首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hypoxia/reoxygenation (H/R) is an important in vitro model for exploring the molecular mechanisms and functions of autophagy during myocardial ischemia/reperfusion (I/R). Alpha-lipoic acid (LA) plays an important role in the etiology of cardiovascular disease. Autophagy is widely implicated in myocardial I/R injury. We assessed the degree of autophagy by pretreatment with LA exposed to H/R in H9c2 cell based on the expression levels of Beclin-1, LC3II/LC3I, and green fluorescent protein-labeled LC3 fusion proteins. Autophagic vacuoles were confirmed in H9c2 cells exposed to H/R using transmission electron microscopy. Our findings indicated that pretreatment with LA inhibited the degree of autophagy in parallel to the enhanced cell survival and decreased total cell death in H9c2 cells exposed to H/R. We conclude that LA protects cardiomyocytes against H/R injury by inhibiting autophagy.  相似文献   

2.
脂联素对乳鼠心肌细胞缺氧/复氧损伤的保护作用   总被引:1,自引:0,他引:1  
本研究通过在大鼠乳鼠心室肌细胞上建立缺氧/复氧(hypoxia/reoxygenation,H/R)模型,模拟在体心肌缺血/再灌注损伤,观察脂联素(adiponectin,APN)对心肌细胞H/R损伤的影响,并探讨其作用机制。采用胰蛋白酶消化法原代培养乳鼠心室肌细胞,α-肌动蛋白免疫荧光法进行鉴定。选用培养72h的单层心肌细胞进行实验,随机分为5组:对照组、单纯H/R组、H/R+APN组、H/R+APN+腺苷酸活化蛋白激酶(AMP-activated protein kinase,AMPK)特异性抑制剂阿糖胞苷(AraA)组、H/R+AraA组。观察各组心肌细胞形态及自发搏动频率,用琼脂糖凝胶电泳和流式细胞术检测各组心肌细胞凋亡情况,并测定细胞丙二醛(MDA)含量及培养液中超氧化物歧化酶(SOD)活性,激光共聚焦显微镜观察心肌细胞内钙荧光强度,Western blot检测各组心肌细胞AMPK磷酸化水平。结果显示,与对照组相比,单纯H/R组细胞生长状态较差,搏动频率减慢甚至消失,DNA电泳呈凋亡特征性的梯状条带,细胞凋亡率显著增加,胞浆MDA水平增高,上清液中SOD活性下降,胞内钙荧光强度明显增高,AMPK磷酸化水平升高(P0.05)。与H/R组细胞相比,APN预处理后再进行H/R的心肌细胞搏动频率较快,凋亡率明显减少,MDA水平明显下降,SOD活性明显升高,心肌细胞AMPK磷酸化水平明显增高(P0.05)。AraA可以阻断APN的上述保护作用。以上结果表明,APN可减轻H/R导致的心肌细胞凋亡,减轻脂质过氧化及细胞内钙超载,这一保护作用可能与AMPK途径激活有关。  相似文献   

3.
The inhibitory effects of Chinonin, a natural antioxidant extracted from a Chinese medicine, on apoptotic and necrotic cell death of cardiomyocytes in hypoxia-reoxygenation process were observed in this study. The possible mechanisms of Chinonin on scavenging reactive oxygen species and regulating apoptotic related genes bcl-2 and p53 were also investigated. Neonatal rat cardiomyocytes were subjected to 24-h hypoxia and 4-h reoxygenation. Cell death was evaluated by DNA electrophoresis on agarose gel, cell death ELISA and annexin-V-FLUOS/propidium iodide (PI) double staining cytometry. Hypoxia caused the increase of apoptotic rates and the release of lactate dehydrogenase (LDH), while reoxygenation not only further increased the apoptotic rates and leakage of LDH, but also induced necrosis of cardiomyocytes. In addition, hypoxia increased the levels of NO(2)(-)/NO(3)(-) and thiobarbituric acid reacted substances (TBARS), while reoxygenation decreased NO(2)(-)/NO(3)(-), but further increased TBARS in the cultured media. Moreover, hypoxia up-regulated the expression levels of bcl-2 and p53 proteins, while reoxygenation down-regulated bcl-2 and further up-regulated p53. Chinonin significantly decreased the rates of apoptotic and necrotic cardiomyocytes, and inhibited the leakage of LDH. It also diminished NO(2)(-)/NO(3)(-) and TBARS, down-regulated the expression level of p53 protein, and up-regulated bcl-2 protein, respectively. The results suggest that Chinonin has preventive effects against apoptotic and necrotic cell death and its protective mechanisms are related to the antioxidant properties of scavenging nitric oxide and oxygen free radicals, and the modulating effects on the expression levels of bcl-2 and p53 proteins.  相似文献   

4.
Although anoxic preconditioning (APC) in the myocardium has been investigated for many years, its physiological mechanism is still not completely understood. Increasing evidence indicates that transiently increased resistance to ischemic damage following APC is dependent on de novo proteins synthesis. However, the key effector pathway(s) associated with APC still remains unclear. The proto-oncogene Pim kinase belongs to a serine/threoine protein kinase family, consists of Pim-1, Pim-2 and Pim-3 and has been implicated in stimulating cell growth and inhibiting cell apoptosis. Therefore we assumed that Pim-3 expression might be aberrantly induced in cardiomyocytes that were subjected to anoxia/reoxygenation (A/R) injury and that Pim-3 might also contribute to cardio-protection after APC. To address this hypothesis, we cloned a Pim-3 expression vector, transfected it into rat cardiomyocytes, and examined Pim-3 expression in rat cardiomyocytes that were subjected to A/R injury. Moreover, we studied the role of three major MAPK pathways, e.g. p38 MAPK, JNK, and ERK1/2, in order to evaluate the molecular mechanism underlying Pim-3 up-regulation and A/R induced cardiomyocyte injury. Our experiments showed that APC induced an up-regulation of Pim-3 and the transfection of Pim-3 gene into the cardiomyocytes attenuated A/R injury. The inhibition of p38 MAPK by SB203580 abolished both the Pim-3 up-regulation and the cardio-protection provided by APC. Overall, these results suggest that APC could act to protect the heart from A/R injury with cooperation from the proto-oncogene Pim-3; in addition, it up-regulates Pim-3 expression through a p38 MAPK signaling pathway.  相似文献   

5.
《Genomics》2020,112(1):574-580
BackgroundlncUCA1 is abundantly expressed in the heart, indicating it may be important in maintaining normal myocardial function. However, the underlying mechanism of lncUCA1 in heart disease, particularly myocardial infarction (MI), is still in its infancy.MethodsLncUCA1 and miR-143 expression were measured in hearts of MI models. Overexpression and knockdown of lncUCA1 in neonatal rat cardiomyocytes were performed to confirm the effects of lncUCA1 in hypoxia-induced apoptosis.ResultsThe expression of lncUCA1 decreased but miR-143 increased inversely in MI heart. Overexpressing lncUCA1 protected cardiomyocytes from H/R induced apoptosis via inhibiting miR-143, which regulates apoptosis by targeting MDM2/p53 pathway. While silencing lncUCA1 caused miR-143 upregulation and H/R-induced apoptosis increase. Moreover, miR-143 was proved to be a competitive target of lncUCA1.ConclusionslncUCA1 might protect cardiomyocyte against H/R induced apoptosis by suppressing miR-143 and modulated the following downstream MDM2/p53 signaling pathway, indicating the therapeutic potential of targeting lncUCA1 for MI.  相似文献   

6.
We assessed the effect of acidosis on cell killing during anoxia and reoxygenation in cultured rat neonatal cardiac myocytes. After 4.5 hours of anoxia and glycolytic inhibition with 2-deoxyglucose, loss of viability was greater than 90% at pH 7.4. In contrast, at pH 6.2-7.0, viability was virtually unchanged. To model changes of pH and oxygenation during ischemia and reperfusion, myocytes were made anoxic at pH 6.2 for 4 hours, followed by reoxygenation at pH 7.4. Under these conditions, reoxygenation precipitated loss of viability to about half the cells. When pH was increased to 7.4 without reoxygenation, similar lethal injury occurred. No cell killing occurred after reoxygenation at pH 6.2. We conclude that acidosis protects against lethal anoxic injury, and that a rapid return from acidotic to physiologic pH contributes significantly to reperfusion injury to cardiac myocytes - a 'pH paradox'.  相似文献   

7.
MEKK3 is a member of MAP3K, which plays a pivotal role in cardiac diseases. In this study, we aimed to investigate the effects and potential mechanisms of MEKK3 on hypoxia/reoxygenation (H/R) injury of cardiomyocytes. After exposing H9C2 cells to H/R insult, real-time polymerase chain reaction and western blot analysis showed that MEKK3 was highly expressed. Cell viability, cell apoptosis, caspase 3/7 activity, and cleaved-caspase 3 expression were tested using a CCK-8 assay, Cell Death Detection PLUS ELISA, Caspase-Glo 3/7 Assay Kit and western blot analysis, respectively. Mitochondrial membrane potential, cytochrome C expression, adenosine triphosphate (ATP), and reactive oxygen species also were measured using JC-1 staining, western blot analysis, an ATP Assay Kit, and DCFH 2-DA staining, respectively. The messenger RNA (mRNA) levels and secretions of TNF-α, IL-6, and IL-1β were evaluated. The results revealed that MEKK3 silencing promoted cell survival and attenuated lactate dehydrogenase leakage, cell apoptosis, caspase 3/7 activity, and the protein level of cleaved-caspase 3. Moreover, knockdown of MEKK3 blocked mitochondrial impairment by inhibiting the loss of mitochondrial membrane potential and cytochrome C expression as well as promoting ATP synthesis. MEKK3 deficiency led to a decrease in reactive oxygen species and malondialdehyde (MDA) generation and an increase in superoxide dismutase (SOD) activity. Deletion of MEKK3 led to reduced inflammatory cytokines in mRNA level and secretion. MEKK3 suppression activated the sonic hedgehog (Shh) signaling pathway in H9C2 cells. After blocking the Shh signaling pathway with a specific inhibitor, cyclopamine, the cardioprotective functions of MEKK3 downregulation were partly abolished. In conclusion, downregulation of MEKK3 prevented apoptosis and inflammation in H9C2 cells via the Shh signaling pathway.  相似文献   

8.
Ginsenoside Rg1 is a major active ingredient of Panax notoginseng radix which has demonstrated a number of pharmacological actions including a cardioprotective effect in vivo. This study investigated the protective effect and mechanism of ginsenoside Rg1 in cardiomyocytes hypoxia/reoxygenation (H/R) model. Pretreatment with ginsenoside Rg1 (60–120 µM) reduced lactate dehydrogenase release and increased cell viability in a dose‐dependent manner. Fluorescence analysis demonstrated ginsenoside Rg1 reduced intracellular ROS and suppressed the intracellular [Ca2+] level. Cell lysate detected an increase of T‐SOD, CAT, and GSH levels. The myocardial protection of ginsenoside Rg1 during H/R is partially due to its antioxidative effect and intracellular calcium homeostasis. J. Cell. Biochem. 108: 117–124, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

9.
Objective To investigate the effect of siRNA against PTP-1B on neonatal rat cardiac myocyte apoptosis induced by hypoxia-reoxygenation (H/R) and its molecular mechanisms. Methods Isolated neonatal and adult rat cardiac myocytes were cultured for 24 h after PTP-1B siRNA transfection, and with 2, 4 and 6 h of hypoxia followed by 6 h of reoxygenation (H/R). The cardiac myocyte apoptosis induced by the treatments was assessed by TUNEL staining. Levels of PTP-1B and phospho-Akt were determined by Western blot, colorimetric assay kits were used to measure activities of caspase-3 and 8, and co-immunoprecipitation was used to check the amount of PTP-1B bound to FasR. Sodium orthovanadate, a general pharmacological phosphatase blocker and LY294002, an inhibitor of PI3-kinase/Akt pathway, were respectively used to inhibit PTP-1B and Akt activity. Results H/R resulted in severe injury in cultured rat cardiomyocytes and upregulated PTP-1B expression. However, siRNA against PTP-1B significantly decreased the number of apoptotic cardiomyocytes induced by 4H/6R as compared with cells without siRNA treatment (Apoptotic index: 12.1 ± 1.4% vs. 23.2 ± 1.6%, P < 0.05), along with greater phosphorylation of Akt, reduced activities of caspase-3 and 8, and the lower association of PTP-1B with FasR. Vanadate and LY294002 also partly reduced apoptosis of cardiomyocytes induced by 4H/6R. Conclusions PTP-1B is a key regulator of apoptosis of cardiomyocytes induced by H/R, and siRNA against PTP-1B effectively protects cardiomyocytes against H/R injury, the mechanisms of which might be associated with Akt activation, the reduction of both caspase-3 and 8 activities, and the lower amount of PTP-1B bound to FasR.  相似文献   

10.
11.
Hypoxia/reoxygenation causes cell death, yet the underlying regulatory mechanisms remain partially understood. Recent studies demonstrate that hypoxia/reoxygenation can activate death receptor and mitochondria-dependent apoptotic pathways, involving Bid and Bax mitochondrial translocation and cytochrome c release. Using mouse lung endothelial cells (MLEC), we examined the role of FLIP, an inhibitor of caspase 8, in hypoxia/reoxygenation-induced cell death. FLIP protected MLEC against hypoxia/reoxygenation by blocking both caspase 8/Bid and Bax/mitochondrial apoptotic pathways. FLIP inhibited Bax activation in wild-type and Bid(-/-) MLEC, indicating independence from the caspase 8/Bid pathway. FLIP also inhibited the expression and activation of protein kinase C (PKC) (alpha, zeta) during hypoxia/reoxygenation and promoted an association of inactive forms of PKC with Bax. Surprisingly, FLIP expression also inhibited death-inducing signal complex (DISC) formation in the plasma membrane and promoted the accumulation of the DISC in the Golgi apparatus. FLIP expression also upregulated Bcl-X(L), an antiapoptotic protein. In conclusion, FLIP decreased DISC formation in the plasma membrane by blocking its translocation from the Golgi apparatus and inhibited Bax activation through a novel PKC-dependent mechanism. The inhibitory effects of FLIP on Bax activation and plasma membrane DISC formation may play significant roles in protecting endothelial cells from the lethal effects of hypoxia/reoxygenation.  相似文献   

12.
Acute myocardial infarction is regarded as myocardial necrosis resulting from myocardial ischemia/reperfusion (I/R) damage and retains a major cause of mortality. Neferine, which was extracted from the green embryos of mature seeds of Nelumbo nucifera Gaertn., has been reported to possess a broad range of biological activities. However, its underlying mechanism on the protective effect of I/R has not been fully clarified. A hypoxia/reoxygenation (H/R) model with H9c2 cells closely simulating myocardial I/R injury was used as a cellular model. This study intended to research the effects and mechanism underlying neferine on H9c2 cells in response to H/R stimulation. Cell Counting Kit-8 and lactate dehydrogenase (LDH) release assays were employed to measure cell viability and LDH, respectively. Apoptosis and reactive oxygen species (ROS) were determined by flow cytometry analysis. Oxidative stress was evaluated by detecting malondialdehyde, superoxide dismutase, and catalase. Mitochondrial function was assessed by mitochondrial membrane potential, ATP content, and mitochondrial ROS. Western blot analysis was performed to examine the expression of related proteins. The results showed that hypoxia/reoxygenation (H/R)-induced cell damage, all of which were distinctly reversed by neferine. Moreover, we observed that neferine inhibited oxidative stress and mitochondrial dysfunction induced by H/R in H9c2 that were concomitant with increased sirtuin-1 (SITR1), nuclear factor erythroid 2-related factor 2 (Nrf2), and heme oxygenase-1 expression. On the contrary, silencing the SIRT1 gene with its small interferingRNA eliminated the beneficial effects of neferine. It is concluded that neferine preconditioning attenuated H/R-induced cardiac damage via suppressing apoptosis, oxidative stress, and mitochondrial dysfunction, which may be partially ascribed to the activation of SIRT1/Nrf2 signaling pathway.  相似文献   

13.
Cardiovascular tissue injury in ischemia/reperfusion has been shown to be prevented by angiotensin-converting enzyme (ACE) inhibitors. However, the mechanism on endothelial cells has not been assessed in detail. Cultured human aortic endothelial cells (HAEC) were exposed to hypoxia with or without reoxygenation. Hypoxia enhanced apoptosis along with the activation of caspase-3. Reoxygenation increased lactate dehydrogenase release time-dependently, along with an increase of intracellular oxygen radicals. ACE inhibitor quinaprilat and bradykinin significantly lessened apoptosis and lactate dehydrogenase release with these effects being diminished by a kinin B2 receptor antagonist and a nitric oxide synthase inhibitor. In conclusion, hypoxia activated the suicide pathway leading to apoptosis of HAEC by enhancing caspase-3 activity, while subsequent reoxygenation induced necrosis by enhancing oxygen radical production. Quinaprilat could ameliorate both apoptosis and necrosis through the upregulation of constitutive endothelial nitric oxide synthase via an increase of bradykinin, with the resulting increase of nitric oxide.  相似文献   

14.
The calcium-sensing receptor (CaSR) exists in many tissues, and its expression has been identified in rat cardiac tissue. However, the physiological importance and pathophysiological involvement of CaSR in homeostatic regulation of cardiac function are unclear. To investigate the relation of CaSR and apoptosis in cardiomyocytes, we examined the role of the CaSR activator gadolinium chloride (GdCl(3)) in rat neonatal ventricular cardiomyocytes. Expression of the CaSR protein was observed by Western blot. The apoptotic ratio of rat neonatal ventricular cardiomyocytes was measured with flow cytometry and immunofluorescence techniques. A laser scan confocal microscope was used to detect the intracellular concentration of calcium ([Ca(2+)](i)) in rat neonatal ventricular cardiomyocytes using the acetoxymethyl ester of fluo-3 (fluo-3/(AM)) as a fluorescent dye. The results showed that GdCl(3) increased the phosphorylation of extracellular signal-regulated protein kinase (ERK), c-Jun NH(2)-terminal protein kinases (JNK), and p38. GdCl(3) also activated caspase 9 and increased apoptosis in myocyte by increasing [Ca(2+)](i). In conclusion, these results suggest that CaSR promotes cardiomyocyte apoptosis in rat neonatal ventricular cardiomyocytes through activation of mitogen-activated protein kinases and caspase 9 signaling pathways.  相似文献   

15.
Endothelial cells (ECs) are directly exposed to hypoxia and contribute to injury during myocardial ischemia/reperfusion. Hypoxic preconditioning (HPC) protects ECs against hypoxia injury. This study aimed to explore whether HPC attenuates hypoxia/reoxygenation (H/R) injury by suppressing excessive endoplasmic reticulum stress (ERS) in cultured microvascular ECs (MVECs) from rat heart. MVECs injury was measured by lactate dehydrogenase (LDH) leakage, cytoskeleton destruction, and apoptosis. Expression of glucose regulating protein 78 (GRP78) and C/EBP homologous protein (CHOP), activation of caspase-12 (pro-apoptosis factors) and phosphorylation of p38 mitogen-activated protein kinase (p38 MAPK) were detected by western blot analysis. HPC attenuated H/R-induced LDH leakage, cytoskeleton destruction, and cell apoptosis, as shown by flow cytometry, Bax/Bcl-2 ratio, caspase-3 activation and terminal deoxynucleotidyl transferase mediated dUTP-biotin nick end labeling. HPC suppressed H/R-induced ERS, as shown by a decrease in expression of GRP78 and CHOP, and caspase-12 activation. HPC enhanced p38 MAPK phosphorylation but decreased that of protein kinase R-like ER kinase (PERK, upstream regulator of CHOP). SB202190 (an inhibitor of p38 MAPK) abolished HPC-induced cytoprotection, downregulation of GRP78 and CHOP, and activation of caspase-12, as well as PERK phosphorylation. HPC may protect MVECs against H/R injury by suppressing CHOP-dependent apoptosis through p38 MAPK mediated downregulation of PERK activation.  相似文献   

16.
腺苷对缺氧/复氧心肌细胞的保护作用   总被引:9,自引:1,他引:9  
本研究旨在探讨腺苷 (adenosine ,ADO)对缺氧 /复氧 (hypoxia/reoxygenation ,H/R)心肌细胞的保护作用及其分子机制。将原代培养的新生大鼠心肌细胞分成H/R对照组和ADO (1 0 μmol/L)保护组。用倒置相差显微镜观察心肌细胞的生长状态。检测两组培养基质乳酸脱氢酶 (LDH)活性和心肌细胞Ca2 + 和丙二醛 (MDA)浓度。用ELISA法检测肿瘤坏死因子 (TNF α)的表达 ,并用凝胶电泳迁移率改变法 (EMSA)测定核因子 (NF κB)结合活性。所得结果如下 :(1)心肌细胞H/R培养后皱缩、变圆 ,伪足减少 ,ADO组心肌细胞的形态变化小于对照组 ;(2 )ADO减少缺氧和复氧期间心肌细胞LDH的漏出 (bothP <0 0 1) ;(3 )ADO降低缺氧和复氧期间心肌细胞内的Ca2 +浓度 (bothP <0 0 1) ;(4)ADO降低缺氧和复氧期间心肌细胞MDA浓度 (bothP <0 0 1) ;(5 )ADO抑制缺氧和复氧期间TNF α的表达 (bothP <0 0 1) ;(6)ADO抑制缺氧和复氧期间心肌细胞NF κB结合活性 (bothP <0 0 1)。以上结果提示 :(1)外源性ADO可减轻心肌细胞的H/R损伤 ;(2 )外源性ADO抑制H/R期间心肌细胞TNF α的表达 ;(3 )外源性ADO可能通过抑制心肌细胞NF κB结合活性下调TNF α的表达  相似文献   

17.
Studies in animal models of myocardial ischemia-reperfusion revealed that the administration of insulin-like growth factor (IGF-1) can provide substantial cardioprotective effect. However, the mechanisms by which IGF-1 prevents myocardial ischemia-reperfusion injury are not fully understood. This study addresses whether mitochondrial bioenergetic pathways are involved in the cardioprotective effects of IGF-1. Single cardiomyocytes from adult rats were incubated in the absence or presence of IGF-1 for 60 min and subjected to 60 min hypoxia followed by 30 min reoxygenation at 37°C. Mitochondrial function was evaluated by assessment of enzyme activities of oxidative phosphorylation and Krebs cycle pathways. Hypoxia/reoxygenation (HR) caused significant inhibition of mitochondrial respiratory complex IV and V activities and of the Krebs cycle enzyme citrate synthase, whereas pretreatment with IGF-1 maintained enzyme activities in myocytes at or near control levels. Mitochondrial membrane potential, evaluated with JC-1 staining, was significantly higher in IGF-1 + HR- treated myocytes than in HR alone, with levels similar to those found in normal control cardiomyocytes. In addition, IGF-1 reduced both HR-induced lactate dehydrogenase (LDH) release and malondialdehyde production (an indicator of lipid peroxidation) in cardiomyocytes. These results suggest that IGF-1 protects cardiomyocytes from HR injury via stabilizing mitochondria and reducing reactive oxidative species (ROS) damage.  相似文献   

18.
目的:探讨右美托咪定(Dex)对缺氧/复氧所致的A549细胞(起源于肺泡Ⅱ型上皮细胞系)损伤及对CCAAT/增强子结合蛋白同源蛋白(CHOP)表达的影响。方法:将处于对数生长期的A549细胞随机分为4组(n=10):常氧培养组(N组),Dex常氧组(D组),缺氧/复氧组(H组),缺氧/复氧+Dex组(HD组)。D组和HD组在造模开始时加入1 nmol/L Dex,N组和D组细胞常氧培养30 h,H组和HD组细胞缺氧6 h,复氧24 h。之后用倒置显微镜观察细胞形态学变化。采用CCK-8法检测A549细胞活力。原位末端标记(TUNEL)法检测A549细胞的凋亡指数(AI)。蛋白免疫印迹法(Western blot)和逆转录-聚合酶链反应(RT-PCR)分别检测A549细胞CHOP、Grp78、caspase-3蛋白和CHOP、Grp78 mRNA表达水平。结果:与N组比较,H组细胞数量减少,细胞形态发生改变。A549细胞的吸光度值明显下降(P<0.01),AI值升高(P<0.01),凋亡细胞数明显增加。CHOP、Grp78、caspase-3蛋白和CHOP、Grp78 mRNA表达显著上升(P<0.01)。与H组相比,HD组细胞损伤减轻,吸光度值上调(P<0.01),凋亡细胞数明显减少(P<0.01)。CHOP、caspase-3蛋白,CHOP mRNA表达降低(P<0.01)。结论:Dex可有效减少缺氧/复氧引起的A549细胞凋亡,其机制可能与Dex对抗CHOP信号通路所致的凋亡有关。  相似文献   

19.
MicroRNAs and autophagy play critical roles in cardiac hypoxia/reoxygenation (H/R)‐induced injury. Here, we investigated the function of miR‐21 in regulating autophagy and identified the potential molecular mechanisms involved. To determine the role of miR‐21 in regulating autophagy, H9c2 cells were divided into the following six groups: control group, H/R group, (miR‐21+ H/R) group, (miR‐21‐negative control + H/R) group, (BEZ235+ H/R) group and (miR‐21+ BEZ235+ H/R) group. The cells underwent hypoxia for 1 hr and reoxygenation for 3 hrs. Cell count kit‐8 was used to evaluate cell function and apoptosis was analysed by Western blotting. Western blotting and transmission electron microscopy were used to investigate autophagy. We found that miR‐21 expression was down‐regulated, and autophagy was remarkably increased in H9c2 cells during H/R injury. Overexpression of miR‐21 with a miR‐21 precursor significantly inhibited autophagic activity and decreased apoptosis, accompanied by the activation of the AKT/mTOR pathway. In addition, treatment with BEZ235, a novel dual Akt/mTOR inhibitor, resulted in a significant increase in autophagy and apoptosis. However, we found that miR‐21‐mediated inhibition of apoptosis and autophagy was partly independent of Akt/mTOR activation, as demonstrated in cells treated with both miR‐21 and BEZ235. We showed that miR‐21 could inhibit H/R‐induced autophagy and apoptosis, which may be at least partially mediated by the Akt/mTOR signalling pathway.  相似文献   

20.
It has been shown that cell-to-cell chemical coupling may persist during severe myocardial hypoxia or ischemia. We aimed to analyze the effects of different, chemically unrelated gap junction uncouplers on the progression of ischemic injury in hypoxic myocardium. First, we analyzed the effects of heptanol, 18alpha-glycyrrhetinic acid, and palmitoleic acid on intracellular Ca2+ concentration during simulated hypoxia (2 mM NaCN) in isolated cardiomyocytes. Next, we analyzed their effects on developed and diastolic tension and electrical impedance in 47 isolated rat hearts submitted to 40 min of hypoxia and reoxygenation. All treatments were applied only during the hypoxic period. Cell injury was determined by lactate dehydrogenase (LDH) release. Heptanol, but not 18alpha-glycyrrhetinic acid nor palmitoleic acid, attenuated the increase in cytosolic Ca2+ concentration induced by simulated ischemia in cardiomyocytes and delayed rigor development (rigor onset at 7.31 +/- 0.71 min in controls vs. 14.76 +/- 1.44 in heptanol-treated hearts, P < 0.001) and the onset of the marked changes in electrical impedance (tissue resistivity: 4.02 +/- 0.29 vs. 7.75 +/- 1.84 min, P = 0.016) in hypoxic rat hearts. LDH release from hypoxic hearts was minimal and was not significantly modified by drugs. However, all gap junction uncouplers, given during hypoxia, attenuated LDH release during subsequent reoxygenation. Dose-response analysis showed that increasing heptanol concentration beyond the level associated with maximal effects on cell coupling resulted in further protection against hypoxic injury. In conclusion, gap junction uncoupling during hypoxia has a protective effect on cell death occurring upon subsequent reoxygenation, and heptanol has, in addition, a marked protective effect independent of its uncoupling actions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号