首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The performance of a battery of three of the most commonly used in vitro genotoxicity tests--Ames+mouse lymphoma assay (MLA)+in vitro micronucleus (MN) or chromosomal aberrations (CA) test--has been evaluated for its ability to discriminate rodent carcinogens and non-carcinogens, from a large database of over 700 chemicals compiled from the CPDB ("Gold"), NTP, IARC and other publications. We re-evaluated many (113 MLA and 30 CA) previously published genotoxicity results in order to categorise the performance of these assays using the response categories we established. The sensitivity of the three-test battery was high. Of the 553 carcinogens for which there were valid genotoxicity data, 93% of the rodent carcinogens evaluated in at least one assay gave positive results in at least one of the three tests. Combinations of two and three test systems had greater sensitivity than individual tests resulting in sensitivities of around 90% or more, depending on test combination. Only 19 carcinogens (out of 206 tested in all three tests, considering CA and MN as alternatives) gave consistently negative results in a full three-test battery. Most were either carcinogenic via a non-genotoxic mechanism (liver enzyme inducers, peroxisome proliferators, hormonal carcinogens) considered not necessarily relevant for humans, or were extremely weak (presumed) genotoxic carcinogens (e.g. N-nitrosodiphenylamine). Two carcinogens (5-chloro-o-toluidine, 1,1,2,2-tetrachloroethane) may have a genotoxic element to their carcinogenicity and may have been expected to produce positive results somewhere in the battery. We identified 183 chemicals that were non-carcinogenic after testing in both male and female rats and mice. There were genotoxicity data on 177 of these. The specificity of the Ames test was reasonable (73.9%), but all mammalian cell tests had very low specificity (i.e. below 45%), and this declined to extremely low levels in combinations of two and three test systems. When all three tests were performed, 75-95% of non-carcinogens gave positive (i.e. false positive) results in at least one test in the battery. The extremely low specificity highlights the importance of understanding the mechanism by which genotoxicity may be induced (whether it is relevant for the whole animal or human) and using weight of evidence approaches to assess the carcinogenic risk from a positive genotoxicity signal. It also highlights deficiencies in the current prediction from and understanding of such in vitro results for the in vivo situation. It may even signal the need for either a reassessment of the conditions and criteria for positive results (cytotoxicity, solubility, etc.) or the development and use of a completely new set of in vitro tests (e.g. mutation in transgenic cell lines, systems with inherent metabolic activity avoiding the use of S9, measurement of genetic changes in more cancer-relevant genes or hotspots of genes, etc.). It was very difficult to assess the performance of the in vitro MN test, particularly in combination with other assays, because the published database for this assay is relatively small at this time. The specificity values for the in vitro MN assay may improve if data from a larger proportion of the known non-carcinogens becomes available, and a larger published database of results with the MN assay is urgently needed if this test is to be appreciated for regulatory use. However, specificity levels of <50% will still be unacceptable. Despite these issues, by adopting a relative predictivity (RP) measure (ratio of real:false results), it was possible to establish that positive results in all three tests indicate the chemical is greater than three times more likely to be a rodent carcinogen than a non-carcinogen. Likewise, negative results in all three tests indicate the chemical is greater than two times more likely to be a rodent non-carcinogen than a carcinogen. This RP measure is considered a useful tool for industry to assess the likelihood of a chemical possessing carcinogenic potential from batteries of positive or negative results.  相似文献   

2.
A working group convened at the 2009 5th IWGT to discuss possibilities for improving in vivo genotoxicity assessment by investigating possible links to standard toxicity testing. The working group considered: (1) combination of acute micronucleus (MN) and Comet assays into a single study, (2) integration of MN assays into repeated-dose toxicity (RDT) studies, (3) integration of Comet assays into RDT studies, and (4) requirements for the top dose when integrating genotoxicity measurements into RDT studies. The working group reviewed current requirements for in vivo genotoxicity testing of different chemical product classes and identified opportunities for combination and integration of genotoxicity endpoints for each class. The combination of the acute in vivo MN and Comet assays was considered by the working group to represent a technically feasible and scientifically acceptable alternative to conducting independent assays. Two combination protocols, consisting of either a 3- or a 4-treament protocol, were considered equally acceptable. As the integration of MN assays into RDT studies had already been discussed in detail in previous IWGT meetings, the working group focussed on factors that could affect the results of the integrated MN assay, such as the possible effects of repeated bleeding and the need for early harvests. The working group reached the consensus that repeated bleeding at reasonable volumes is not a critical confounding factor for the MN assay in rats older than 9 weeks of age and that rats bled for toxicokinetic investigations or for other routine toxicological purposes can be used for MN analysis. The working group considered the available data as insufficient to conclude that there is a need for an early sampling point for MN analysis in RDT studies, in addition to the routine determination at terminal sacrifice. Specific scenarios were identified where an additional early sampling can have advantages, e.g., for compounds that exert toxic effects on hematopoiesis, including some aneugens. For the integration of Comet assays into RDT studies, the working group reached the consensus that, based upon the limited amount of data available, integration is scientifically acceptable and that the liver Comet assay can complement the MN assay in blood or bone marrow in detecting in vivo genotoxins. Practical issues need to be considered when conducting an integrated Comet assay study. Freezing of tissue samples for later Comet assay analysis could alleviate logistical problems. However, the working group concluded that freezing of tissue samples can presently not be recommended for routine use, although it was noted that results from some laboratories look promising. Another discussion topic centred around the question as to whether tissue toxicity, which is more likely observed in RDT than in acute toxicity studies, would affect the results of the Comet assay. Based on the available data from in vivo studies, the working group concluded that there are no clear examples where cytotoxicity, by itself, generates increases or decreases in DNA migration. The working group identified the need for a refined guidance on the use and interpretation of cytotoxicity methods used in the Comet assay, as the different methods used generally lead to inconsistent conclusions. Since top doses in RDT studies often are limited by toxicity that occurs only after several doses, the working group discussed whether the sensitivity of integrated genotoxicity studies is reduced under these circumstances. For compounds for which in vitro genotoxicity studies yielded negative results, the working group reached the consensus that integration of in vivo genotoxicity endpoints (typically the MN assay) into RDT studies is generally acceptable. If in vitro genotoxicity results are unavailable or positive, consensus was reached that the maximum tolerated dose (MTD) is acceptable as the top dose in RDT studies in many cases, such as when the RDT study MTD or exposure is close (50% or greater) to an acute study MTD or exposure. Finally, the group agreed that exceptions to this general rule might be acceptable, for example when human exposure is lower than the preclinical exposure by a large margin.  相似文献   

3.
3 ketone solvents (methyl ethyl ketone (MEK), methyl isobutyl ketone (MiBK), and isophorone) were tested for potential genotoxicity. The assays of MEK and MiBK included the Salmonella/microsome (Ames) assay, L5178Y/TK+/- mouse lymphoma (ML) assay, BALB/3T3 cell transformation (CT) assay, unscheduled DNA synthesis (UDS) assay, and micronucleus (MN) assay. Only the ML, UDS, and MN assays were conducted on samples of isophorone. No genotoxicity was found for MEK or isophorone. The presence of a marginal response only at the highest, cytotoxic concentration tested in the ML assay, the lack of reproducibility in the CT assay, and clearly negative results in the Ames assay, UDS and MN assays, suggest that MiBK is unlikely to be genotoxic in mammalian systems.  相似文献   

4.
Information in the 1999 Physician's Desk Reference as well as from the peer-reviewed published literature was used to evaluate the genotoxicity of marketed pharmaceuticals. This survey is a compendium of genotoxicity information and a means to gain perspective on the inherent genotoxicity of structurally diverse pharmaceuticals. Data from 467 marketed drugs were collected. Excluded from analysis were anti-cancer drugs and nucleosides, which are expected to be genotoxic, steroids, biologicals and peptide-based drugs. Of the 467 drugs, 115 had no published gene-tox data. This group was comprised largely of acutely administered drugs such as antibiotics, antifungals, antihistamines decongestants and anesthetics. The remaining 352 had at least one standard gene-tox assay result. Of these, 101 compounds (28.7%) had at least one positive assay result in the pre-ICH/OECD standard four-test battery (bacterial mutagenesis, in vitro cytogenetics, mouse lymphoma assay (MLA), in vivo cytogenetics). Per assay type, the percentage of positive compounds was: bacterial mutagenesis test, 27/323 (8.3%); in vitro cytogenetics 55/222 (24.8%); MLA 24/96 (25%); in vivo cytogenetics 29/252 (11.5%). Of the supplemental genetic toxicology test findings reported, the sister chromatid exchange (SCE) assay had the largest percentage of positives 17/39 (43.5%) and mammalian mutagenesis assays (excluding MLA) had the lowest percentage of positives 2/91 (2.2%). The predictive value of genetic toxicology findings for 2-year bioassay outcomes is difficult to assess since carcinogenicity can occur via non-genotoxic mechanisms. Nevertheless, the following survey findings were made: 201 drugs had both gene-tox data and rodent carcinogenicity data. Of these, 124 were negative and 77 were equivocal or positive for carcinogenicity in at least 1 gender/1 species. Of the 124 non-carcinogens, 100 had no positive gene-tox findings. Of the remaining 24, 19 were positive in in vitro cytogenetics assays. Among the 77 compounds that exhibited equivocal or positive effects in carcinogenesis studies, 26 were positive in gene-tox assays and 51 were negative. Of the 51 negatives, 47 had multiple negative gene-tox assay results suggesting that these are probably non-genotoxic carcinogens. Statistical analyses suggested that no combination of gene-tox assays provided a higher predictivity of rodent carcinogenesis than the bacterial mutagenicity test itself.  相似文献   

5.
One of the consequences of the low specificity of the in vitro mammalian cell genotoxicity assays reported in our previous paper [D. Kirkland, M. Aardema, L. Henderson, L. Muller, Evaluation of the ability of a battery of three in vitro genotoxicity tests to discriminate rodent carcinogens and non-carcinogens. I. Sensitivity, specificity and relative predictivity, Mutat. Res. 584 (2005) 1-256] is industry and regulatory agencies dealing with a large number of false-positive results during the safety assessment of new chemicals and drugs. Addressing positive results from in vitro genotoxicity assays to determine which are "false" requires extensive resources, including the conduct of additional animal studies. In order to reduce animal usage, and to conserve industry and regulatory agency resources, we thought it was important to raise the question as to whether the protocol requirements for a valid in vitro assay or the criteria for a positive result could be changed in order to increase specificity without a significant loss in sensitivity of these tests. We therefore analysed some results of the mouse lymphoma assay (MLA) and the chromosomal aberration (CA) test obtained for rodent carcinogens and non-carcinogens in more detail. For a number of chemicals that are positive only in either of these mammalian cell tests (i.e. negative in the Ames test) there was no correlation between rodent carcinogenicity and level of toxicity (we could not analyse this for the CA test as insufficient data were available in publications), magnitude of response or lowest effective positive concentration. On the basis of very limited in vitro and in vivo data, we could also find no correlation between the above parameters and formation of DNA adducts. Therefore, a change to the current criteria for required level of toxicity in the MLA, to limit positive calls to certain magnitudes of response, or to certain concentration ranges would not improve the specificity of the tests without significantly reducing the sensitivity. We also investigated a possible correlation between tumour profile (trans-species, trans-sex and multi-site versus single-species, single-sex and single-site) and pattern of genotoxicity results. Carcinogens showing the combination of trans-species, trans-sex and multi-site tumour profile were much more prevalent (70% more) in the group of chemicals giving positive results in all three in vitro assays than amongst those giving all negative results. However, single-species, single-sex, single-site carcinogens were not very prevalent even amongst those chemicals giving three negative results in vitro. Surprisingly, when mixed positive and negative results were compared, multi-site carcinogens were highly prevalent amongst chemicals giving only a single positive result in the battery of three in vitro tests. Finally we extended our relative predictivity (RP) calculations to combinations of positive and negative results in the genotoxicity battery. For two out of three tests positive, the RP for carcinogenicity was no higher than 1.0 and for 2/3 tests negative the RP for non-carcinogenicity was either zero (for Ames+MLA+MN) or 1.7 (for Ames+MLA+CA). Thus, all values were less than a meaningful RP of two, and indicate that it is not possible to predict outcome of the rodent carcinogenicity study when only 2/3 genotoxicity results are in agreement.  相似文献   

6.
The L5178YTK+/? mouse lymphoma assay (MLA) has been utilized in several laboratories as a short-term test for chemical-induced forward mutation in cultured mammalian cells. In order to evaluate several technical modifications to the MLA, 42 chemicals representing 9 chemical classes were tested and the results were compared with those published elsewhere as well as with findings in a genetic toxicology test battery currently used in this laboratory. A positive response for the induction of TK+/? mutants was obtained for 26 chemicals. With the exception of p-aminophenol, all of these compounds were recognized mutagens or carcinogens and were represented of direct-acting and activation-dependent genotoxins. 16 compounds did not induce IK?/? mutanants and among these were 5 compounds that were considered to be mutagens or carcinogens. A comparison of the results of this study with those published elsewhere revealed a strong agreement among findings for this test irrespective of minor technical variations. It was concluded that th MLA is a useful system for identifying chemical mutagens in mammalian cells and can serve as a valuabel component in a genetic toxicology test battery.  相似文献   

7.
Glutaraldehyde (GA) induces DNA-protein crosslinks (DPX), but conflicting results have been reported with regard to other genotoxic and mutagenic effects in mammalian cells in vitro. We, therefore, characterized the genotoxic and mutagenic potential of GA in V79 cells. Using the alkaline comet assay we demonstrated the induction of DPX by GA (reduction of gamma ray-induced DNA migration) at a concentration of 10 microM and above. The standard comet assay did not reveal a significant DNA strand-breaking activity of GA. Cross-linking concentrations of GA were also cytotoxic, i.e. inhibited cell growth of treated V79 cultures. Interestingly, a small but statistically significant increase in sister chromatid exchange (SCE) and micronuclei (MN) was already measured at lower concentrations (2 and 5 microM). FISH analysis revealed that the majority of GA-induced MN was due to chromosome breaks. We also compared the genotoxic activity of GA to that of formaldehyde (FA). Similar to GA, FA-induced DPX, SCE and MN, but distinct differences exist with regard to the sensitivity of the endpoints and the relationship between genotoxicity and cytotoxicity. However, the differences in genotoxicity cannot readily explain the different carcinogenic activities of the two compounds.  相似文献   

8.
9.
10.
The effluents of pulp and paper mills contain about 300 different chemical compounds; many of them are mutagens and clastogens. Genotoxic studies have shown that chlorination stage liquors are significantly more genotoxic, in the Ames Salmonella assay, than the other process of lignin extraction, and that lyophilized effluents are genotoxic in cultured mammalian cells. Since these effluents from conventional bleaching stages are genotoxic, Chilean industries are interested in changing this process to a less toxic one, such as biobleaching using enzymes. In this study, we tested the in vitro genotoxicity of two types of effluents: an effluent obtained from a conventional radiata pine kraft-bleaching process (effluent D) and one derived from a biobleaching process with hemicellulase (effluent B). Both effluents were tested without any concentration or purification steps in the Ames Salmonella assay (TA100) and in the micronuclei (MN) and sister chromatid exchange (SCE) tests in CHO cells. The results showed that neither effluent induced base pair substitution mutations in the Ames Salmonella assay, and neither increased the micronucleus frequency in CHO cells. But, both increased the SCE frequencies in CHO cells, showing that this assay is more sensitive than the other ones, and that the two effluents contained chemical compounds in amounts enough to induce in vitro genotoxicity measured by the SCE induction.  相似文献   

11.
Current in vitro mammalian cell genotoxicity assays show a high rate of positive results, many of which are misleading when compared with in vivo genotoxicity or rodent carcinogenicity data. P53-deficiency in many of the rodent cell lines may be a key factor in this poor predictivity. As part of an European Cosmetics Industry Association initiative for improvement of in vitro mammalian cell assays, we have compared several rodent cell lines (V79, CHL, CHO) with p53-competent human peripheral blood lymphocytes (HuLy), TK6 human lymphoblastoid cells, and the human liver cell line, HepG2. We have compared in vitro micronucleus (MN) induction following treatment with 19 compounds that were accepted as producing misleading or "false" positive results in in vitro mammalian cell assays [6]. Of these, six chemicals (2-ethyl-1,3-hexandiol, benzyl alcohol, urea, sodium saccharin, sulfisoxazole and isobutyraldehyde) were not toxic and did not induce any MN at concentrations up to 10mM. d,l-Menthol and ethionamide induced cytotoxicity, but did not induce MN. o-Anthranilic acid was not toxic and did not induce MN in V79, CHL, CHO, HuLy and HepG2 cells up to 10mM. Toxicity was induced in TK6 cells, although there were no increases in MN frequency up to and above the 55% toxicity level. The other 10 chemicals (1,3-dihydroxybenzene, curcumin, propyl gallate, p-nitrophenol, ethyl acrylate, eugenol, tert-butylhydroquinone, 2,4-dichlorophenol, sodium xylene sulfonate and phthalic anhydride) produced cytotoxicity in at least one cell type, and were evaluated further for MN induction in most or all of the cell types listed above. All these chemicals induced MN at concentrations <10mM, with levels of cytotoxicity below 60% (measured as the replication index) in at least one cell type. The rodent cell lines (V79, CHO and CHL) were consistently more susceptible to cytotoxicity and MN induction than p53-competent cells, and are therefore more susceptible to giving misleading positive results. These data suggest that a reduction in the frequency of misleading positive results can be achieved by careful selection of the mammalian cell type for genotoxicity testing.  相似文献   

12.
The potential genotoxicity of drug candidates is a serious concern during drug development. Therefore, it is important to assess the potential genotoxicity and mutagenicity of a compound early in the discovery phase of drug development. AMES Salmonella assay is the most widely used assay for the assessment of mutagenicity and genotoxicity. However, the AMES assay is not readily adaptable to highthroughput screening and several strains of Salmonella must be employed to ensure that different types of DNA damage can be studied. Therefore, an additional robust highthroughput genotoxicity screen would be of significant value in the early detection and elimination of genotoxicity. The complexity of DNA damage requires numerous cellular pathways, thus using single model organism to predict genotoxicity in early stage is challenging. Another critical component of such screens is that they incorporate the capability of metabolic activation to ensure that no genotoxic metabolites are generated. We have developed a novel highthroughput reporter assay for DNA repair that detects genotoxicity, and which incorporates metabolic activation. The assay has a low compound requirement as compared to Ames, and relies upon two different reporter genes cotransfected into a yeast strain. The gene encoding Renilla luciferase is fused to the constitutive 3-phosphoglycerate kinase (PGK1) promoter and integrated into the yeast genome to provide a control for cell numbers. The firefly luciferase gene is fused to the RAD51 (bacterial RecA homolog) promoter and used to report an increase in DNA repair activity. A dual luciferase assay is performed by measuring the firefly and Renilla luciferase activities in the same sample. The result is expressed as the ratio of the two luciferase activities; changes from the base level (control) are interpreted as induction of the RAD51 promoter and evidence of DNA repair activity in eukaryote cells due to DNA damage. The yeast dual luciferase reporter has been characterized with and without S-9 activation using positive and negative control agents. This assay is efficient, requires little time and low amounts of compound. The assay is compatible with metabolic activation, adaptable to a highthroughput platform, and yields data that accurately and reproducibly detects DNA damage. Whereas the normal yeast cell wall, plasma membrane composition and the presence of active transporters can prevent the entry or persistence of some compounds internally in yeast cells, our assay did show concordance with regulatory mutagenicity assays, many of which require metabolic activation and are poorly detected by bacterial mutagenicity assays. Although there were false negative results, in our hands this assay performs as well as or better than other commercially available genetox assays. Furthermore, the RAD51 gene is strongly inducible by homologous intrachromosomal recombination; thus this assay may provide a means to detect clastogens. The RAD51 promoter fused dual luciferase assay represents a valuable addition to the armamentarium for the early detection of genotoxic compounds.  相似文献   

13.
In vitro genotoxicity testing needs to include tests in both bacterial and mammalian cells, and be able to detect gene mutations, chromosomal damage and aneuploidy. This may be achieved by a combination of the Ames test (detects gene mutations) and the in vitro micronucleus test (MNvit), since the latter detects both chromosomal aberrations and aneuploidy. In this paper we therefore present an analysis of an existing database of rodent carcinogens and a new database of in vivo genotoxins in terms of the in vitro genotoxicity tests needed to detect their in vivo activity. Published in vitro data from at least one test system (most were from the Ames test) were available for 557 carcinogens and 405 in vivo genotoxins. Because there are fewer publications on the MNvit than for other mammalian cell tests, and because the concordance between the MNvit and the in vitro chromosomal aberration (CAvit) test is so high for clastogenic activity, positive results in the CAvit test were taken as indicative of a positive result in the MNvit where there were no, or only inadequate data for the latter. Also, because Hprt and Tk loci both detect gene-mutation activity, a positive Hprt test was taken as indicative of a mouse-lymphoma Tk assay (MLA)-positive, where there were no data for the latter. Almost all of the 962 rodent carcinogens and in vivo genotoxins were detected by an in vitro battery comprising Ames+MNvit. An additional 11 carcinogens and six in vivo genotoxins would apparently be detected by the MLA, but many of these had not been tested in the MNvit or CAvit tests. Only four chemicals emerge as potentially being more readily detected in MLA than in Ames+MNvit--benzyl acetate, toluene, morphine and thiabendazole--and none of these are convincing cases to argue for the inclusion of the MLA in addition to Ames+MNvit. Thus, there is no convincing evidence that any genotoxic rodent carcinogens or in vivo genotoxins would remain undetected in an in vitro test battery consisting of Ames+MNvit.  相似文献   

14.
A recent ECVAM workshop considered how to reduce falsely predictive positive results when undertaking in vitro genotoxicity testing, and thus to avoid unnecessary follow-up with tests involving animals. As it was anticipated that modified versions of existing assays as well as new assays might contribute to a solution, an expert panel was asked to identify a list of chemicals that could be used in the evaluation of such assays. Three categories of test chemicals were chosen comprising a total of 62 compounds. This paper provides test results for these chemicals using the GreenScreen HC assay. All tests were carried out in triplicate, by multiple operators, with and without S9, using invariant protocols. Group 1 chemicals should be detected as positive in in vitro mammalian cell genotoxicity tests: 18/20 (90%) were reproducibly positive in GreenScreen HC. Group 2 chemicals should give negative results in in vitro genotoxicity tests: 22/23 (96%) were reproducibly negative in GreenScreen HC. Overall concordance for Groups 1 and 2 is 93%. Group 3 chemicals should give negative results in in vitro mammalian cell genotoxicity tests, but have been reported to induce chromosomal aberrations or Tk mutations in mouse lymphoma cells, often at high concentrations or at high levels of cytotoxicity: 13/17 (76%) were reproducibly negative in GreenScreen HC. Of the four positive compounds in Group 3, p-nitrophenol was only positive at the top dose (10 mM), 2,4-DCP is an in vivo genotoxin, and two chemicals are antioxidant compounds that may be acting as pro-oxidants in the hyperoxic conditions of cell culture. Overall, these predictive figures are similar to those from other studies with the GreenScreen HC assay and confirm its high specificity, which in turn minimizes the generation of falsely predictive positive results.  相似文献   

15.
Potassium bromate (KBrO(3)) is strongly carcinogenic in rodents and mutagenic in bacteria and mammalian cells in vitro. The proposed genotoxic mechanism for KBrO(3) is oxidative DNA damage. KBrO(3) can generate high yields of 8-hydroxydeoxyguanosine (8OHdG) DNA adducts, which cause GC>TA transversions in cell-free systems. In this study, we investigated the in vitro genotoxicity of KBrO(3) in human lymphoblastoid TK6 cells using the comet (COM) assay, the micronucleus (MN) test, and the thymidine kinase (TK) gene mutation assay. After a 4h treatment, the alkaline and neutral COM assay demonstrated that KBrO(3) directly yielded DNA damages including DNA double strand breaks (DSBs). KBrO(3) also induced MN and TK mutations concentration-dependently. At the highest concentration (5mM), KBrO(3) induced MN and TK mutation frequencies that were over 30 times the background level. Molecular analysis revealed that 90% of the induced mutations were large deletions that involved loss of heterozygosity (LOH) at the TK locus. Ionizing-irradiation exhibited similar mutational spectrum in our system. These results indicate that the major genotoxicity of KBrO(3) may be due to DSBs that lead to large deletions rather than to 8OHdG adducts that lead to GC>TA transversions, as is commonly believed. To better understand the genotoxic mechanism of KBrO(3), we analyzed gene expression profiles of TK6 cells using Affymetrix Genechip. Some genes involved in stress, apoptosis, and DNA repair were up-regulated by the treatment of KBrO(3). However, we could not observe the similarity of gene expression profile in the treatment of KBrO(3) to ionizing-irradiation as well as oxidative damage inducers.  相似文献   

16.
Wu M  Xing G  Qi X  Feng C  Liu M  Gong L  Luan Y  Ren J 《Mutation research》2012,741(1-2):65-69
Until recently, knowledge about the genotoxicity of roxarsone in vitro or in vivo was limited. This study assessed the genotoxicity of roxarsone in an in vitro system. Roxarsone was tested for potential genotoxicity on V79 cells by a Comet assay and a micronucleus (MN) test, exposing the cells to roxarsone (1-500 μM) and to sodium arsenite (NaAsO?, 20 μM) solutions for 3-48 h. Roxarsone was found to be cytotoxic when assessed with a commercial cell counting kit (CCK-8) used to evaluate cell viability, and moderately genotoxic in the Comet assay and micronucleus test used to assess DNA damage. The Comet metrics (percentages TDNA, TL, TM) increased significantly in a time- and concentration-dependent manner in roxarsone-treated samples compared with PBS controls (P<0.05), while the data from samples treated with 20 μM NaAsO? were comparable to those from 500 μM roxarsone-treated samples. The MN frequency of V79 cells treated with roxarsone was higher than that in the negative control but lower than the frequency in cells treated with 20 μM NaAsO?. A dose- and time-dependent response in MN induction was observed at 10, 50, 100 and 500 μM doses of roxarsone after 12-48 h exposure time. The DNA damage in V79 cells treated with 500 μM roxarsone was similar to cells exposed to 20 μM NaAsO?. The uptake of cells was correlated with the DNA damage caused by roxarsone. This investigation depicts the genotoxic potentials of roxarsone to V79 cells, which could lead to further advanced studies on the genotoxicity of roxarsone.  相似文献   

17.
The GreenScreen GADD45alpha indicator assay has been assessed for its concordance with in vitro genotoxicity and rodent carcinogenicity bioassay data. To test robustness, sensitivity, and specificity of the assay, 91 compounds with known genotoxicity results were screened in a blinded manner. Fifty seven of the compounds were classified as in vitro genotoxic whereas 34 were non-genotoxic. Out of the 91 compounds, 50 had been tested in 2-year carcinogenicity assays, with 33 identified to be rodent carcinogens and 17 non-carcinogens. Gadd45alpha assay sensitivity and specificity for genotoxicity was 30% and 97%, respectively (17/57 and 33/34), whereas its sensitivity and specificity for rodent carcinogenicity was 30% and 88%, respectively (10/33 and 15/17). Gadd45alpha assay genotoxicity results from this validation study exhibited a high concordance with previously published results as well as for compound test results generated at two different sites (91%, 19/21), indicating that the assay is both robust and reproducible. In conclusion, results from this blinded and independent validation study indicate that the GreenScreen GADD45 indicator assay is reproducible and reliable with low sensitivity and high specificity for identifying genotoxic and carcinogenic compounds.  相似文献   

18.
Rio Grande do Sul (RS) coal is low quality and typically obtained by strip mining. In a recent study concerning 2 years of biomonitoring in coal regions, we demonstrated the genotoxicity of coal and related products on blood cells of native rodents, from RS, Brazil. With the goal of studying the variations in the effects of RS coal on different tissues of the same rodent, we utilized, besides the single cell gel (SCG) and micronucleus (MN) assay on blood, histological analyses and SCG assay of bone marrow, spleen, kidney, liver and lung cells, and MN assay of bone marrow and spleen cells. In addition, to identify agents that can potentially influence the results, concentrations of several heavy metals were analyzed in livers and in soil, and the total concentration of hydrocarbons in the soil was determined. Rodents exposed to coal were captured at two different sites, Butiá and Candiota, in RS. Reference animals were obtained from Pelotas, where there is no coal mining. This report provides chemical and biological data from coal regions, indicating the possible association between Zn, Ni, Pb and hydrocarbons in the induction of DNA damage (e.g. single strand-breaks and alkali-labile sites) determined by the alkaline SCG assay in cells from Ctenomys torquatus. The results of the present SCG study indicate that coal and by-products not only induce DNA damage in blood cells, but also in other tissue cells, mainly liver, kidney and lung. Neither the MN assay nor histopathological observations showed significant differences; these analyses may be useful under circumstances where genotoxicity is higher. In conclusion we believe that the in vivo genotoxicity of coal can be biomonitored by the SCG assay, and our studies suggest that wild rodents, such as C. torquatus are useful for monitoring genotoxic damage by both methods, the SCG assay and the MN test.  相似文献   

19.
We use the comet assay as part of our genotoxicity screening battery for newly synthesized drug candidates. A dataset of more than 250 tests carried out with 75 drug candidates of various chemical classes was analyzed to elucidate the influence of cytotoxicity and compound precipitation on DNA migration in the comet assay. Using a V79 Chinese hamster cell line, 38 of the compounds were negative and 37 were positive in the comet assay. The reproducibility of test results between repeat experiments was 85%. Data on 72 tests with a negative call in which the compounds were tested up to highly cytotoxic concentrations demonstrated that cytotoxicity, as determined by Trypan blue dye exclusion and occurrence of cells with completely fragmented chromatin, did not lead to false positive test results. The majority (64.2%) of compounds with a positive call induced elevated DNA migration in the absence of excessive cytotoxicity. Compound precipitation was observed in 84 tests. In 88.1% of these cases, the test result at the precipitating concentration did not differ from that found at the highest soluble concentration. Half of the remaining 11.9% of contrary results (most of them weak effects) were not reproducible in the respective repeat experiment, indicating no or only a negligible influence of precipitation on test results. The data indicate that using V79 cells, the comet assay specifically detects genotoxic effects and is not confounded by cytotoxicity or compound precipitation under the conditions used.  相似文献   

20.
In vitro alkaline elution is a sensitive and specific short term assay which measures DNA strand breakage in a mammalian test system (primary rat hepatocytes). This lab has previously demonstrated the performance of the assay with known genotoxic and non-genotoxic compounds. The methodology employed has relatively low sample throughput and is labor-intensive, requiring a great deal of manual processing of samples in a format that is not amenable to automation. Here, we present an automated version of the assay. This high-throughput alkaline elution assay (HT-AE) was made possible through 3 key developments: (1) DNA quantitation using PicoGreen and OliGreen fluorescent DNA binding dyes; (2) design and implementation of a custom automation system; and (3) reducing the assay to a 96-well plate format. The assay can now be run with 5-50mg of test compound. HT-AE was validated in a similar manner as the original assay, including assessment of non-genotoxic and non-carcinogenic compounds and evaluation of cytotoxicity to avoid confounding effects of toxicity-associated DNA degradation. The validation test results from compounds of known genotoxic potential were used to set appropriate criteria to classify alkaline elution results for genotoxicity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号