首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) is a rare hereditary stroke caused by mutations in NOTCH3 gene. We report the first case of CADASIL in an indigenous Rungus (Kadazan-Dusun) family in Kudat, Sabah, Malaysia confirmed by a R54C (c.160C>T, p.Arg54Cys) mutation in the NOTCH3. This mutation was previously reported in a Caucasian and two Korean cases of CADASIL. We recruited two generations of the affected Rungus family (n = 9) and found a missense mutation (c.160C>T) in exon 2 of NOTCH3 in three siblings. Two of the three siblings had severe white matter abnormalities in their brain MRI (Scheltens score 33 and 50 respectively), one of whom had a young stroke at the age of 38. The remaining sibling, however, did not show any clinical features of CADASIL and had only minimal changes in her brain MRI (Scheltens score 17). This further emphasized the phenotype variability among family members with the same mutation in CADASIL. This is the first reported family with CADASIL in Rungus subtribe of Kadazan-Dusun ethnicity with a known mutation at exon 2 of NOTCH3. The penetrance of this mutation was not complete during the course of this study.  相似文献   

2.
MethodsThis is a cohort study of patients who were diagnosed with genotype-confirmed R544C-mutation CADASIL. Primary neurologic symptoms were recorded. Symptomatic strokes were defined as transient ischemic attack, ischemic strokes and hemorrhagic strokes. CMBs were defined as focal areas of round signal loss on T2*-weighted gradient echo planar images with a diameter of less than 10 mm. The locations of CMBs were divided into lobar, basal ganglia, thalamus, brain stem and cerebellum. Multiple logistic regressions were performed to identify the epidemiologic or vascular risk factors associated with symptomatic stroke in patients with CADASIL.ResultsAmong total of 51 subjects in this cohort, CMBs were present in 20 of 32 patients (64.5%) in the symptomatic stroke-group and in 8 of 19 patients (42.1%) in the non-stroke group (p = 0.16). CMBs were observed more frequently in the basal ganglia (p<0.001) and the cerebellum (p<0.018) in the symptomatic stoke group compared to the non-stroke group. The mean number of CMBs was significantly higher in the symptomatic stroke group (15.4±18.0 lesions per patients with CMBs) versus those without symptomatic stroke (3.3±3.0 lesions per patients with CMBs) (p = 0.003). Hypertension was an independent risk factor for symptomatic stroke in CADASIL (p = 0.014). It was independently associated with CMBs locations as basal ganglia (p = 0.016), thalamus (p = 0.010), brainstem (p = 0.044), and cerebellum (p = 0.049). However, It was not independently associated with CMBs on lobar lesion (p = 0.152).ConclusionsIn this study hypertension was an independent predictor of CMBs presence in specific brain locations, as well as symptomatic stroke in the CADASIL patients. The distribution and burden of CMBs might be a clinically useful marker for the risk of symptomatic stroke. However, further prospective studies on the relationship between CMBs distribution and symptomatic stroke are required in order to support these preliminary findings.  相似文献   

3.
4.
5.
Kim Y  Kim JS  Kim G  No YJ  Yoo HW 《Mutation research》2006,593(1-2):116-120
Mutations in the NOTCH3 gene (NOTCH3) are responsible for cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL), an adult-onset hereditary angiopathy leading to ischemic episodes, vascular dementia and other neurologic deficits. All mutations of NOTCH3 described so far are strictly stereotyped, leading to the gain or loss of a cysteine residue in a given epidermal growth factor (EGF)-like repeat of NOTCH3. We report two novel mutations of NOTCH3, R587C and C988Y, each resulting in an odd number of cysteine residues in an EGF-like repeat of NOTCH3. We identified these mutations in two unrelated Korean families with CADASIL, who presented with magnetic resonance imaging (MRI) abnormalities typical of CADASIL. These findings confirm that mutations in NOTCH3 are associated with the pathogenesis of CADASIL across different ethnic backgrounds.  相似文献   

6.
Calmodulin (CaM) is an intracellular cooperative calcium-binding protein essential for activating many diverse target proteins. Biophysical studies of the calcium-induced conformational changes of CaM disagree on the structure of the linker between domains and possible orientations of the domains. Molecular dynamics studies have predicted that Ca4(2+)CaM is in equilibrium between an extended and compact conformation and that Arg74 and Arg90 are critical to the compaction process. In this study gel permeation chromatography was used to resolve calcium-induced changes in the hydrated shape of CaM at pH 7.4 and 5.6. Results showed that mutation of Arg 74 to Ala increases the R(s) as predicted; however, the average separation of domains in Ca4(2+)-CaM was larger than predicted by molecular dynamics. Mutation of Arg90 to Ala or Gly affected the dimensions of apo-CaM more than those of Ca4(2+)-CaM. Calcium binding to CaM and mutants (R74A-CaM, R90A-CaM, and R90G-CaM) lowered the Stokes radius (R(s)). Differences between R(s) values reported here and Rg values determined by small-angle x-ray scattering studies illustrate the importance of using multiple techniques to explore the solution properties of a flexible protein such as CaM.  相似文献   

7.
Three polyphosphorylated dinucleosides given the pseudonyms of HS3, HS2, and HS1 that were erroneously described as diguanosine polyphosphates (LéJohn, H. B., Cameron, L. E., McNaughton, D. R. & Klassen, G. R. (1975) Biochem, Biophys, Res, Commun. 66, 460-467) have been repurified and partially recharacterized. They have proved to be extremely complex molecules; chemical (HCl and KOH hydrolysis), physical (ultraviolet-light spectral analysis and ion-exchange chromatography), and enzymic (nucleotide pyrophosphatase and bacterial alkaline phosphatase hydrolysis) studies showed that (i) all three HS compounds are uracil rich and (ii) only HS3 contains a purine nucleoside and glutamate. The partial structure of HS3 was deciphered as a moiety of ADP--sugar X--glutamate (the mode of attachment of glutamate is obscure) that is covalently linked to another moiety composed of UDP, mannitol, and four phosphates. Sugar X had chromatographic characteristics of ribitol, but the chromatographic isolate also contained a ninhydrin-sensitive entity presumed to be an amino group. Sugar X, THEREFore, may be an amino sugar polyol. Only the general chemical compositions of HS2 and HS1 were determined. Each contained two uridines and HS2 had 10 phosphates whereas HS1 had 12.  相似文献   

8.
Meng Q  Lv J  Ge H  Zhang L  Xue F  Zhu Y  Liu P 《Molecular biology reports》2012,39(5):5867-5873
Mutations in the coding region of the OPTN gene are associated with certain glaucomas. Although the function of the optineurin protein is yet to be elucidated, the most common mutation, E50K, is associated with a severe phenotype. Plasmids expressing wild-type Optineurin (WT) and mutant Optineurin(E50K) were transfected into RGC-5 and monitored by immunofluorescence staining and western blotting. The mutant Optineurin(E50K) induced the death of retinal ganglion cells by generation of reactive oxygen species accompanied disruption of mitochondrial transmembrane potential, down-regulation of bcl-2, and up-regulation of bax, which led to the release of cytochrome C from the mitochondria into the cytosol, which, in turn, resulted in the activation of caspase-9 and caspase-3, indicating that mutant Optineurin(E50K) acquired the ability to induce cell death through the mitochondrial caspase-dependent cell death pathway.  相似文献   

9.
10.
The mechanistic target of rapamycin complex 1 (mTORC1) increases translation, cell size and angiogenesis, and inhibits autophagy. mTORC1 is negatively regulated by hamartin and tuberin, the protein products of the tumor suppressors TSC1 and TSC2 that are mutated in Tuberous Sclerosis Complex (TSC) and sporadic Lymphangioleiomyomatosis (LAM). Hamartin interacts with the centrosomal and mitotic kinase polo-like kinase 1 (PLK1). Hamartin and tuberin deficient cells have abnormalities in centrosome duplication, mitotic progression, and cytokinesis, suggesting that the hamartin/tuberin heterodimer and mTORC1 signaling are involved in centrosome biology and mitosis. Here we report that PLK1 protein levels are increased in hamartin and tuberin deficient cells and LAM patient-derived specimens, and that this increase is rapamycin-sensitive. Pharmacological inhibition of PLK1 by the small-molecule inhibitor BI-2536 significantly decreased the viability and clonogenic survival of hamartin and tuberin deficient cells, which was associated with increased apoptosis. BI-2536 increased p62, LC3B-I and GFP-LC3 punctae, and inhibited HBSS-induced degradation of p62, suggesting that PLK1 inhibition attenuates autophagy. Finally, PLK1 inhibition repressed the expression and protein levels of key autophagy genes and proteins and the protein levels of Bcl-2 family members, suggesting that PLK1 regulates both autophagic and apoptotic responses. Taken together, our data point toward a previously unrecognized role of PLK1 on the survival of cells with mTORC1 hyperactivation, and the potential use of PLK1 inhibitors as novel therapeutics for tumors with dysregulated mTORC1 signaling, including TSC and LAM.  相似文献   

11.
Kim IS  Kim SJ  Lee JK  Li QR  Jung YH 《Carbohydrate research》2007,342(11):1502-1509
A stereoselective approach for synthesizing (2R,5S)-dihydroxymethyl-(3R,4R)-dihydroxypyrrolidine 1 (2,5-dideoxy-2,5-imino-d-glucitol, DGDP) was achieved using a seven-step approach starting from 2,3,4,6-tetra-O-benzyl-d-mannose (7). Key steps for the preparation of the title compound 1 involved the regioselective and diastereoselective amination of the cinnamyl anti-1,2-polybenzyl ethers 5 and 6 using chlorosulfonyl isocyanate (CSI) and ring cyclization to form the pyrrolidine ring. The reaction between anti-1,2-polybenzyl ether 5 and CSI in toluene at 0 degrees C afforded the corresponding anti-1,2-amino alcohol 4 as a major product with a diastereoselectivity of 16:1 in 76% yield. The mechanism underlying these reactions may be explained by the neighboring-group effect leading to the retention of stereochemistry.  相似文献   

12.
β-methylaspartate ammonia-lyase, EC 4.3.1.2, (β-methylaspartase) from Clostridium tetanomorphum was used to produce a 40/60 molar ratio of (2S,3R) and (2S,3S)-3-methylaspartic acids, 2a and 2b , respectively, from mesaconic acid 1 as substrate, on a large scale. To prepare (3R,4R)-3-methyl-4-(benzyloxycarbonyl)-2-oxetanone (benzyl 3-methylmalolactonate) 6, 2a and 2b were transformed, in the first step, into 2-bromo-3-methylsuccinic acids 3a and 3b and separated. After three further steps, (2S,3S)- 3a yielded the α,β-substituted β-lactone (3R,4R) 6 with a very high diastereoisomeric excess (>95% by chiral gas chromatography). The corresponding crystalline polymer, poly[benzyl β-(2R,3S)-3-methylmalate] 8 , prepared by an anionic ring opening polymerization, was highly isotactic as determined by 13C NMR. Catalytic hydrogenolysis of lactone 6 yielded (3R,4R)-3-methyl-4-carboxy-2-oxetanone (3-methylmalolactonic acid) 7 , to which reactive, chiral, or bioactive molecules can be attached through ester bonds leading to polymers with possible therapeutic applications. Because of the ability of β-methylaspartase to catalyse both syn- and anti-elimination of ammonia from (2S,3RS)-3-methylaspartic acid 2ab at different rates, the (2S,3R)-stereoisomer 2a was retained and isolated for further reactions. These results permit the use of the chemoenzymatic route for the preparation of both optically active and racemic polymers of 3-methylmalic acid with well-defined enantiomeric and diastereoisomeric compositions. Chirality 10:727–733, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

13.
14.
构建人SUMO3基因K11R突变体的真核表达质粒并对其进行功能鉴定。方法:PCR扩增人SUMO3基因,将其克隆入真核表达载体pEGFP-C1内,构建含人SUMO基因K11R突变体的真核表达质粒pEGFP-SUMO3-K11R。使用真核转染,Western blot和免疫荧光实验的方法,鉴定SUMO-K11R在真核细胞中的表达和功能。结果:克隆的人SUMO-K11R基因,测序结果显示完全正确。瞬时转染真核细胞后,Western blot在预期的位置检测出目的条带,免疫荧光实验显示SUMO3-K11R突变体蛋白其功能与SUMO1蛋白相似,可作为研究SUMO1蛋白和SUMO3蛋白功能差异的有力工具。结论:成功构建了含人SUMO-K11R基因的真核表达质粒。  相似文献   

15.
(R)-Ethyl-3-hydroxyglutarate, (R)-3, is an intermediate in the synthesis of the statin side chain. Here, a new two-step, indirect biotransformation pathway involving the formation of ethyl (R)-4-carbamoyl-3-hydroxybutanoate, (R)-2, as an intermediate for (R)-3 production was developed using Rhodococcus boritolerans with ethyl (R)-4-cyano-3-hydroxybutyate, (R)-1, as substrate. Maximum conversion was with 10?g (R)-1/l, 7?g cells/l (dry wt), pH 7.5 and 25°C. A yield of 98?±?0.5% (w/w) was attained within 8?h.  相似文献   

16.
17.
The Henry reaction with the easily available alpha-d-xylo-pentodialdose afforded a diastereomeric mixture of nitroaldoses with the alpha-d-gluco- and beta-l-ido-configuration, respectively, in good yield. When n-BuLi was used as the base, the reaction afforded the alpha-d-gluco-nitroaldose as the only product. The reduction of the nitro group in the alpha-d-gluco- and beta-l-ido-nitroaldoses, removal of the protecting groups and intramolecular reductive cyclo-amination afforded the corresponding (2S,3R,4R,5R) and (2S,3R,4R,5S) tetrahydroxyazepanes.  相似文献   

18.
一株高产PLC的CW-W-90-3菌的鉴定   总被引:5,自引:1,他引:5  
198 9年 ,筛选了 1株高产 phospholipaseC(PLC)的CW W 90 3菌株[1,2 ] ,据其形态特征、生理生化反应 ,初步将其归于弧菌科气单胞菌属[3 ] ,由于该菌株的许多生理生化特性与粘质沙雷氏菌相同。但其极生单鞭毛和无色素及少许生理生化特性与粘质沙雷氏菌相异。后经AutomatedBacteriaIdentificationSystem BiologMicroStationSystem检测 96种C源和N源的利用及其个体群体发育 ,说明其与粘质沙雷氏菌 (Serratiamarcescens)相符 ;并在基因组水平上研究该菌株的系统发育 ,从分子水平上对该菌株进行 16SrRNA序列分析煌同源性比较。根据CW W 90 3菌株 16SrRNA与GeneBank数据库中Serratiamarcescens的 16SrRNA的序列具有 99%的同源性 ,终将CW W 90 3菌株鉴定为粘质沙雷氏菌武汉株 (SerratiamarcescensWuhanstrain)。  相似文献   

19.
20.
Maintenance of self-renewal and pluripotency in mouse embryonic stem cells (mESCs) is regulated by the balance between several extrinsic signaling pathways. Recently, we demonstrated that heparan sulfate (HS) chains play important roles in the maintenance and differentiation of mESCs by regulating extrinsic signaling. Sulfated HS structures are modified by various sulfotransferases during development. However, the significance of specific HS structures during development remains unclear. Here, we show that 3-O-sulfated HS structures synthesized by HS 3-O-sulfotransferases (3OSTs) and recognized by the antibody HS4C3 increase during differentiation of mESCs. Furthermore, expression of Fas on the cell surface of the differentiated cells also increased. Overexpression of the HS4C3-binding epitope in mESCs induced apoptosis and spontaneous differentiation even in the presence of LIF and serum. These data showed that the HS4C3-binding epitope was required for differentiation of mESCs. Up-regulation of the HS4C3-binding epitope resulted in the recruitment of Fas from the cytoplasm to lipid rafts on the cell surface followed by activation of Fas signaling. Indeed, the HS4C3-binding epitope interacted with a region that included the heparin-binding domain (KLRRRVH) of Fas. Reduced self-renewal capability in cells overexpressing 3OST resulted from the degradation of Nanog by activated caspase-3, which is downstream of Fas signaling, and was rescued by the inhibition of Fas signaling. We also found that knockdown of 3OST and inhibition of Fas signaling reduced the potential for differentiation into the three germ layers during embryoid body formation. This is the first demonstration that activation of Fas signaling is mediated by an increase in the HS4C3-binding epitope and indicates a novel signaling pathway for differentiation in mESCs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号