promoter and then transformed into tobacco to obtain transgenic plants. Transgenic tobacco plants expressing StSnRK1 were shown to have a significant increased accumulation of starch content, as well as sucrose, glucose and fructose content. Real-time quantitative PCR analysis indicated that overexpression of StSnRK1 up-regulated the expression of sucrose synthase (NtSUS), ADP-glucose pyrophosphorylase (NtAGPase) and soluble starch synthase (NtSSS III) genes involved in starch biosynthesis in the transgenic plants. In contrast, the expression of sucrose phosphate synthase (NtSPS) gene was decreased in the transgenic plants. Meanwhile, enzymatic analyses indicated that the activities of major enzymes (SUS, AGPase and SSS) involved in the starch biosynthesis were enhanced, whereas SPS activity was decreased in the transgenic plants compared to the wild-type. These results suggest that the manipulation of StSnRK1 expression might be used for improving quality of plants in the future.  相似文献   

13.
14.
Efficient sucrose loading in rubber‐producing cells (laticifer cells) is essential for retaining rubber productivity in Hevea brasiliensis, but the molecular mechanisms underlying the regulation of this process remain unknown. Here, we functionally characterized a putative Hevea SUT member, HbSUT3, mainly in samples from regularly exploited trees. When expressed in yeast, HbSUT3 encodes a functional sucrose transporter that exhibits high sucrose affinity with a Km value of 1.24 mm at pH 4.0, and possesses features typical of sucrose/H + symporters. In planta, when compared to the expression of other Hevea SUT genes, HbSUT3 was found to be the predominant member expressed in the rubber‐containing cytoplasm (latex) of laticifers. The comparison of HbSUT3 expression among twelve Hevea tissues demonstrates a relatively tissue‐specific pattern, i.e. expression primarily in the latex and in female flowers. HbSUT3 expression is induced by the latex stimulator Ethrel (an ethylene generator), and relates to its yield‐stimulating effect. Tapping (the act of rubber harvesting) markedly increased the expression of HbSUT3, whereas wounding alone had little effect. Moreover, the expression of HbSUT3 was found to be positively correlated with latex yield. Taken together, our results provide evidence favouring the involvement of HbSUT3 in sucrose loading into laticifers and in rubber productivity.  相似文献   

15.
16.
17.
Sucrose transporters (SUTs) play a critical role on the phloem plasma membrane in loading sucrose into the phloem of source leaves for long-distance transport to sink organs. Rice has a small gene family of five SUTs, Oryza sativa SUT1 (OsSUT1) to OsSUT5. To identify rice SUTs that function as phloem loaders, we adopted a growth restoration assay of the severe growth retardation phenotype of atsuc2, a mutant of the best-characterized Arabidopsis phloem loader AtSUC2, by introducing OsSUTs. The rice SUT genes were expressed by two different promoters, the native phloem-specific promoter of AtSUC2 (pAtSUC2) and the constitutive Cauliflower Mosaic Virus 35S (pCaMV35S) promoter. Of all the transgenic atsuc2 plants, only pAtSUC2: OsSUT1 complemented the atsuc2 mutant phenotype in a comparable manner to wild type (WT), and consistent levels of soluble sugars and starch were recovered compared to those of WT. This suggests that OsSUT1 is a functional ortholog of the Arabidopsis AtSUC2 and functions as an apoplastic phloem loader. In addition, ossut1 mutants were produced via anther culture and their primary carbohydrate levels and growth phenotypes were indistinguishable from those of WT. This suggests that the rice phloem loader OsSUT1 function may not be essential for rice vegetative growth under normal conditions.  相似文献   

18.
Fast-growing clones of Salix and Populus species have been studied for phytoremediation of soils contaminated by risk elements (REs) using short-rotation coppice plantations. Biomass yield, accumulation and removal of RE (Cd, Pb and Zn) by highly productive willow (S1—(Salix schwerinii × Salix viminalis) × S. viminalis, S2—Salix × smithiana) and poplar (P1—Populus maximowiczii × Populus nigra, P2—P. nigra) clones were investigated with and without sewage sludge (SS) application. The precise field experiment was established in April 2008 on moderately Cd-, Pb- and Zn-contaminated soil. Initially, shoots were harvested after four seasons in February 2012 and then after two more seasons in February 2014. The application of SS limited plant growth during the first years of the experiment in the majority of treatments, mainly due to weed competition and higher concentrations of available soil nutrients causing lower yields than those of control (C) treatments. Well-developed roots were able to take advantage of SS applications, and shoot yield was mainly higher in SS treatments in the second harvest, reaching up to 15 t dry matter (DM)?ha?1. Willows performed better than poplars. Application of SS reduced RE shoot concentrations compared to the C treatment. The removal of RE was significantly higher in the second harvest for all clones and elements (except the P2 clone), and the biomass yield was the major driving force for the amount of RE removed by shoots. Well-developed plantations of fast-growing trees showed better suitability for the phytoextraction of moderately contaminated soils for Cd and partly for Zn but not for Pb, which was less available to plants. From the four tested clones, S2 showed the best removal of Cd (up to 0.94 %) and Zn (up to 0.34 %) of the total soil element content, respectively, and this clone is a good candidate for phytoextraction. SS can be a suitable source of nutrients for Salix clones without any threat to the food chain in terms of biomass contamination, but its application to the soil can result in an increased incidence of some weeds during the first years of plantation.  相似文献   

19.
The genes of α-expansins of woody plants are of great interest for genetic engineering, since they can potentially be used to improve the tree growth parameters. In the flora of Russia, model woody plants for plant biotechnology are aspen (Populus tremula L.) and black poplar (Populus nigra L.). The objective of this study was to determine the role of α-expansin-encoding genes, aspen PtrEXPA3 and black poplar PnEXPA3, in the regulation and maintenance of woody plant growth. To achieve this goal, the PtrEXPA3 expression level were determined upon exogenous phytohormone treatment, the action of stress factors, and constitutive expression of the PnARGOS-LIKE gene. In addition, transgenic aspen plants with constitutive expression of the black poplar PnEXPA3 gene were generated, and their morphological analysis was carried out. The highest PtrEXPA3 mRNA level was detected in young intensely growing aspen leaves, and furthermore, expression of the gene was induced by exogenous cytokinins and auxins. In response to NaCl and constitutive expression of the PnARGOS-LIKE gene, the PtrEXPA3 mRNA level decreased. Transgenic aspen plants with constitutive PnEXPA3 expression were characterized by the decreased size of leaves, petioles, and internodes, as well as the increased size of leaf epidermal cells, while the stem size remained unchanged. Taken together, the data obtained enable the suggestion that the PtrEXPA3 and PnEXPA3 genes encode cytokinin- and auxin-regulated, leaf-specific expansins that are involved in the cell expansion.  相似文献   

20.
The aim of this study was to examine the effect of abscisic acid (ABA), sucrose, and auxin on grape fruit development and to assess the mechanism of these three factors on the grape fruit ripening process. Different concentrations of ABA, sucrose, and auxin were used to treat the grape fruit, and the ripening-related indices, such as physiological and molecular level parameters, were analyzed. The activity of BG protein activity was analyzed during the fruit development. Sucrose, ABA, and auxin influenced the grape fruit sugar accumulation in different ways, as well as the volatile compounds, anthocyanin content, and fruit firmness. ABA and sucrose induced, but auxin blocked, the ripening-related gene expression levels, such as softening genes PE, PG, PL, and CELL, anthocyanin genes DFR, CHI, F3H, GST, CHS, and UFGT, and aroma genes Ecar, QR, and EGS. ABA, sucrose, and glucose induced the fruit dry weight accumulation, and auxin mainly enhanced fruit dry weight through seed weight accumulation. In the early development of grape, starch was the main energy storage; in the later, it was glucose and fructose. Sucrose metabolism pathway-related gene expression levels were significant for glucose and fructose accumulation. BG protein activity was important in the regulation of grape ABA content levels. ABA plays a core role in the grape fruit development; sucrose functions in fruit development through two pathways: one was ABA dependent, the other ABA independent. Auxin blocked ABA accumulation to regulate the fruit development process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号