首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Mini-chromosome maintenance (Mcm) proteins are essential as central components for the DNA unwinding machinery during eukaryotic DNA replication. DNA primase activity is required at the DNA replication fork to synthesize short RNA primers for DNA chain elongation on the lagging strand. Although direct physical and functional interactions between helicase and primase have been known in many prokaryotic and viral systems, potential interactions between helicase and primase have not been explored in eukaryotes. Using purified Mcm and DNA primase complexes, a direct physical interaction is detected in pull-down assays between the Mcm2∼7 complex and the hetero-dimeric DNA primase composed of the p48 and p58 subunits. The Mcm4/6/7 complex co-sediments with the primase and the DNA polymerase α-primase complex in glycerol gradient centrifugation and forms a Mcm4/6/7-primase-DNA ternary complex in gel-shift assays. Both the Mcm4/6/7 and Mcm2∼7 complexes stimulate RNA primer synthesis by DNA primase in vitro. However, primase inhibits the Mcm4/6/7 helicase activity and this inhibition is abolished by the addition of competitor DNA. In contrast, the ATP hydrolysis activity of Mcm4/6/7 complex is not affected by primase. Mcm and primase proteins mutually stimulate their DNA-binding activities. Our findings indicate that a direct physical interaction between primase and Mcm proteins may facilitate priming reaction by the former protein, suggesting that efficient DNA synthesis through helicase-primase interactions may be conserved in eukaryotic chromosomes.  相似文献   

2.
Models of DNA replication in yeast and Xenopus suggest that Mcm10p is required to generate the pre-initiation complex as well as progression of the replication fork during the elongation of DNA chains. In this report, we show that the Schizosaccharomyces pombe Mcm10p/Cdc23p binds to the S. pombe DNA polymerase (pol) alpha-primase complex in vitro by interacting specifically with the catalytic p180 subunit and stimulates DNA synthesis catalyzed by the pol alpha-primase complex with various primed DNA templates. We investigated the mechanism by which Mcm10p activates the polymerase activity of the pol alpha-primase complex by generating truncated derivatives of the full-length 593-amino acid Mcm10p. Their ability to stimulate pol alpha polymerase activity and bind to single-stranded DNA and to pol alpha were compared. Concomitant with increased deletion of the N-terminal region (from amino acids 95 to 415), Mcm10p derivatives lost their ability to stimulate pol alpha polymerase activity and bind to single-stranded DNA. Truncated derivatives of Mcm10p containing amino acids 1-416 retained the pol alpha binding activity, whereas the C terminus, amino acids 496-593, did not. These results demonstrate that both the single-stranded DNA binding and the pol alpha binding properties of Mcm10p play important roles in the activation. In accord with these findings, Mcm10p facilitated the binding of pol alpha-primase complex to primed DNA and formed a stable complex with pol alpha-primase on primed templates. A mutant that failed to activate or bind to DNA and pol alpha, was not observed in this complex. We suggest that the interaction of Mcm10p with the pol alpha-primase complex, its binding to single-stranded DNA, and its activation of the polymerase complex together contribute to its role in the elongation phase of DNA replication.  相似文献   

3.
In the evolution of life, DNA replication is a fundamental process, by which species transfer their genetic information to their offspring. DNA polymerases, including bacterial and eukaryotic replicases, are incapable of de novo DNA synthesis. DNA primases are required for this function, which is sine qua non to DNA replication. In Escherichia coli, the DNA primase (DnaG) exists as a monomer and synthesizes a short RNA primer. In Eukarya, however, the primase activity resides within the DNA polymerase alpha-primase complex (Pol alpha-pri) on the p48 subunit, which synthesizes the short RNA segment of a hybrid RNA-DNA primer. To date, very little information is available regarding the priming of DNA replication in organisms in Archaea. Available sequenced genomes indicate that the archaeal DNA primase is a homolog of the eukaryotic p48 subunit. Here, we report investigations of a p48-like DNA primase from Pyrococcus furiosus, a hyperthermophilic euryarchaeote. P. furiosus p48-like protein (Pfup41), unlike hitherto-reported primases, does not catalyze by itself the synthesis of short RNA primers but preferentially utilizes deoxynucleotides to synthesize DNA fragments up to several kilobases in length. Pfup41 is the first DNA polymerase that does not require primers for the synthesis of long DNA strands.  相似文献   

4.
In most organisms, DNA replication is initiated by DNA primases, which synthesize primers that are elongated by DNA polymerases. In this study, we describe the isolation and biochemical characterization of the DNA primase complex and its subunits from the archaeon Thermococcus kodakaraensis. The T. kodakaraensis DNA primase complex is a heterodimer containing stoichiometric levels of the p41 and p46 subunits. The catalytic activity of the complex resides within the p41 subunit. We show that the complex supports both DNA and RNA synthesis, whereas the p41 subunit alone marginally produces RNA and synthesizes DNA chains that are longer than those formed by the complex. We report that the T. kodakaraensis primase complex preferentially interacts with dNTP rather than ribonucleoside triphosphates and initiates RNA as well as DNA chains de novo. The latter findings indicate that the archaeal primase complex, in contrast to the eukaryote homolog, can initiate DNA chain synthesis in the absence of ribonucleoside triphosphates. DNA primers formed by the archaeal complex can be elongated extensively by the T. kodakaraensis DNA polymerase (Pol) B, whereas DNA primers formed by the p41 catalytic subunit alone were not. Supplementation of reactions containing the p41 subunit with the p46 subunit leads to PolB-catalyzed DNA synthesis. We also established a rolling circle reaction using a primed 200-nucleotide circle as the substrate. In the presence of the T. kodakaraensis minichromosome maintenance (MCM) 3' → 5' DNA helicase, PolB, replication factor C, and proliferating cell nuclear antigen, long leading strands (>10 kb) are produced. Supplementation of such reactions with the DNA primase complex supported lagging strand formation as well.  相似文献   

5.
We previously reported on the purification and characterization of a functional multi‐protein DNA replication complex (the DNA synthesome) from human cells and tissues. The synthesome is fully competent to carry‐out all phases of the DNA replication process in vitro. In this study, DNA primase, a component of the synthesome, is examined to determine its activity and processivity in the in vitro synthesis and extension of RNA primers. Our results show that primase activity in the P4 fraction of the synthesome is 30‐fold higher than that of crude cell extracts. The synthesome synthesizes RNA primers that are 7–10 ribonucleotides long and DNA primers that are 20–40 deoxyribonucleotides long using a poly(dT) template of exogenous single‐stranded DNA. The synthesome‐catalyzed RNA primers can be elongated by E. coli DNA polymerase I to form the complementary DNA strands on the poly(dT) template. In addition, the synthesome also supports the synthesis of native RNA primers in vitro using an endogenous supercoiled double‐stranded DNA template. Gel analysis demonstrates that native RNA primers are oligoribonucleotides of 10–20 nt in length and the primers are covalently link to DNA to form RNA‐primed nascent DNA of 100–200 nt. Our study reveals that the synthesome model is capable of priming and continuing DNA replication. The ability of the synthesome to synthesize and extend RNA primers in vitro elucidates the organizational and functional properties of the synthesome as a potentially useful replication apparatus to study the function of primase and the interaction of primase with other replication proteins. J. Cell. Biochem. 106: 798–811, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

6.
At a replication fork DNA primase synthesizes oligoribonucleotides that serve as primers for the lagging strand DNA polymerase. In the bacteriophage T7 replication system, DNA primase is encoded by gene 4 of the phage. The 63-kDa gene 4 protein is composed of two major domains, a helicase domain and a primase domain located in the C- and N-terminal halves of the protein, respectively. T7 DNA primase recognizes the sequence 5'-NNGTC-3' via a zinc motif and catalyzes the template-directed synthesis of tetraribonucleotides pppACNN. T7 DNA primase, like other primases, shares limited homology with DNA-dependent RNA polymerases. To identify the catalytic core of the T7 DNA primase, single-point mutations were introduced into a basic region that shares sequence homology with RNA polymerases. The genetically altered gene 4 proteins were examined for their ability to support phage growth, to synthesize functional primers, and to recognize primase recognition sites. Two lysine residues, Lys-122 and Lys-128, are essential for phage growth. The two residues play a key role in the synthesis of phosphodiester bonds but are not involved in other activities mediated by the protein. The altered primases are unable to either synthesize or extend an oligoribonucleotide. However, the altered primases do recognize the primase recognition sequence, anneal an exogenous primer 5'-ACCC-3' at the site, and transfer the primer to T7 DNA polymerase. Other lysines in the vicinity are not essential for the synthesis of primers.  相似文献   

7.
The lagging strand of the replication fork is initially copied as short Okazaki fragments produced by the coupled activities of two template-dependent enzymes, a primase that synthesizes RNA primers and a DNA polymerase that elongates them. Gene 4 of bacteriophage T7 encodes a bifunctional primase-helicase that assembles into a ring-shaped hexamer with both DNA unwinding and primer synthesis activities. The primase is also required for the utilization of RNA primers by T7 DNA polymerase. It is not known how many subunits of the primase-helicase hexamer participate directly in the priming of DNA synthesis. In order to determine the minimal requirements for RNA primer utilization by T7 DNA polymerase, we created an altered gene 4 protein that does not form functional hexamers and consequently lacks detectable DNA unwinding activity. Remarkably, this monomeric primase readily primes DNA synthesis by T7 DNA polymerase on single-stranded templates. The monomeric gene 4 protein forms a specific and stable complex with T7 DNA polymerase and thereby delivers the RNA primer to the polymerase for the onset of DNA synthesis. These results show that a single subunit of the primase-helicase hexamer contains all of the residues required for primer synthesis and for utilization of primers by T7 DNA polymerase.  相似文献   

8.
DNA primases are responsible for the synthesis of the short RNA primers that are used by the replicative DNA polymerases to initiate DNA synthesis on the leading- and lagging-strand at the replication fork. In this study, we report the purification and biochemical characterization of a DNA primase (Sso DNA primase) from the thermoacidophilic crenarchaeon Sulfolobus solfataricus. The Sso DNA primase is a heterodimer composed of two subunits of 36 kDa (small subunit) and 38 kDa (large subunit), which show sequence similarity to the eukaryotic DNA primase p60 and p50 subunits, respectively. The two polypeptides were co-expressed in Escherichia coli and purified as a heterodimeric complex, with a Stokes radius of about 39.2 Å and a 1:1 stoichiometric ratio among its subunits. The Sso DNA primase utilizes poly-pyrimidine single-stranded DNA templates with low efficiency for de novo synthesis of RNA primers, whereas its synthetic function is specifically activated by thymine-containing synthetic bubble structures that mimic early replication intermediates. Interestingly, the Sso DNA primase complex is endowed with a terminal nucleotidyl-tranferase activity, being able to incorporate nucleotides at the 3′ end of synthetic oligonucleotides in a non-templated manner.  相似文献   

9.
DNA primases encoded by the conjugative plasmids ColIb-P9 (IncI1), RP4, and R751 (IncP), and the protein of the Escherichia coli satellite phage P4 alpha were shown to contain a common amino acid sequence motif -E-G-Y-A-T-A-. The P4 alpha gene product, required for initiation of phage DNA replication, exhibits primase activity on single-stranded circular DNA templates. This priming activity resembles the enzymatic activity of DNA primases encoded by conjugative plasmids in terms of template utilization and the ability to synthesize primers that can be elongated by DNA polymerase III holoenzyme. The -E-G-Y-A-T-A- motif is part of an extended sequence region most conserved within the primase domains of the four enzymes. Single amino acid substitutions generated in the -E-G-Y-A-T-A- motif of the RP4 TraC2 and the P4 alpha protein affect priming activity, supporting the hypothesis that the conserved sequence motif is part of the active center for primase function. A mutation that eliminates priming activity causes P4 phage to grow poorly and to depend upon the host dnaG primase. Computer analysis identified two additional sequence motifs within the amino acid sequence of the P4 alpha protein: a potential zinc-finger motif and a "type A" nucleotide binding site, both strikingly similar to sequence motifs described in various DNA primases and helicases.  相似文献   

10.
DNA replication in bacteria and eukaryotes requires the activity of DNA primase, a DNA-dependent RNA polymerase that lays short RNA primers for DNA polymerases. Eukaryotic and archaeal primases are heterodimers consisting of small catalytic and large accessory subunits, both of which are necessary for RNA primer synthesis. Understanding of RNA synthesis priming in eukaryotes is currently limited due to the lack of crystal structures of the full-length primase and its complexes with substrates in initiation and elongation states. Here we report the crystal structure of the full-length human primase, revealing the precise overall organization of the enzyme, the relative positions of its functional domains, and the mode of its interaction with modeled DNA and RNA. The structure indicates that the dramatic conformational changes in primase are necessary to accomplish the initiation and then elongation of RNA synthesis. The presence of a long linker between the N- and C-terminal domains of p58 provides the structural basis for the bulk of enzyme''s conformational flexibility. Deletion of most of this linker affected the initiation and elongation steps of the primer synthesis.  相似文献   

11.
Initiation and synthesis of RNA primers in the lagging strand of the replication fork in Escherichia coli requires the replicative DnaB helicase and the DNA primase, the DnaG gene product. In addition, the physical interaction between these two replication enzymes appears to play a role in the initiation of chromosomal DNA replication. In vitro, DnaB helicase stimulates primase to synthesize primers on single-stranded (ss) oligonucleotide templates. Earlier studies hypothesized that multiple primase molecules interact with each DnaB hexamer and single-stranded DNA. We have examined this hypothesis and determined the exact stoichiometry of primase to DnaB hexamer. We have also demonstrated that ssDNA binding activity of the DnaB helicase is necessary for directing the primase to the initiator trinucleotide and synthesis of 11-20-nucleotide long primers. Although, association of these two enzymes determines the extent and rate of synthesis of the RNA primers in vitro, direct evidence of the formation of primase-DnaB complex has remained elusive in E. coli due to the transient nature of their interaction. Therefore, we stabilized this complex using a chemical cross-linker and carried out a stoichiometric analysis of this complex by gel filtration. This allowed us to demonstrate that the primase-helicase complex of E. coli is comprised of three molecules of primase bound to one DnaB hexamer. Fluorescence anisotropy studies of the interaction of DnaB with primase, labeled with the fluorescent probe Ru(bipy)3, and Scatchard analysis further supported this conclusion. The addition of DnaC protein, leading to the formation of the DnaB-DnaC complex, to the simple priming system resulted in the synthesis of shorter primers. Therefore, interactions of the DnaB-primase complex with other replication factors might be critical for determining the physiological length of the RNA primers in vivo and the overall kinetics of primer synthesis.  相似文献   

12.
DnaB helicase stimulated the second-order RNA primer synthesis activity of primase by over 5000-fold on DNA templates that were 23 nucleotides long. This template length is the same as the DnaB helicase thermodynamic binding site size [Jezewska, M. J., and Bujalowski, W. (1996) Biochemistry 35, 2117-2128]. This phenomenal stimulation was achieved by increasing the template affinity of primase by over 300-fold and increasing the catalytic rate by over 15-fold. It was necessary to determine the optimal amount of DnaB helicase to achieve this stimulation because helicase stimulation was cooperative at low concentration and inhibitory at high helicase concentration. The cooperative stimulation at low concentration indicated the presence of a time-dependent assembly step that preceded the active state. Besides stimulating primase activity, DnaB helicase also prevented primase from synthesizing RNA primers that were longer than the template sequence. In the absence of DnaB helicase, the majority of primers synthesized by primase were longer than the template and were named "overlong primers" [Swart, J. R., and Griep, M. A. (1995) Biochemistry 34, 16097-16106]. In contrast, the helicase-stimulated RNA primers were from 10 to 14 nucleotides in length with the 12-mer representing the majority of the total RNA primers produced. It was shown that DnaB helicase stabilized the open or single-stranded conformation of the template, which favored the synthesis of the template-length-dependent primers. In contrast, when primase acted alone, it stabilized the 3'-end hairpin conformation of the template so that the template's 3'-hydroxyl served as a "DNA primer" from which primase elongated to create the overlong primers.  相似文献   

13.
The dnaB gene of Escherichia coli encodes an essential DNA replication enzyme. Fueled by the energy derived from the hydrolysis of ATP to ADP+P(i), this enzyme unwinds double-stranded DNA in advance of the DNA polymerase. While doing so, it intermittently stimulates primase to synthesize an RNA primer for an Okazaki fragment. To better understand the structural basis of these and other aspects of DnaB function, we have initiated a study of mutant DnaB proteins. Here, we report the purification and characterization of a mutant DnaB protein (RC231) containing cysteine in place of arginine at residue 231. The mutant protein attains a stable, properly folded structure that allows association of six promoters to form a hexamer, as is also true for wild-type DnaB. Further, the mutant protein interacts with ATP, the nonhydrolyzable ATP analog adenosine-5'-O-(3-thiotriphosphate) (ATP gamma S), ADP, and poly(dT), and it stimulates primase action. It is, however, profoundly deficient in ATP hydrolysis, helicase activity, and replication activity at the chromosomal origin of replication. In addition, while general priming reactions with wild-type DnaB and ATP elicited the synthesis of short primers, reactions with DnaB and ATP gamma S or with RC231 and either ATP or ATP gamma S stimulated the synthesis of significantly longer primers. On the basis of these observations, we suggest that primase interacts directly with DnaB throughout primer synthesis during general priming, until dissociation of DnaB from DNA or ATP hydrolysis by DnaB disrupts the interaction and leads to primer termination.  相似文献   

14.
DNA primase synthesizes short RNA primers that are required to initiate DNA synthesis on the parental template strands during DNA replication. Eukaryotic primase contains two subunits, p48 and p58, and is normally tightly associated with DNA polymerase alpha. Despite the fundamental importance of primase in DNA replication, structural data on eukaryotic DNA primase are lacking. The p48/p58 dimer was subjected to limited proteolysis, which produced two stable structural domains: one containing the bulk of p48 and the other corresponding to the C-terminal fragment of p58. These domains were identified by mass spectrometry and N-terminal sequencing. The C-terminal p58 domain (p58C) was expressed, purified, and characterized. CD and NMR spectroscopy experiments demonstrated that p58C forms a well folded structure. The protein has a distinctive brownish color, and evidence from inductively coupled plasma mass spectrometry, UV-visible spectrophotometry, and EPR spectroscopy revealed characteristics consistent with the presence of a [4Fe-4S] high potential iron protein cluster. Four putative cysteine ligands were identified using a multiple sequence alignment, and substitution of just one was sufficient to cause loss of the iron-sulfur cluster and a reduction in primase enzymatic activity relative to the wild-type protein. The discovery of an iron-sulfur cluster in DNA primase that contributes to enzymatic activity provides the first suggestion that the DNA replication machinery may have redox-sensitive activities. Our results offer new horizons in which to investigate the function of high potential [4Fe-4S] clusters in DNA-processing machinery.  相似文献   

15.
Properties of an unusual DNA primase from an archaeal plasmid   总被引:1,自引:0,他引:1  
Beck K  Lipps G 《Nucleic acids research》2007,35(17):5635-5645
Primases are specialized DNA-dependent RNA polymerases that synthesize a short oligoribonucleotide complementary to single-stranded template DNA. In the context of cellular DNA replication, primases are indispensable since DNA polymerases are not able to start DNA polymerization de novo.

The primase activity of the replication protein from the archaeal plasmid pRN1 synthesizes a rather unusual mixed primer consisting of a single ribonucleotide at the 5′ end followed by seven deoxynucleotides. Ribonucleotides and deoxynucleotides are strictly required at the respective positions within the primer. Furthermore, in contrast to other archaeo-eukaryotic primases, the primase activity is highly sequence-specific and requires the trinucleotide motif GTG in the template. Primer synthesis starts outside of the recognition motif, immediately 5′ to the recognition motif. The fidelity of the primase synthesis is high, as non-complementary bases are not incorporated into the primer.

  相似文献   

16.
The gene for the DNA primase encoded by Salmonella typhimurium bacteriophage SP6 has been cloned and expressed in Escherichia coli and its 74-kDa protein product purified to homogeneity. The SP6 primase is a DNA-dependent RNA polymerase that synthesizes short oligoribonucleotides containing each of the four canonical ribonucleotides. GTP and CTP are both required for the initiation of oligoribonucleotide synthesis. In reactions containing only GTP and CTP, SP6 primase incorporates GTP at the 5'-end of oligoribonucleotides and CMP at the second position. On synthetic DNA templates, pppGpC dinucleotides are synthesized most rapidly in the presence of the sequence 5'-GCA-3'. This trinucleotide sequence, containing a cryptic dA at the 3'-end, differs from other known bacterial and phage primase recognition sites. SP6 primase shares some properties with the well-characterized E. colibacteriophage T7 primase. The T7 DNA polymerase can use oligoribonucleotides synthesized by SP6 primase as primers for DNA synthesis. However, oligoribonucleotide synthesis by SP6 primase is not stimulated by either the E. coli- or the T7-encoded ssDNA binding protein. An amino acid sequence alignment of the SP6 and T7 primases, which share only 22.4% amino acid identity, indicates amino acids likely critical for oligoribonucleotide synthesis as well as a putative Cys(3)His zinc finger motif that may be involved in DNA binding.  相似文献   

17.
The minichromosome maintenance protein 10 (Mcm10) is an evolutionarily conserved factor that is essential for replication initiation and elongation. Mcm10 is part of the eukaryotic replication fork and interacts with a variety of proteins, including the Mcm2-7 helicase and DNA polymerase alpha/primase complexes. A motif search revealed a match to the proliferating cell nuclear antigen (PCNA)-interacting protein (PIP) box in Mcm10. Here, we demonstrate a direct interaction between Mcm10 and PCNA that is alleviated by mutations in conserved residues of the PIP box. Interestingly, only the diubiquitinated form of Mcm10 binds to PCNA. Diubiquitination of Mcm10 is cell cycle regulated; it first appears in late G(1) and persists throughout S phase. During this time, diubiquitinated Mcm10 is associated with chromatin, suggesting a direct role in DNA replication. Surprisingly, a Y245A substitution in the PIP box of Mcm10 that inhibits the interaction with PCNA abolishes cell proliferation. This severe-growth phenotype, which has not been observed for analogous mutations in other PCNA-interacting proteins, is rescued by a compensatory mutation in PCNA that restores interaction with Mcm10-Y245A. Taken together, our results suggest that diubiquitinated Mcm10 interacts with PCNA to facilitate an essential step in DNA elongation.  相似文献   

18.
Studies with a rolling-circle DNA replication system reconstituted in vitro with a tailed form II DNA template, the DNA polymerase III holoenzyme (Pol III HE), the Escherichia coli single-stranded DNA binding protein, and the primosome, showed that within the context of a replication fork, the oligoribonucleotide primers that were formed were limited to a length in the range of 9 to 14 nucleotides, regardless of whether they were subsequently elongated by the lagging-strand DNA polymerase. This is in contrast to the 8-60-nucleotide-long primers synthesized by the primosome in the absence of DNA replication on a bacteriophage phi X174 DNA template, although when primer synthesis and DNA replication were catalyzed concurrently in this system, the extent of RNA polymerization decreased. As described in this report, we therefore examined the effect of the DNA Pol III HE on the length of primers synthesized by primase in vitro in the absence of DNA replication. When primer synthesis was catalyzed either: i) by the primosome on a phi X174 DNA template, ii) by primase on naked DNA with the aid of the DnaB protein (general priming), or iii) by primase alone at the bacteriophage G4 origin, the presence of the DNA Pol III HE in the reaction mixtures resulted in a universal reduction in the length of the heterogeneous RNA products to a uniform size of approximately 10 nucleotides. dNTPs were not required, and the addition of dGMP, an inhibitor of the 3'----5' exonuclease of the DNA Pol III HE, did not alter the effect; therefore, neither the 5'----3' DNA polymerase activity nor the 3'----5' exonuclease activity of the DNA Pol III HE was involved. E. coli DNA polymerase I, and the DNA polymerases of bacteriophages T4 and T7 could not substitute for the DNA Pol III HE. The Pol III core plays a crucial role in mediating this effect, although other subunits of the DNA Pol III HE are also required. These observations suggest that the association of primase with the DNA Pol III HE during primer synthesis regulates its catalytic activity and that this regulatory interaction occurs independently of, and prior to, formation of a preinitiation complex of the DNA Pol III HE on the primer terminus.  相似文献   

19.
To investigate the checkpoint response to aberrant initiation, we analyzed the cell cycle checkpoint response induced by mutations of Schizosaccharomyces pombe DNA primase. DNA primase has two subunits, Spp1 and Spp2 (S. pombe primases 1 and 2). Spp1 is the catalytic subunit that synthesizes the RNA primer, which is then extended by DNA polymerase alpha (Polalpha) to synthesize an initiation DNA structure, and this catalytic function of Polalpha is a prerequisite for generating the S-M phase checkpoint. Here we show that Spp2 is required for coupling the function of Spp1 to Polalpha. Thermosensitive mutations of spp2(+) destabilize the Polalpha-primase complex, resulting in an allele-specific S phase checkpoint defect. The mutant exhibiting a more severe checkpoint defect also has a higher extent of Polalpha-primase complex instability and deficiency in the hydroxyurea-induced Cds1-mediated intra-S phase checkpoint response. However, this mutant is able to activate the Cds1 response to S phase arrest induced by temperature. These findings suggest that the Cds1 response to the S-phase arrest signal(s) induced by a initiation mutant is different from that induced by hydroxyurea. Interestingly, a polalphats mutant with a defective S-M phase checkpoint and an spp2 mutant with an intact checkpoint have a similar Polalpha-primase complex stability, and the Cds1 response induced by hydroxyurea or by the mutant arrests at the restrictive temperature. Thus, the Cds1-mediated intra-S phase checkpoint response induced by hydroxyurea can also be distinguished from the S-M phase checkpoint response that requires the initiation DNA synthesis by Polalpha.  相似文献   

20.
DNA replication in almost all organisms depends on the activity of DNA primase, a DNA-dependent RNA polymerase that synthesizes short RNA primers of defined size for DNA polymerases. Eukaryotic and archaeal primases are heterodimers consisting of small catalytic and large accessory subunits, both of which are necessary for the activity. The mode of interaction of primase subunits with substrates during the various steps of primer synthesis that results in the counting of primer length is not clear. Here we show that the C-terminal domain of the large subunit (p58C) plays a major role in template-primer binding and also defines the elements of the DNA template and the RNA primer that interact with p58C. The specific mode of interaction with a template-primer involving the terminal 5′-triphosphate of RNA and the 3′-overhang of DNA results in a stable complex between p58C and the DNA/RNA duplex. Our results explain how p58C participates in RNA synthesis and primer length counting and also indicate that the binding site for initiating NTP is located on p58C. These findings provide notable insight into the mechanism of primase function and are applicable for DNA primases from other species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号