首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Patients with peripheral arterial disease (PAD) have abnormalities of carnitine metabolism that may contribute to their functional impairment. To test the hypothesis that muscle acylcarnitine generation (intermediates in oxidative metabolism) in patients with PAD provides a marker of the muscle dysfunction, 10 patients with unilateral PAD and 6 age-matched control subjects were studied at rest, and the patients were studied during exercise. At rest, biopsies of the gastrocnemius muscle in the patients' nonsymptomatic leg revealed a normal carnitine pool and lactate content compared with control subjects. In contrast, the patients' diseased leg had higher contents of lactate and long-chain acylcarnitines than controls. The muscle short-chain acylcarnitine content in the patients' diseased leg at rest was inversely correlated with peak exercise performance (r = -0.75, P less than 0.05). With graded treadmill exercise, only patients who exceeded their individual lactate threshold had an increase in muscle short-chain acylcarnitine content in the nonsymptomatic leg, which was identical to the muscle carnitine response in normal subjects. In the patients' diseased leg, muscle short-chain acylcarnitine content increased with exercise from 440 +/- 130 to 900 +/- 200 (SE) nmol/g (P less than 0.05). In contrast to the nonsymptomatic leg, there was no increase in muscle lactate content in the diseased leg with exercise, and the change in muscle carnitine metabolism was correlated with exercise duration (r = 0.82, P less than 0.01) and not with the lactate threshold. We conclude that energy metabolism in ischemic muscle of patients with PAD is characterized by the accumulation of acylcarnitines.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
Earlier studies have suggested an important role of carnitine pathway in cardiovascular pathology. However, the redistribution of carnitine and acylcarnitine pools, as a result of altered carnitine metabolism, is not clearly known in patients with acute myocardial infarction (AMI). We compared the carnitine and acylcarnitine profiles of 65 AMI patients, including 26 ST-elevated myocardial infarction (STEMI) and 39 non-ST-elevated myocardial infarction (NSTEMI), 28 patients with chest pain and 154 normal controls. The levels of carnitine and acylcarnitines in the blood spots were determined using LC-MS/MS. Total and free carnitine levels were significantly higher in all the patient groups in the following order: STEMI > NSTEMI > chest pain. The levels of short- and medium-chain acylcarnitines were significantly higher in patient groups. Among the long-chain acylcarnitines, C14:2 and C16:1 levels were significantly increased in STEMI and NSTEMI. The ratio of free carnitine to short-chain or medium-chain acylcarnitines was significantly decreased in STEMI, NSTEMI and chest pain patients however a significant increase was observed in the ratio of carnitine to long-chain acylcarnitines in all the patient groups as compared to normal controls. In conclusion, alterations in carnitine and acylcarnitine levels in the blood of AMI patients indicate the possibility of impaired carnitine homeostasis in ischemic myocardium. The clinical implications of these findings for the risk screening or diagnosis and prognosis of AMI require additional follow-up studies on large number of patients. We also suggest that a dual-marker strategy using carnitine (longer plasma half-life) in combination with troponin (shorter plasma half-life) could be a more promising biomarker strategy in risk stratification of patients.  相似文献   

3.
To determine upper body peak O2 uptake (VO2) in a group of young females and to obtain information on possible sex differences, 40 subjects, 20 females and 20 males, mean age 26 +/- 4 (SD) and 31 +/- 6 yr, respectively, were studied during maximal arm-cranking exercise. Peak values for power output, VO2, minute ventilation (VE), and heart rate (HR) were determined for each subject. In addition, arm-shoulder volume (A-SV) was measured before exercise. Significant differences between males and females (P less than 0.05) were found for peak power output (134 +/- 18 vs. 86 +/- 13 W), peak VO2 expressed in liters per minute (2.55 +/- 0.45 vs. 1.81 +/- 0.36) and milliliters per kilogram per minute (34.2 +/- 5.3 vs. 29.2 +/- 4.9), peak VE (95.4 +/- 14.5 vs. 70.1 +/- 19.2 1 X min-1), and A-SV (3,126 +/- 550 vs. 2,234 +/- 349 ml), whereas peak HR was not significantly different between the two groups (174 +/- 14 vs. 174 +/- 36 beats X min-1). However, when peak VO2 was corrected for arm and shoulder size there was no significant difference between the groups (0.82 +/- 0.13 vs. 0.78 +/- 0.13 ml X ml A-SV-1 X min-1). These results suggest that the observed differences between men and women for peak VO2 elicited during arm cranking when expressed in traditional terms (1 X min-1 and ml X kg-1 X min-1) are a function of the size of the contracting muscle mass and are not due to sex-related differences in either O2 delivery or the O2 utilization capacity of the muscle itself.  相似文献   

4.
The improved glucose tolerance and increased insulin sensitivity associated with regular exercise appear to be the result, in large part, of the residual effects of the last bout of exercise. To determine the effects of exercise intensity on this response, glucose tolerance and the insulin response to a glucose load were determined in seven well-trained male subjects [maximal O2 uptake (VO2max) = 58 ml.kg-1.min-1] and in seven nontrained male subjects (VO2max = 49 ml.kg-1.min-1) in the morning after an overnight fast 1) 40 h after the last training session (control), 2) 14 h after 40 min of exercise on a cycle ergometer at 40% VO2max, and 3) 14 h after 40 min of exercise at 80% VO2max. Subjects replicated their diets for 3 days before each test and ate a standard meal the evening before the oral glucose tolerance test. No differences in the 3-h insulin or glucose response were observed between the control trial and before exercise at either 40 or 80% VO2max in the trained subjects. In the nontrained subjects the plasma insulin response was decreased by 40% after a single bout of exercise at either 40 or 80% VO2max (7.0 X 10(3) vs. 5.0 X 10(3), P less than 0.05; 3.8 X 10(3) microU.ml-1.180 min-1, P less than 0.01). The insulin response after a single bout of exercise in the nontrained subjects was comparable with the insulin responses found in the trained subjects for the control and exercise trials.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
6.
Eight male subjects (24 +/- 1 years old) performed graded ergocycle exercises in normoxic (N) and acute hypoxic (H) conditions (14.5% O2). VO2max decreased from 55.5 +/- 1.3 to 45.8 +/- 1.4 ml . kg-1 . min-1 in H condition. Plasma glucose and free fatty acid concentrations remained unchanged throughout exercise in both conditions. Increase in blood lactate concentration was associated with relative workload in both conditions. At VO2max lactate concentrations were similar in the two conditions, plasma insulin, glucagon, and LH concentrations did not significantly change in either. Plasma delta 4-androstenedione and testosterone increased in a similar manner in both conditions. Finally plasma norepinephrine concentration reached at VO2max was significantly lower in hypoxia. These results suggest that acute moderate hypoxia does not affect metabolic and hormonal responses to short exercise performed at similar relative workloads, i.e. when the reduction of VO2max due to hypoxia is taken into consideration. The lower catecholamine response to maximal exercise under acute hypoxia might suggest that the sympathetic response could be related to relative as well as absolute workloads.  相似文献   

7.
Interorgan cooperativity in carnitine metabolism in the trained state   总被引:1,自引:0,他引:1  
This study was designed to evaluate the effects of chronic exercise training on carnitine acetyl- and palmitoyltransferase activity and the distribution of carnitine forms and concentrations in various organs and tissues of female rats. Sprague-Dawley rats were swim trained 6 days/wk and progressed to 75-min swims twice daily (with 3% of their total body weight attached to the medial portion of the tail) at the end of 5 wk of training. Sedentary (S, n = 12) and trained (T, n = 13) animals were killed by decapitation, and the livers, kidneys, hearts, and several skeletal muscle types were removed and immediately frozen in liquid N2 and/or extracted for enzyme activity assays. Blood was collected and plasma was stored frozen. Samples were assayed for free, acid-soluble, and acid-insoluble carnitine. Free carnitine increased significantly (P less than 0.03) in T hearts. Free carnitine remained unchanged in liver, but short-chain acylcarnitines increased significantly (P less than 0.001). There was a significant (P less than 0.001) reduction in long-chain acylcarnitines in kidney in the trained rats, and plasma short-chain acylcarnitine levels also decreased (P less than 0.001). Several significant changes in carnitine distribution also occurred in the superficial and deep portions of the vastus lateralis and in the mixed gastrocnemius muscles. There was a significant reduction in carnitine acetyltransferase activity with training in both the soleus (P less than 0.02) and superficial gastrocnemius (P less than 0.002) muscles. The deep portion of the gastrocnemius muscle contained significantly higher activity than either the superficial portion or the soleus.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
Sixteen male subjects [18-21 years, maximal oxygen consumption (VO2max) = 59.2 ml.kg-1.min-1 +/- SEM 5.6] participated in a study to evaluate the effect of prolonged, complete food deprivation combined with physical effort, on plasma lipoprotein concentrations. The subjects were deprived of food for 81 h but were supplied with water: they walked for 10 h a day at 40% of VO2max, covering a total of 105 km. During this period the subjects' average mass decreased significantly (P less than 0.05) reflecting a marked catabolic process. Plasma concentration of low density lipoprotein-cholesterol [( LDL-C]) and triglycerides were significantly lower (P less than 0.05) and total cholesterol, high-density lipoprotein-cholesterol [( HDL-C]), and free fatty acid levels were significantly higher (P less than 0.05) at the end of the experimental period compared to the start. The ratio between plasma [HDL-C] to plasma [LDL-C] increased from 0.51 to 0.89 at the end of the exercise period, reflecting a marked anti-atherogenic effect. All changes were transient and reversible within 12 days of recovery.  相似文献   

9.
When the carnitine pool of fed rats was labelled with tritium, in non-recirculating perfusate of their liver 44% of acid-soluble 3H activity was identified as free carnitine and 47% as short-chain acylcarnitine. Of the latter component acetylcarnitine accounted for 30% and propionylcarnitine for 10% of total acid-soluble. In plasma the contribution of short-chain acylcarnitines to total carnitine in fed, fasted and diabetic rats was 15.6%, 43.1% and 48.0%, respectively. Recirculating perfusion of livers from the same animals revealed that livers from fed rats released short-chain acylcarnitines as much as 56.2% of total and this proportion did not increase further in the other two groups. At the same time, ketone bodies in the perfusate increased gradually in the fed, fasted and diabetic group, paralleling the plasma ketone levels. Although liver supplies the organism with carnitine the increment of plasma short-chain acylcarnitines seen in ketosis is not a result of some extra output by the liver.  相似文献   

10.
We examined the effects of exercise intensity and a 10-wk cycle ergometer training program [5 days/wk, 1 h, 75% peak oxygen consumption (VO2 peak)] on plasma free fatty acid (FFA) flux, total fat oxidation, and whole body lipolysis in healthy male subjects (n = 10; age = 25.6 +/- 1.0 yr). Two pretraining trials (45 and 65% of VO2 peak) and two posttraining trials (same absolute workload, 65% of old VO2 peak; and same relative workload, 65% of new VO2 peak) were performed by using an infusion of [1-13C]palmitate and [1,1,2,3, 3-2H]glycerol. An additional nine subjects (age 25.4 +/- 0.8 yr) were treated similarly but were infused with [1,1,2,3,3-2H]glycerol and not [1-13C]palmitate. Subjects were studied postabsorptive for 90 min of rest and 1 h of cycling exercise. After training, subjects increased VO2 peak by 9.4 +/- 1.4%. Pretraining, plasma FFA kinetics were inversely related to exercise intensity with rates of appearance (Ra) and disappearance (Rd) being significantly higher at 45 than at 65% VO2 peak (Ra: 8.14 +/- 1.28 vs. 6.64 +/- 0.46, Rd: 8. 03 +/- 1.28 vs. 6.42 +/- 0.41 mol. kg-1. min-1) (P 相似文献   

11.
Previous work with pregnant ewes has shown that acute bouts of exercise may cause changes in plasma hormone concentrations, blood flow distribution, and maternal and fetal temperatures. However, most of these studies do not quantify the chosen exercise intensity through measurement of oxygen consumption (VO2). Therefore the purpose of this study was to statistically model the VO2 response of pregnant sheep to treadmill (TM) exercise to determine the exercise intensities (% maximal VO2) of previous studies. Ewes with either single (n = 9) or twin (n = 5) fetuses were studied from 100 to 130 days of gestation. After 1-2 wk of TM habituation, maximal VO2 (VO2max) was determined by measurements of VO2 (open flow-through method) and blood lactate concentration. VO2 was measured as a function of TM incline (0, 3, 5, and 7 degree) and speed (0.8-3.4 m/s). VO2max averaged 57 +/- 7 (SD) ml.min-1.kg-1, and peak lactate concentration during exercise averaged 22 +/- 2 mmol/l. The relationship between VO2 (ml.min-1.kg-1) and incline (INC) and speed (SP) [VO2 = 0.70(INC) + 13.95(SP) + 1.07(INC x SP) - 1.18] was linear (r2 = 0.94). Our findings suggest that most previous research used exercise intensities less than 60% VO2max and indicate the need for further research that examines the effect of exercise during pregnancy at levels greater than 60% VO2max.  相似文献   

12.
Long-chain acylcarnitines accumulate in long-chain fatty acid oxidation defects, especially during periods of increased energy demand from fat. To test whether this increase in long-chain acylcarnitines in very long-chain acyl-CoA dehydrogenase (VLCAD(-/-)) knock-out mice correlates with acyl-CoA content, we subjected wild-type (WT) and VLCAD(-/-) mice to forced treadmill running and analyzed muscle long-chain acyl-CoA and acylcarnitine with tandem mass spectrometry (MS/MS) in the same tissues. After exercise, long-chain acyl-CoA displayed a significant increase in muscle from VLCAD(-/-) mice [C16:0-CoA, C18:2-CoA and C18:1-CoA in sedentary VLCAD(-/-): 5.95 +/- 0.33, 4.48 +/- 0.51, and 7.70 +/- 0.30 nmol x g(-1) wet weight, respectively; in exercised VLCAD(-/-): 8.71 +/- 0.42, 9.03 +/- 0.93, and 14.82 +/- 1.20 nmol x g(-1) wet weight, respectively (P < 0.05)]. Increase in acyl-CoA in VLCAD-deficient muscle was paralleled by a significant increase in the corresponding chain length acylcarnitine. Exercise resulted in significant lowering of the free carnitine pool in VLCAD(-/-) muscle. This is the first study demonstrating that acylcarnitines and acyl-CoA directly correlate and concomitantly increase after exercise in VLCAD-deficient muscle.  相似文献   

13.
The purpose of this investigation was to determine whether sweat lactate secretion during exercise [approximately 70% maximum O2 consumption (VO2max), 60 min] differed in active vs. sedentary female subjects. Sweat rate, total sweat lactate secretion, and sweat lactate concentration were monitored in a group of sedentary (VO2max = 41.0 +/- 1.62 ml X kg-1 X min-1) and active (VO2max = 51.2 +/- 3.20 ml X kg-1 X min-1) women. Sweat rate was significantly (P less than 0.05) greater in the active subjects. There was a significant difference between groups in total amount of sweat lactate secreted (P less than 0.05), with the active group secreting less lactate (29.8 +/- 5.03 mmol, mean +/- SE) than the sedentary group (50.2 +/- 6.61 mmol). Concomitant with the lower total sweat lactate secretion in the active subjects was a significantly (P less than 0.05) more dilute sweat lactate concentration (42.6 +/- 14.08 vs. 100.4 +/- 32.37 mM). In these female subjects, sweat lactate concentration was inversely correlated (r = -0.79, P less than 0.01, n = 10) to sweat rate. It is concluded that total sweat lactate loss is significantly less in active than in sedentary women and that the active subjects secrete a greater quantity of lactate dilute sweat.  相似文献   

14.
Margaria's equation (1976)--describing the relationship between the minimum time necessary to cover a distance equal or longer than 1,000 m (record-time TR) and the maximal oxygen consumption (VO2 max)--has been modified in order to be applied to the calculation of TR in the 800 m foot race. Fifteen subjects participated in this study (VO2 max = 63 +/- 3.5 ml O2 X kg-1 X min-1, measured TR = 131 +/- 10 seconds). It has been found the TR calculated from Margaria's equation (TRc) are underestimated (TRc = 104 +/- 10 seconds). By taking into account the actual energy cost of running (0.19 ml O2 X kg-1 X m-1) and the kinetics of VO2 at the onset of exercise, TRc averaged 133 +/- 8.5 seconds. Moreover, the relationship between TRc and measured TR (TRm) is highly significant (TRc = 50.4 + 0.65 TRm; r = 0.75; P less than 0.01). These results validate Margaria's equation modifications.  相似文献   

15.
The work investigated the effects of administration of 2-tetradecylglycidate (TDG), an inhibitor of mitochondrial long-chain fatty acid oxidation, alone or in combination with glucose, on concentrations of free and acylated carnitine in livers and hearts of 48 h-starved rats. The only significant effect of TDG in the heart was to decrease [short-chain acylcarnitine]. This demonstrates that in heart, fat oxidation is linked to the formation of short-chain acylcarnitine. Cardiac [short-chain acylcarnitine] was not significantly decreased by TDG if the rats were also administered glucose, suggesting that acyl CoA derived from glucose may be used for short-chain acylcarnitine formation in TDG-treated rats. TDG significantly decreased in [free carnitine]. No changes in [short-chain acylcarnitine] were observed. This indicates that formation of short-chain acylcarnitine in liver is not determined by the rates of fat oxidation. It was calculated that at least 63% of the acyl-groups esterified to carnitine were generated by intramitochondrial beta-oxidation. The effects of glucose and TDG on hepatic concentrations of free and long-chain acylcarnitine were additive, suggesting that extramitochondrial fat oxidation can contribute to acylcarnitine formation in liver.  相似文献   

16.
The effects of beta-blockade on tidal volume (VT), breath cycle timing, and respiratory drive were evaluated in 14 endurance-trained [maximum O2 uptake (VO2max) approximately 65 ml X kg-1 X min-1] and 14 untrained (VO2max approximately 50 ml X kg-1 X min-1) male subjects at 45, 60, and 75% of unblocked VO2max and at VO2max. Propranolol (PROP, 80 mg twice daily), atenolol (ATEN, 100 mg once a day) and placebo (PLAC) were administered in a randomized double-blind design. In both subject groups both drugs attenuated the increases in VT associated with increasing work rate. CO2 production (VCO2) was not changed by either drug during submaximal exercise but was reduced in both subject groups by both drugs during maximal exercise. The relationship between minute ventilation (VE) and VCO2 was unaltered by either drug in both subject groups due to increases in breathing frequency. In trained subjects VT was reduced during maximal exercise from 2.58 l/breath on PLAC to 2.21 l/breath on PROP and to 2.44 l/breath on ATEN. In untrained subjects VT at maximal exercise was reduced from 2.30 l/breath on PLAC to 1.99 on PROP and 2.12 on ATEN. These observations indicate that 1) since VE vs. VCO2 was not altered by beta-adrenergic blockade, the changes in VT and f did not result from a general blunting of the ventilatory response to exercise during beta-adrenergic blockade; and 2) blockade of beta 1- and beta 2-receptors with PROP caused larger reductions in VT compared with blockade of beta 1-receptors only (ATEN), suggesting that beta 2-mediated bronchodilation plays a role in the VT response to heavy exercise.  相似文献   

17.
Subjects with greater aerobic fitness demonstrate better diastolic compliance at rest, but whether fitness modulates exercise cardiac compliance and cardiac filling pressures remains to be determined. On the basis of maximal oxygen consumption (VO2max), healthy male subjects were categorized into either low (LO: VO2max=43+/-6 ml.kg-1.min-1; n=3) or high (HI: VO2max=60+/-3 ml.kg-1.min-1; n=5) aerobic power. Subjects performed incremental cycle exercise to 90% Vo(2max). Right atrial (RAP) and pulmonary artery wedge (PAWP) pressures were measured, and left ventricular (LV) transmural filling pressure (TMFP=PAWP-RAP) was calculated. Cardiac output (CO) and stroke volume (SV) were determined by direct Fick, and LV end-diastolic volume (EDV) was estimated from echocardiographic fractional area change and Fick SV. There were no between-group differences for any measure at rest. At a submaximal workload of 150 W, PAWP and TMFP were higher (P<0.05) in LO compared with HI (12 vs. 8 mmHg, and 9 vs. 4 mmHg, respectively). At peak exercise, CO, SV, and EDV were lower in LO (P<0.05). RAP was not different at peak exercise, but PAWP (23 vs. 15 mmHg) and TMFP (12 vs. 6 mmHg) were higher in LO (P<0.05). Compared with less fit subjects, subjects with greater aerobic fitness demonstrated lower LV filling pressures during exercise, whereas SV and EDV were either similar (submaximal exercise) or higher (peak exercise), suggesting superior diastolic function and compliance.  相似文献   

18.
Validation of the maximal multistage 20 m shuttle run test with 1 min steps has been compared with a stepwise load increase on a bicycle ergometer among 201 male and female subjects ranging from 14 to 30 years. A slight underestimation of VO2 max (5.2%) amounting to 2.71 ml . min-1 . kg-1 was observed for the multistage shuttle test as compared to the bicycle test (r = 0.72). The analysis of the biological values collected after exercise does not show major differences between the two tests (plasma lactate, urinary total protein and albumin, creatinine). The renal handling of plasma proteins appears to be equally disturbed under the influence of exhaustive exercise. Maximal aerobic power regularly increases with age in both sexes, being more pronounced however for boys (1.16 to 3.37 l . min-1) than for girls (1.17 to 2.43 l . min-1) from 6 to 20 years old. Boys nearly sustain 50 ml . min-1 . kg-1 throughout childhood. On the contrary, from 8 years on girls progressively reduce their VO2 max down to 37.1 ml . min-1 . kg-1 at the age of 19. The decrease is more pronounced during the 11-16 years period. The present results constitute tentative norms on 1,025 brussels male and female subjects ranging from 6 to 23 years.  相似文献   

19.
Distribution of blood flow in muscles of miniature swine during exercise   总被引:7,自引:0,他引:7  
The purpose of this study was to determine how the distribution of blood flow within and among the skeletal muscles of miniature swine (22 +/- 1 kg body wt) varies as a function of treadmill speed. Radiolabeled microspheres were used to measure cardiac output (Q) and tissue blood flows in preexercise and at 3-5 min of treadmill exercise at 4.8, 8.0, 11.3, 14.5, and 17.7 km/h. All pigs (n = 8) attained maximal O2 consumption (VO2max) (60 +/- 4 ml X min-1 X kg-1) by the time they ran at 17.7 km/h. At VO2max, 87% of Q (9.9 +/- 0.5 l/min) was to skeletal muscle, which constituted 36 +/- 1% of body mass. Average total muscle blood flow at VO2max was 127 +/- 14 ml X min-1 X 100 g-1; average limb muscle flow was 135 +/- 17 ml X min-1 X 100 g-1. Within the limb muscles, blood flow was distributed so that the deep red parts of extensor muscles had flows about two times higher than the more superficial white portions of the same muscles; the highest muscle blood flows occurred in the elbow flexors (brachialis: 290 +/- 44 ml X min-1 X 100 g-1). Peak exercise blood flows in the limb muscles were proportional (P less than 0.05) to the succinate dehydrogenase activities (r = 0.84), capillary densities (r = 0.78), and populations of oxidative (slow-twitch oxidative + fast-twitch oxidative-glycolytic) fiber types (r = 0.93) in the muscles. Total muscle blood flow plotted as a function of exercise intensity did not peak until the pigs attained VO2max, although flows in some individual muscles showed a plateau in this relationship at submaximal exercise intensities. The data demonstrate that blood flow in skeletal muscles of miniature swine is distributed heterogeneously and varies in relation to fiber type composition and exercise intensity.  相似文献   

20.
There are conflicting reports in the literature which imply that the decrement in maximal aerobic power experienced by a sea-level (SL) resident sojourning at high altitude (HA) is either smaller or larger for the more aerobically "fit" person. In the present study, data collected during several investigations conducted at an altitude of 4300 m were analyzed to determine if the level of aerobic fitness influenced the decrement in maximal oxygen uptake (VO2max) at HA. The VO2max of 51 male SL residents was measured at an altitude of 50 m and again at 4300 m. The subjects' ages, heights, and weights (mean +/- SE) were 22 +/- 1 yr, 177 +/- 7 cm and 78 +/- 2 kg, respectively. The subjects' VO2max ranged from 36 to 60 ml X kg -1 X min -1 (mean +/- SE = 48 +/- 1) and the individual values were normally distributed within this range. Likewise, the decrement in VO2max at HA was normally distributed from 3 ml X kg-1 X min-1 (9% VO2max at SL) to 29 ml X kg-1 X min-1 (54% VO2max at SL), and averaged 13 +/- 1 ml X kg-1 X min-1 (27 +/- 1% VO2max at SL). The linear correlation coefficient between aerobic fitness and the magnitude of the decrement in VO2max at HA expressed in absolute terms was r = 0.56, or expressed as % VO2max at SL was r = 0.30; both were statistically significant (p less than 0.05).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号