首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到9条相似文献,搜索用时 0 毫秒
1.
2.
The pathogenesis-related PR-1-like protein family comprises secreted proteins from the animal, plant, and fungal kingdoms whose biological function remains poorly understood. Here we have characterized a PR-1-like protein, Fpr1, from Fusarium oxysporum, an ubiquitous fungal pathogen that causes vascular wilt disease on a wide range of plant species and can produce life-threatening infections in immunocompromised humans. Fpr1 is secreted and proteolytically processed by the fungus. The fpr1 gene is required for virulence in a disseminated immunodepressed mouse model, and its function depends on the integrity of the proposed active site of PR-1-like proteins. Fpr1 belongs to a gene family that has expanded in plant pathogenic Sordariomycetes. These results suggest that secreted PR-1-like proteins play important roles in fungal pathogenicity.  相似文献   

3.
4.
Crystal structures of the unique hexokinase KlHxk1 of the yeast Kluyveromyces lactis were determined using eight independent crystal forms. In five crystal forms, a symmetrical ring-shaped homodimer was observed, corresponding to the physiological dimer existing in solution as shown by small-angle x-ray scattering. The dimer has a head-to-tail arrangement such that the small domain of one subunit interacts with the large domain of the other subunit. Dimer formation requires favorable interactions of the 15 N-terminal amino acids that are part of the large domain with amino acids of the small domain of the opposite subunit, respectively. The head-to-tail arrangement involving both domains of the two KlHxk1 subunits is appropriate to explain the reduced activity of the homodimer as compared with the monomeric enzyme and the influence of substrates and products on dimer formation and dissociation. In particular, the structure of the symmetrical KlHxk1 dimer serves to explain why phosphorylation of conserved residue Ser-15 may cause electrostatic repulsions with nearby negatively charged residues of the adjacent subunit, thereby inducing a dissociation of the homologous dimeric hexokinases KlHxk1 and ScHxk2. Two complex structures of KlHxk1 with bound glucose provide a molecular model of substrate binding to the open conformation and the subsequent classical domain closure motion of yeast hexokinases. The entirety of the novel data extends the current concept of glucose signaling in yeast and complements the induced-fit model by integrating the events of N-terminal phosphorylation and dissociation of homodimeric yeast hexokinases.  相似文献   

5.
6.
7.
The GH1:c.457C>G exon 5 missense mutation in the bovine growth hormone 1 (GH1) gene that causes the replacement of leucine (L) with valine (V) was investigated in 1027 cattle with primarily Angus and Shorthorn breeding from Australian feedlots. The allele frequency of the GH1:c.457C allele was 0.77 in Angus and 0.76 in Shorthorn. The GH1:c.457C allele was associated with lower marbling (P = 0.0472), and the average effect of allele substitution was -0.22 of a phenotypic standard deviation. This allele was also associated with slightly higher rump fat (P = 0.0541) and the average effect of allele substitution was 0.11 SD. Marbling and rump fat were not strongly correlated (r = 0.097, P < 0.01) in this data set. This mutation had no significant effect on eye muscle area or hot dressed carcass weight (P > 0.1). Given these relationships, the differences between GH1 alleles could be the result of differential deposition of fat in fat depots.  相似文献   

8.
Conformations of the α-l -Rhap(1-2)-β-d -Glc1-OMe and β-d -Galp(1-3)-β-d -Glc1-OMe disaccharides and the branched title trisaccharide were examined in DMSO-d6 solution by 1H-nmr. The distance mapping procedure was based on rotating frame nuclear Overhauser effect (NOE) constraints involving C- and O-linked protons, and hydrogen-bond constraints manifested by the splitting of the OH nmr signals for partially deuteriated samples. An “isotopomer-selected NOE” method for the unequivocal identification of mutually hydrogen-bonded hydroxyl groups was suggested. The length of hydrogen bonds thus detected is considered the only one motionally nonaveraged nmr-derived constraint. Molecular mechanics and molecular dynamics methods were used to model the conformational properties of the studied oligosaccharides. Complex conformational search, relying on a regular Φ,Ψ-grid based scanning of the conformational space of the selected glycosidic linkage, combined with simultaneous modeling of different allowed orientations of the pendant groups and the third, neighboring sugar residue, has been carried out. Energy minimizations were performed for each member of the Φ,Ψ grid generated set of conformations. Conformational clustering has been done to group the minimized conformations into families with similar values of glycosidic torsion angles. Several stable syn and anti conformations were found for the 1→2 and 1→3 bonds in the studied disaccharides. Vicinal glycosylation affected strongly the occupancy of conformational states in both branches of the title trisaccharide. The preferred conformational family of the trisaccharide (with average Φ,Ψ values of 38°, 17° for the 1→2 and 48°, 1° for the 1→3 bond, respectively) was shown by nmr to be stabilized by intramolecular hydrogen bonding between the nonbonded Rha and Gal residues. © 1998 John Wiley & Sons, Inc. Biopoly 46: 417–432, 1998  相似文献   

9.
Congenital disorders of glycosylation (CDG) are a growing group of inherited metabolic disorders where enzymatic defects in the formation or processing of glycolipids and/or glycoproteins lead to variety of different diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号