首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Alanine racemases are ubiquitous, almost uniquely prokaryotic enzymes catalyzing the racemization between l- and d-alanine. The requirement for d-alanine as a necessary component of the bacterial cell wall makes this class of enzymes a logical target for the development of novel antibiotics. In an effort to better understand the structure and mechanism of these enzymes, we have cloned the two independent alanine racemases from Pseudomonas aeruginosa, an important opportunistic bacterial pathogen of humans and animals. The dadX(PA) and alr(PA) genes have been sequenced, overexpressed, and their activity was demonstrated by complementing d-alanine auxotrophs of Escherichia coli. Both gene products were purified to electrophoretic homogeneity, the enzymes were characterized biochemically, and preliminary crystals were obtained.  相似文献   

2.
Chromate-hypersensitive mutants of the Pseudomonas aeruginosa PAO1 strain were isolated using transposon-insertion mutagenesis. Comparison of the nucleotide sequences of the regions interrupted in the mutants with the PAO1 genome revealed that the genes affected in three mutant strains were oprE (ORF PA0291), rmlA (ORF PA5163), and ftsK (ORF PA2615), respectively. A relationship of these genes with chromate tolerance has not been previously reported. No other phenotypic changes were observed in the oprE mutant but its resistance to chromate was not fully restored by expressing the ChrA protein, which extrudes chromate ions from the cytoplasm to the periplasmic space. These data suggest that OprE participates in the efflux of chromate from the periplasm to the outside. Increased susceptibility of the rmlA mutant to the metals cadmium and mercury and to the anion-superoxide generator paraquat suggests a protective role of LPS against chromate toxicity. A higher susceptibility of the ftsK mutant to compounds affecting DNA structure (ciprofloxacin, tellurite, mitomycin C) suggests a role of FtsK in the recombinational repair of DNA damage caused by chromate. In conclusion, the P. aeruginosa genome contains diverse genes related to its intrinsic resistance to chromate. Systems pertaining to the outer membrane (OprE), the cell wall (LPS), and the cytoplasm (FtsK) were identified in this work as involved in chromate protection mechanisms.  相似文献   

3.
Gene organization and functional motif analyses of the 123 two-component system (2CS) genes in Pseudomonas aeruginosa PAO1 were carried out. In addition, NJ and ML trees for the sensor kinases and the response regulators were constructed, and the distances measured and comparatively analyzed. It was apparent that more than half of the sensor-regulator gene pairs, especially the 2CSs with OmpR-like regulators, are derivatives of a common ancestor and have most likely co-evolved through gene pair duplication. Several of the 2CS pairs, especially those with NarL-like regulators, however, appeared to be relatively divergent. This is supportive of the recruitment model, in which a sensor gene and regulator gene with different phylogenetic history are assembled to form a 2CS. Correlation of the classification of sensor kinases and response regulators provides further support for these models. Upon comparison of the phylogenetic trees comprised of sensors and regulators, we have identified six congruent clades, which represent the group of the most recently duplicated 2CS gene pairs. Analyses of the congruent 2CS pairs of each of the clades revealed that certain paralogous 2CS pairs may carry a redundant function even after a gene duplication event. Nevertheless, comparative analysis of the putative promoter regions of the paralogs suggested that functional redundancy could be prevented by a differential control. Both codon usage and G+C content of these 2CS genes were found to be comparable with those of the P. aeruginosa genome, suggesting that they are not newly acquired genes.Reviewing Editor: Dr. Martin Kreitman  相似文献   

4.
Multi-drug resistant Pseudomonas aeruginosa (MDRPA) are emerging as a major threat in the hospitals as they have become resistant to current antibiotics. There is an immediate requirement of drugs with novel mechanisms as the pipeline of investigational drugs against these organisms is lean. UDP-N-acetylglucosamine enolpyruvyl transferase (MurA) enzyme that catalyzes the first committed step of bacterial cell wall biosynthesis is an ideal target for the discovery of novel antibiotics against Gram negative pathogens as they have only one copy of murA gene in its genome. We have performed biochemical characterization and comparative kinetic analysis of MurA from E. coli and P. aeruginosa. Both enzymes were active at broad range of pH with temperature optima of 37°C. Metal ions did not enhance the activity of both enzymes. These enzymes had an apparent affinity constant (K m ) for its substrate UDP-N-acetylglucosamine 36 ± 5.2 and 17.8 ± 2.5 μM and for phosphoenolpyruvate 0.84 ± 0.13 μM and 0.45 ± 0.07 μM for E. coli and P. aeruginosa enzymes respectively. Both the enzymes showed 5–7 fold shift in IC50 for the known inhibitor fosfomycin upon pre-incubation with the substrate UDP-N-acetylglucosamine. This observation was used to develop a novel rapid sensitive high throughput assay for the screening of MurA inhibitors.  相似文献   

5.
6.
7.

Background  

Elucidation of the communal behavior of microbes in mixed species biofilms may have a major impact on understanding infectious diseases and for the therapeutics. Although, the structure and the properties of monospecies biofilms and their role in disease have been extensively studied during the last decade, the interactions within mixed biofilms consisting of bacteria and fungi such as Candida spp. have not been illustrated in depth. Hence, the aim of this study was to evaluate the interspecies interactions of Pseudomonas aeruginosa and six different species of Candida comprising C. albicans, C. glabrata, C. krusei, C. tropicalis, C. parapsilosis, and C. dubliniensis in dual species biofilm development.  相似文献   

8.
The ISlacZ/hah transposon carried by pIT2 and derived originally from Tn5 has been a popular system in the generation of random insertion mutants of Pseudomonas aeruginosa. Using this system in the current study, two transconjugants were identified as conferring high levels of carbenicillin resistance. Analyses by gene complementation tests and site-specific gene knockout experiments support the conclusion that carbenicillin resistance in these two mutants is not due to the insertion of ISlacZ/hah transposon into the affected genes. Instead, the production of a TEM β-lactamase was detected, and integration of the bla gene from pIT2 to the chromosome of the recipient strain was confirmed by polymerase chain reaction. This surprising event was reproducible, with an estimated frequency among the transconjugants of 4% to 10%, and it may cause a potential complication in the interpretation of mutant phenotypes without notice.  相似文献   

9.
In recent decades, many researchers have written numerous articles about microbial biofilms. Biofilm is a complex community of microorganisms and an example of bacterial group behavior. Biofilm is usually considered a sessile mode of life derived from the attached growth of microbes to surfaces, and most biofilms are embedded in self-produced extracellular matrix composed of extracellular polymeric substances (EPSs), such as polysaccharides, extracellular DNAs (eDNA), and proteins. Dispersal, a mode of biofilm detachment indicates active mechanisms that cause individual cells to separate from the biofilm and return to planktonic life. Since biofilm cells are cemented and surrounded by EPSs, dispersal is not simple to do and many researchers are now paying more attention to this active detachment process. Unlike other modes of biofilm detachment such as erosion or sloughing, which are generally considered passive processes, dispersal occurs as a result of complex spatial differentiation and molecular events in biofilm cells in response to various environmental cues, and there are many biological reasons that force bacterial cells to disperse from the biofilms. In this review, we mainly focus on the spatial differentiation of biofilm that is a prerequisite for dispersal, as well as environmental cues and molecular events related to the biofilm dispersal. More specifically, we discuss the dispersal-related phenomena and mechanisms observed in Pseudomonas aeruginosa, an important opportunistic human pathogen and representative model organism for biofilm study.  相似文献   

10.
Pseudomonas aeruginosa is a highly adaptable opportunistic pathogen. It can infect vulnerable patients such as those with cystic fibrosis or hospitalized in intensive care units where it is responsible for both acute and chronic infection. The switch between these infections is controlled by a complex regulatory system involving the central GacS/GacA two-component system that activates the production of two small non-coding RNAs. GacS is a histidine kinase harboring one periplasmic detection domain, two inner-membrane helices and three H1/D1/H2 cytoplasmic domains. By detecting a yet unknown signal, the GacS histidine-kinase periplasmic detection domain (GacSp) is predicted to play a key role in activating the GacS/GacA pathway. Here, we present the chemical shift assignment of 96 % of backbone atoms (HN, N, C, Cα, Cβ and Hα), 88 % aliphatic hydrogen atoms and 90 % of aliphatic carbon atoms of this domain. The NMR-chemical shift data, on the basis of Talos server secondary structure predictions, reveal that GacSp consists of 3 β-strands, 3 α-helices and a major loop devoid of secondary structures.  相似文献   

11.
Non-mammalian infection models have been developed over the last two decades, which is a historic milestone to understand the molecular basis of bacterial pathogenesis. They also provide small-scale research platforms for identification of virulence factors, screening for antibacterial hits, and evaluation of antibacterial efficacy. The fruit fly, Drosophila melanogaster is one of the model hosts for a variety of bacterial pathogens, in that the innate immunity pathways and tissue physiology are highly similar to those in mammals. We here present a relatively simple protocol to assess the key aspects of the polymicrobial interaction in vivo between the human opportunistic pathogens, Pseudomonas aeruginosa and Staphylococcus aureus, which is based on the systemic infection by needle pricking at the dorsal thorax of the flies. After infection, fly survival and bacteremia over time for both P. aeruginosa and S. aureus within the infected flies can be monitored as a measure of polymicrobial virulence potential. The infection takes ~24 h including bacterial cultivation. Fly survival and bacteremia are assessed using the infected flies that are monitored up to ~60 h post-infection. These methods can be used to identify presumable as well as unexpected phenotypes during polymicrobial interaction between P. aeruginosa and S. aureus mutants, regarding bacterial pathogenesis and host immunity.  相似文献   

12.
Antipathogenic therapy is an outcome of the quorum-sensing inhibition (QSI) mechanism, which targets autoinducer-dependent virulent gene expression in bacterial pathogens. N-acyl homoserine lactone (AHL) acts as a key regulator in the production of virulence factors and biofilm formation in Pseudomonas aeruginosa PAO1 and violacein pigment production in Chromobacterium violaceum. In the present study, the marine bacterial strain SS4 showed potential QSI activity in a concentration-dependent manner (0.5–2 mg/ml) against the AHL-mediated violacein production in C. violaceum (33–86%) and biofilm formation (33–88%), total protease (20–65%), LasA protease (59–68%), LasB elastase (36–68%), pyocyanin (17–86%) and pyoverdin productions in PAO1. The light and confocal laser scanning microscopic analyses confirmed the reduction of the biofilm-forming ability of PAO1 when treated with SS4 extract. Furthermore, the antibiofilm potential was confirmed through static biofilm ring assay, in which ethyl acetate extract of SS4 showed concentration-dependent reduction in the biofilm-forming ability of PAO1. Thus, the result of this study clearly reveals the antipathogenic and antibiofilm properties of the bacterial isolate SS4. Through 16S rDNA analysis, the strain SS4 was identified as Bacillus sp. (GenBank Accession Number: GU471751).  相似文献   

13.
Eight antibiotics (aztreonam, ceftazidim, cefoperazon, cefepim, netilmicin, amikacin, ofloxacin and ciprofloxacin) exhibited antimicrobial activity individually and/or in combinations against 20 wild-type biofilm-forming strains of Pseudomonas aeruginosa. The strains were less susceptible in biofilm; in 10 strains antibiotic synergy was observed for the combination of aztreonam and ciprofloxacin. Synergy was also demonstrated in the case of β-lactams and aminoglycosides, β-lactams and fluoroquinolones, aminoglycosides and fluoroquinolones, and for monobactams and β-lactams although the strains were resistant to the individual antibiotics. Synergism or partial synergism was found with one or more antibiotic combinations against 32.4% of isolates.  相似文献   

14.
IN 1969, after carbenicillin had been in use for three years in this unit, highly resistant strains of Pseudomonas aeruginosa were isolated for the first time1. Because these resistant strains included, from their first appearance, representatives of two unrelated types, it seemed likely that the resistance was transferable; this hypothesis was supported by experiments showing the transfer of carbenicillin resistance between Ps. aeruginosa and Escherichia coli K12 in vitro and in vivo2–4;. The resistant Ps. aeruginosa produced a penicillinase (β lactamase) similar to that normally produced by some strains of Enterobacteria and different from that normally produced by Ps. aeruginosa2,3, so it seemed likely that the Ps. aeruginosa had initially acquired resistance by the transfer of an R factor from a carbenicillin-resistant member of the Enterobacteriaceae colonizing the same burn. This hypothesis is now supported by a study on strains of Enterobacteria and Ps. aeruginosa isolated in a number of hospitals. We have also found evidence suggesting that Ps. aeruginosa which has acquired this R factor may not show resistance until it has been exposed repeatedly to carbenicillin.  相似文献   

15.
This study deals with production and characterization of biosurfactant from renewable resources by Pseudomonas aeruginosa. Biosurfactant production was carried out in 3L fermentor using waste motor lubricant oil and peanut oil cake. Maximum biomass (11.6 mg/ml) and biosurfactant production (8.6 mg/ml) occurred with peanut oil cake at 120 and 132 h respectively. Characterization of the biosurfactant revealed that, it is a lipopeptide with chemical composition of protein (50.2%) and lipid (49.8%). The biosurfactant (1 mg/ml) was able to emulsify waste motor lubricant oil, crude oil, peanut oil, kerosene, diesel, xylene, naphthalene and anthracene, comparatively the emulsification activity was higher than the activity found with Triton X-100 (1 mg/ml). Results obtained in the present study showed the possibility of biosurfactant production using renewable, relatively inexpensive and easily available resources. Emulsification activity found with the biosurfactant against different hydrocarbons showed its possible application in bioremediation of environments polluted with various hydrocarbons.  相似文献   

16.
Recombinant l.asparaginase, L.ASNase, from Pseudomonas aeruginosa was purified using nickel affinity chromatography. The affinity purified L.ASNase exhibited a protein band with a molecular weight of 72.4 kDa on a native polyacrylamide gel and 36.276 kDa using SDS–PAGE. The activity of the purified L.ASNase was enhanced by Mg2+ and inhibited by Zn2+ at a concentration of 5 mM. The specificity of the recombinant L.ASNase towards different substrates was examined, and it was found that the enzyme showed the highest activity towards l.asparagine. Moreover, the enzyme showed lower activity towards other substrates such as L.glutamine, urea and acrylamide. The in vitro hemolysis assay revealed that the purified L.ASNase did not show hemolysis effect on blood erythrocytes. Serum and trypsin half-life of L.ASNase suggested that the recombinant L.ASNase retained 50% of its initial activity after 90 and 60 min incubation period in serum and trypsin separately.  相似文献   

17.
l-aspartate dehydrogenase (EC 1.4.1.21; l-AspDH) is a rare member of amino acid dehydrogenase superfamily and so far, two thermophilic enzymes have been reported. In our study, an ORF PA3505 encoding for a putative l-AspDH in the mesophilic bacterium Pseudomonas aeruginosa PAO1 was identified, cloned, and overexpressed in Escherichia coli. The homogeneously purified enzyme (PaeAspDH) was a dimeric protein with a molecular mass of about 28 kDa exhibiting a very high specific activity for l-aspartate (l-Asp) and oxaloacetate (OAA) of 127 and 147 U mg−1, respectively. The enzyme was capable of utilizing both nicotinamide adenine dinucleotide (NAD) and nicotinamide adenine dinucleotide phosphate (NADP) as coenzyme. PaeAspDH showed a T m value of 48°C for 20 min that was improved to approximately 60°C by the addition of 0.4 M NaCl or 30% glycerol. The apparent K m values for OAA, NADH, and ammonia were 2.12, 0.045, and 10.1 mM, respectively; comparable results were observed with NADPH. The l-Asp production system B consisting of PaeAspDH, Bacillus subtilis malate dehydrogenase and E. coli fumarase, achieved a high level of l-Asp production (625 mM) from fumarate in fed-batch process with a molar conversion yield of 89.4%. Furthermore, the fermentative production system C released 33 mM of l-Asp after 50 h by using succinate as carbon source. This study represented an extensive characterization of the mesophilic AspDH and its potential applicability for efficient and attractive production of l-Asp. Our novel production systems are also hopeful for developing the new processes for other compounds production.  相似文献   

18.
Keratinase from Pseudomonas aeruginosa KS-1 was expressed constitutively as an extracellular protein in Escherichia coli with high specific activity of 3.7 kU/mg. It was purified fourfold as a 33 kDa monomeric protein by Q-Sepharose ion exchange chromatography with a recovery of 95%. It is a serine protease with optimal activity at pH 9 and 50°C. It was stable from pH 4 to 12 for 1 h with a t1/2 of 12 min at 70°C. It hydrolyzed haemoglobin > fibrin > feather keratin > azo-casein > casein > meat protein > gelatin. Among synthetic substrates, it efficiently hydrolyzed N-Suc-ala-ala-pro-phe-pNA, N-Suc-ala-ala-ala-pNA, N-Suc-ala-ala-pro-leu-pNA and also plasmin substrate, d-Val-Leu-Lys-pNA  相似文献   

19.

Background  

Pseudomonas aeruginosa is a common pathogen in chronic respiratory tract infections. It typically makes a biofilm, which makes treatment of these infections difficult. In this study, we investigated the inhibitory effects of N-acetylcysteine (NAC) on biofilms produced by P. aeruginosa.  相似文献   

20.
Minaxi  Jyoti Saxena 《Mycopathologia》2010,170(3):181-193
Molecular characterization of rhizobacterial isolate RM-3, based on sequencing of a partial 1,313-bp fragment of 16S rDNA amplicon, validated the strain as Pseudomonas aeruginosa. The strain showed significant growth inhibition of different phytopathogenic fungi in dual plate and liquid culture assays. Maximum growth inhibition was found in case of Macrophomina phaseolina in plate assay (68%), whereas it was 93% in Dreschlera graminae in dual liquid assay. Microscopic studies (light and scanning electron) showed morphological abnormalities such as perforation, fragmentation, swelling, shriveling and lysis of hyphae of pathogenic fungi. The strain also exhibited production of siderophore and hydrogen cyanide (HCN) on chrome azurol S and King’s B media, respectively. Besides, this strain also produced extracellular chitinase enzyme and an important antibiotic, phenazine. Seed bacterization with RM-3 showed a significant (P < 0.05) increase in seed germination, shoot length, shoot fresh and dry weight, root length, root fresh and dry weight and leaf area. It was also able to colonize the rhizosphere of plants and reduced percent disease incidence in M. phaseolina-infested soil by 83%. Yield parameters such as pods, number of seeds and grain yield per plant also enhanced significantly (P < 0.05) in comparison to control. Thus, the secondary metabolites producing Pseudomonas aeruginosa strain RM-3 exhibited innate potential of plant growth promotion and biocontrol potential in vitro and in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号