首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
We report the sequence of 41 primer pairs of microsatellites from a CT-enriched genomic library of the peach cultivar 'Merrill O'Henry'. Ten microsatellite-containing clones had sequences similar to plant coding sequences in databases and could be used as markers for known functions. For microsatellites segregating at least in one of the two Prunus F(2) progenies analyzed, it was possible to demonstrate Mendelian inheritance. Microsatellite polymorphism was evaluated in 27 peach and 21 sweet cherry cultivars. All primer pairs gave PCR-amplification products on peach and 33 on cherry (80.5%). Six PCR-amplifications revealed several loci (14.6%) in peach and eight (19.5%) in sweet cherry. Among the 33 single-locus microsatellites amplified in peach and sweet cherry, 13 revealed polymorphism both in peach and cherry, 19 were polymorphic only on peach and one was polymorphic only on cherry. The number of alleles per locus ranged from 1 to 9 for peach and from 1 to 6 on sweet cherry with an average of 4.2 and 2.8 in peach and sweet cherry, respectively. Cross-species amplification was tested within the Prunus species: Prunus avium L. (sweet cherry and mazzard), Prunus cerasus L. (sour cherry), Prunus domestica L. (European plum), Prunus amygdalus Batsch. (almond), Prunus armeniaca L. (apricot), Prunus cerasifera Ehrh. (Myrobalan plum). Plants from other genera of the Rosaceae were also tested: Malus (apple) and Fragaria (strawberry), as well as species not belonging to the Rosaceae: Castanea (chestnut tree), Juglans (walnut tree) and Vitis (grapevine). Six microsatellites gave amplification on all the tested species. Among them, one had an amplified region homologous to sequences encoding a MADS-box protein in Malus x domestica. Twelve microsatellites (29.3%) were amplified in all the Rosaceae species tested and 31 (75.6%) were amplified in all the six Prunus species tested. Thirty three (80.5%), 18 (43.9%) and 13 (31.7%) gave amplification on chestnut tree, grapevine and walnut tree, respectively.  相似文献   

2.
The molecular bases of the gametophytic self-incompatibility (GSI) system of species of the subtribe Pyrinae (Rosaceae), such as apple and pear, have been widely studied in the last two decades. The characterization of S-locus genes and of the mechanisms underlying pollen acceptance or rejection have been topics of major interest. Besides the single pistil-side S determinant, the S-RNase, multiple related S-locus F-box genes seem to be involved in the determination of pollen S specificity. Here, we collect and review the state of the art of GSI in the Pyrinae. We emphasize recent genomic data that have contributed to unveiling the S-locus structure of the Pyrinae, and discuss their consistency with the models of self-recognition that have been proposed for Prunus and the Solanaceae. Experimental data suggest that the mechanism controlling pollen-pistil recognition specificity of the Pyrinae might fit well with the collaborative 'non-self' recognition system proposed for Petunia (Solanaceae), whereas it presents relevant differences with the mechanism exhibited by the species of the closely related genus Prunus, which uses a single evolutionarily divergent F-box gene as the pollen S determinant. The possible involvement of multiple pollen S genes in the GSI system of Pyrinae, still awaiting experimental confirmation, opens up new perspectives to our understanding of the evolution of S haplotypes, and of the evolution of S-RNase-based GSI within the Rosaceae family. Whereas S-locus genes encode the players determining self-recognition, pollen rejection in the Pyrinae seems to involve a complex cascade of downstream cellular events with significant similarities to programmed cell death.  相似文献   

3.
Genic microsatellites or simple sequence repeat markers derived from expressed sequence tags (ESTs), referred to as EST–SSRs, are inexpensive to develop, represent transcribed genes, and often have assigned putative function. The large apple (Malus × domestica) EST database (over 300,000 sequences) provides a valuable resource for developing well-characterized DNA molecular markers. In this study, we have investigated the level of transferability of 68 apple EST–SSRs in 50 individual members of the Rosaceae family, representing three genera and 14 species. These representatives included pear (Pyrus communis), apricot (Prunus armeniaca), European plum (P. domestica), Japanese plum (P. salicina), almond (P. dulcis), peach (P. persica), sour cherry (P. cerasus), sweet cherry (P. avium), strawberry (Fragaria vesca, F. moschata, F. virginiana, F. nipponica, and F. pentaphylla), and rose (Rosa hybrida). All 68 primer pairs gave an amplification product when tested on eight apple cultivars, and for most, the genomic DNA-derived amplification product matched the expected size based on EST (in silico) data. When tested across members of the Rosaceae, 75% of these primer pairs produced amplification products. Transferability of apple EST–SSRs across the Rosaceae ranged from 25% in apricot to 59% in the closely related pear. Besides pear, the highest transferability of these apple EST–SSRs, at the genus level, was observed for strawberry and peach/almond, 49 and 38%, respectively. Three markers amplified in at least one genotype within all tested species, while eight additional markers amplified in all species, except for cherry. These 11 markers are deemed good candidates for a widely transferable Rosaceae marker set provided their level of polymorphism is adequate. Overall, these findings suggest that transferability of apple EST–SSRs across Rosaceae is varied, yet valuable, thereby providing additional markers for comparative mapping and for carrying out evolutionary studies.  相似文献   

4.
Gametophytic self-incompatibility (GSI) is an outcrossing mechanism in flowering plants that is genetically controlled by 2 separate genes located at the highly polymorphic S-locus, termed S-haplotype. This study characterizes a pollen part mutant of the S(1)-haplotype present in sour cherry (Rosaceae, Prunus cerasus L.) that contributes to the loss of GSI. Inheritance of S-haplotypes from reciprocal interspecific crosses between the self-compatible sour cherry cultivar Ujfehértói Fürt?s carrying the mutated S(1)-haplotype (S(1)'S(4)S(d)S(null)) and the self-incompatible sweet cherry (Prunus avium L.) cultivars carrying the wild-type S(1)-haplotype revealed that the mutated S(1)-haplotype confers unilateral incompatibility with a functional pistil component and a nonfunctional pollen component. The altered sour cherry S(1)-haplotype pollen part mutant, termed S(1)', contains a 615-bp Ds-like element within the S(1)-haplotype-specific F-box protein gene (SFB(1)'). This insertion generates a premature in-frame stop codon that would result in a putative truncated SFB(1) containing only 75 of the 375 amino acids present in the wild-type SFB(1). S(1)' along with 2 other previously characterized Prunus S-haplotype mutants, S(f) and S(6m), illustrate that mobile element insertion is an evolutionary force contributing to the breakdown of GSI.  相似文献   

5.
6.
Host preference of the plum curculio   总被引:1,自引:0,他引:1  
We assessed host preference of adult plum curculio, Conotrachelus nenuphar (Herbst) (Coleoptera: Curculionidae), based on the total number of mark‐released and wild adults recovered and the total distance moved by mark‐released adults in an orchard whose layout was designed to specifically allow foraging plum curculios to choose among host tree species. Host trees included apple, Malus domestica Borkh.; pear, Pyrus communis (L.); peach, Prunus persica (L.) Batsch; apricot, Prunus armeniaca L.; tart cherry, Prunus cerasus L.; sweet cherry, Prunus avium (L.); European plum, Prunus domestica L.; and Japanese plum, Prunus salicina Lindl. (all Rosaceae). We released 2900 marked adults and recovered 17.7%. We used screen traps to provide a measure of the number of adults that arrived at and climbed up particular host trees and found that significantly greater numbers of marked adults and the greatest number of wild adults were recovered from screen traps attached to Japanese plum. We sampled host tree canopies by tapping limbs to provide a measure of the number of adults within a tree canopy at a particular moment. Again, significantly greater numbers of marked and wild adults were recovered from plum species, with no difference between Japanese and European plum cultivars for marked individuals, but with significantly greater numbers of wild individuals recovered from Japanese plum. The preference index (PI) for Japanese plum based on total distances moved by all marked adults recovered on Japanese plum divided by the total distance moved by marked adults recovered on other host trees indicated that Japanese plum was the most highly preferred host, followed by European plum, peach, sweet cherry, tart cherry, apricot, apple, and pear, respectively.  相似文献   

7.
Genetic linkage maps of the European pear ( Pyrus communis L.) cultivar 'Bartlett' and the Japanese pear ( Pyrus pyrifolia Nakai) cultivar 'Housui' were constructed based on AFLPs, SSRs from pear, apple and Prunus, isozymes and phenotypic traits by using their F(1) progenies. The map of the female parent Bartlett consisted of 226 loci including 175 AFLPs, 49 SSRs, one isozyme and one S locus on 18 linkage groups over a total length of 949 cM, while that for 'Housui' contained 154 loci including 106 AFLPs, 42 SSRs, two phenotypic traits and the other four markers on 17 linkage groups encompassing a genetic distance of 926 cM. These maps were partially aligned using 20 codominant markers which showed segregating alleles in both parents. Compared with the reports of apple genetic maps, these pear maps were not saturated but were near saturation. Distorted segregation was observed in two and one regions of the genome of Bartlett and Housui, respectively. The position of 14 SSRs originating from apple could be successfully determined in pear maps, which enabled us to compare the two maps. Some SSRs developed from Prunus (peach, cherry) were also mapped. The relationships between pear and the other species belonging to the Rosaceae were discussed based on the position of SSRs.  相似文献   

8.
9.
The Rosaceae Conserved Orthologous Set (RosCOS) provides a gene-based genome-wide set of markers that have been used in comparative analyses of peach (Prunus persica), apple (Malus × domestica), and strawberry (Fragaria spp.). In order to extend the use of these RosCOS to sweet cherry (Prunus avium L.), we identified markers that are polymorphic in breeding germplasm. Ninety-five percent (595/627) of previously designed RosCOS primer pairs amplified a product in six sweet cherry cultivars predicted to represent the range of genetic diversity in breeding germplasm. A total of 45% (282/627) RosCOS were polymorphic among the six cultivars, and allele number ranged from 2 to 6, with a genome-wide mean of 2.35. A subset of 92 genome-wide single nucleotide polymorphisms (SNPs) corresponding to 76 RosCOS was analyzed in 36 founder accessions and progeny. The expected and observed heterozygosity suggested that 83% of the RosCOS were in Hardy–Weinberg equilibrium, implying that most RosCOS behave as neutral markers. Principal coordinate analysis (PCO) identified one wild accession and two Spanish landraces that clustered differently from the other accessions. The relatively high number of unique alleles found in the three differentially clustered selections suggested that their use as parents has potential to increase the genetic diversity in future US-bred cultivars. Of the 92 RosCOS SNPs, 81 SNPs that represented 68 genome-wide RosCOS segregated in four mapping populations. These RosCOS were mapped in four F1 populations, thereby greatly improving the genetic linkage map of sweet cherry.  相似文献   

10.
Because of its popularity as an ornamental plant in East Asia, mei (Prunus mume Sieb. et Zucc.) has received increasing attention in genetic and genomic research with the recent shotgun sequencing of its genome. Here, we performed the genome-wide characterization of simple sequence repeats (SSRs) in the mei genome and detected a total of 188,149 SSRs occurring at a frequency of 794 SSR/Mb. Mononucleotide repeats were the most common type of SSR in genomic regions, followed by di- and tetranucleotide repeats. Most of the SSRs in coding sequences (CDS) were composed of tri- or hexanucleotide repeat motifs, but mononucleotide repeats were always the most common in intergenic regions. Genome-wide comparison of SSR patterns among the mei, strawberry (Fragaria vesca), and apple (Malus×domestica) genomes showed mei to have the highest density of SSRs, slightly higher than that of strawberry (608 SSR/Mb) and almost twice as high as that of apple (398 SSR/Mb). Mononucleotide repeats were the dominant SSR motifs in the three Rosaceae species. Using 144 SSR markers, we constructed a 670 cM-long linkage map of mei delimited into eight linkage groups (LGs), with an average marker distance of 5 cM. Seventy one scaffolds covering about 27.9% of the assembled mei genome were anchored to the genetic map, depending on which the macro-colinearity between the mei genome and Prunus T×E reference map was identified. The framework map of mei constructed provides a first step into subsequent high-resolution genetic mapping and marker-assisted selection for this ornamental species.  相似文献   

11.
Microsatellites have emerged as an important system of molecular markers. We evaluated the potential of microsatellites for use in genetic studies of peach [Prunus persica (L.) Batsch]. Microsatellite loci in peach were identified by screening a pUC8 genomic library, a λZAPII leaf cDNA library, as well as through database searches. Primer sequences for the microsatellite loci were tested from the related Rosaceae species apple (Malus×domestica) and sour cherry (Prunus cerasus L.). The genomic library was screened for CT, CA and AGG repeats, while the cDNA library was screened for (CT)n- and (CA)n-containing clones. Estimates of microsatellite frequencies were determined from the genomic library screening, and indicate that CT repeats occur every 100 kb, CA repeats every 420 kb, and AGG repeats every 700 kb in the peach genome. Microsatellite- containing clones were sequenced, and specific PCR primers were designed to amplify the microsatellite- containing regions from genomic DNA. The level of microsatellite polymorphism was evaluated among 28 scion peach cultivars which displayed one to four alleles per primer pair. Five microsatellites were found to segregate in intraspecific peach-mapping crosses. In addition, these microsatellite markers were tested for their utility in cross-species amplification for use in comparative mapping both within the Rosaceae, and with the un- related species Arabidopsis thaliana L. Received: 18 June 1999 / Accepted: 6 December 1999  相似文献   

12.
李雄伟贾惠娟  高中山 《遗传》2013,35(10):1167-1178
桃(Prunus persica [L.] Batsch)是蔷薇科重要的核果类果树, 适应性强, 栽培范围广, 果实口感好, 深受消费者喜欢。提高桃果实品质及增加抗病、抗虫性一直是桃遗传育种者关注的焦点。文章对近年来桃遗传分子标记连锁图谱和物理图谱构建、分子标记开发应用、全基因组和转录组测序工作中所取得的最新成果进行综述, 同时阐述了高密度SNP芯片标记技术在桃以及其它作物上所开展的全基因组关联分析应用实例, 为桃进一步开展全基因组关联分析, 挖掘目标性状QTLs以及高效育种选择标记提供理论基础  相似文献   

13.
Plant Molecular Biology Reporter - Plum (Prunus L.) is a species which exhibits a gametophytic self-incompatibility system “GSI” as the majority of species belonging to the Rosaceae...  相似文献   

14.
A total of 145 microsatellite primer pairs from Prunus DNA sequences were studied for transferability in a set of eight cultivars from nine rosaceous species (almond, peach, apricot, Japanese plum, European plum, cherry, apple, pear, and strawberry), 25 each of almond genomic, peach genomic, peach expressed sequence tags (EST), and Japanese plum genomic, 22 of almond EST, and 23 of apricot (13 EST and 10 genomic), all known to produce single-locus and polymorphic simple-sequence repeats in the species where they were developed. Most primer pairs (83.6%) amplified bands of the expected size range in other Prunus. Transferability, i.e., the proportion of microsatellites that amplified and were polymorphic, was also high in Prunus (63.9%). Almond and Japanese plum were the most variable among the diploid species (all but the hexaploid European plum) and peach the least polymorphic. Thirty-one microsatellites amplified and were polymorphic in all Prunus species studied, 12 of which, covering its whole genome, are proposed as the “universal Prunus set”. In contrast, only 16.3% were transferable in species of other Rosaceae genera (apple, pear, and strawberry). Polymorphic Prunus microsatellites also detected lower levels of variability in the non-congeneric species. No significant differences were detected in transferability and the ability to detect variability between microsatellites of EST and genomic origin.  相似文献   

15.
A genetic linkage map of apricot ( Prunus armeniaca L.) was constructed using AFLP and SSR markers. The map is based on an F(2) population (76 individuals) derived from self-pollination of an F(1) individual ('Lito') originated from a cross between 'Stark Early Orange' and 'Tyrinthos'. This family, designated as 'Lito' x 'Lito', segregated for two important agronomical traits: plum pox virus resistance (PPV) and self-incompatibility. A total of 211 markers (180 AFLPs, 29 SSRs and two agronomic traits) were assigned to 11 linkage groups covering 602 cM of the apricot genome. The average distance (cM/marker) between adjacent markers is 3.84 cM. The PPV resistance trait was mapped on linkage group G1 and the self-incompatibility trait was mapped on linkage group G6. Twenty two loci held in common with other Prunus maps allowed us to compare and establish homologies among the respective linkage groups.  相似文献   

16.
Thirty SSR primer combinations, developed from peach SSR-enriched genomic libraries and BAC libraries of peach [ Prunus persica (L.) Batsch.], were tested for cross amplification with 74 apricot ( Prunus armeniaca L.) germplasm accessions. Twelve primer pairs amplified 14 polymorphic SSR loci useful for discriminating most apricot cultivars, as well as for investigating patterns of variation in apricot germplasm. Levels of polymorphism were higher than the levels described using other codominant marker systems (i.e., isozymes, RFLP markers). Overall, 107 alleles were identified, and all but 11 accessions were unambiguously discriminated. Genetic differentiation of native germplasm into traditional ecogeographical groups was low, with a high level of genetic identity (> 0.75) between the groups. However, neighbor joining cluster analysis of marker distances between cultivars reflected the complex history of apricot domestication, producing groupings not evidently based on the geographical origin of the cultivars. Distant positioning of Chinese cultivars on UPGMA and neighbor joining dendrograms supports the authors' consideration of Chinese apricots as subspecies, Prunus armeniaca var. ansu Maxim., rather than a separate species.  相似文献   

17.
Studies were designed to examine the effects of host plants (apricot, Prunus armeniaca L.; plum, Prunus salicina L.; peach, Prunus persica L.; jujube, Zizyphus jujuba Will.; apple, Malus domestica Mill.; and pear, Pyrus sorotina Will) on the development and life table parameters of the peach fruit moth, Carposina sasakii Matsumura (Lepidoptera: Carposinidae) under laboratory conditions. Peach fruit moth developed faster (12.48 d) and had the highest preimaginal survival rate (50.54%) on plum compared with the other host plants. Adult longevity was significantly longer on jujube for both female and male moths. Adult females from larvae reared on jujube and peach laid significantly greater numbers of eggs (214.50 and 197.94 eggs per female, respectively) compared with those reared on the other four host plants. Life-table parameters were calculated for each host plant and compared by jackknife procedures. The intrinsic rate of natural increase (r(m)) was significantly greatest on plum (0.1294 eggs per female per d), followed by jujube and apricot (0.1201 and 0.1128 eggs per female per d), respectively. Implications of the various measures of population performance are discussed.  相似文献   

18.
Kato S  Mukai Y 《Heredity》2004,92(3):249-256
In the Rosaceae family, which includes Prunus, gametophytic self-incompatibility (GSI) is controlled by a single multiallelic locus (S-locus), and the S-locus product expressed in the pistils is a glycoprotein with ribonuclease activity (S-RNase). Two populations of flowering cherry (Prunus lannesiana var. speciosa), located on Hachijo Island in Japan's Izu Islands, were sampled, and S-allele diversity was surveyed based on the sequence polymorphism of S-RNase. A total of seven S-alleles were cloned and sequenced. The S-RNases of flowering cherry showed high homology to those of Prunus cultivars (P. avium and P. dulcis). In the phylogenetic tree, the S-RNases of flowering cherry and other Prunus cultivars formed a distinct group, but they did not form species-specific subgroups. The nucleotide substitution pattern in S-RNases of flowering cherry showed no excess of nonsynonymous substitutions relative to synonymous substitutions. However, the S-RNases of flowering cherry had a higher Ka/Ks ratio than those of other Prunus cultivars, and a subtle heterogeneity in the nucleotide substitution rates was observed among the Prunus species. The S-genotype of each individual was determined by Southern blotting of restriction enzyme-digested genomic DNA, using cDNA for S-RNase as a probe. A total of 22 S-alleles were identified. All individuals examined were heterozygous, as expected under GSI. The allele frequencies were, contrary to the expectation under GSI, significantly unequal. The two populations studied showed a high degree of overlap, with 18 shared alleles. However, the allele frequencies differed considerably between the two populations.  相似文献   

19.
We report 99 simple sequence repeats (SSRs) newly isolated from an apricot (Prunus armeniaca L.) genomic library enriched for AG/CT repeats. Twenty SSRs were screened for their polymorphism in 16 apricot cultivars. The number of alleles ranged from two to nine, whereas the expected heterozygosity (HE) ranged from 0.26 to 0.82. The same SSRs showed also an appreciable transportability across different Prunus species, such as peach, nectarine, almond, European plum, Japanese plum, sweet cherry and sour cherry, with 20% of primers giving successful amplifications in all Prunus species assayed. None gave amplification in apple.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号