首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
Poly(ADP-ribose) polymerase-1 (PARP-1) is a nuclear enzyme that is involved in DNA repair and activated by DNA damage. When activated, PARP-1 consumes NAD(+) to form ADP-ribose polymers on acceptor proteins. Extensive activation of PARP-1 leads to glycolytic blockade, energy failure, and cell death. These events have been postulated to result from NAD(+) depletion. Here, we used primary astrocyte cultures to directly test this proposal, utilizing the endogenous expression of connexin-43 hemichannels by astrocytes to manipulate intracellular NAD(+) concentrations. Activation of PARP-1 with the DNA alkylating agent N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) produced NAD(+) depletion, glycolytic blockade, and cell death. Cultures incubated in high (10mM) extracellular concentrations of NAD(+) after MNNG exposure showed normalization of intracellular NAD(+) concentrations. Repletion of intracellular NAD(+) in this manner completely restored glycolytic capacity and prevented cell death. These results suggest that NAD(+) depletion is the cause of glycolytic failure after PARP-1 activation.  相似文献   

2.
Extensive activation of poly(ADP-ribose) polymerase-1 (PARP-1) by DNA damage is a major cause of caspase-independent cell death in ischemia and inflammation. Here we show that NAD(+) depletion and mitochondrial permeability transition (MPT) are sequential and necessary steps in PARP-1-mediated cell death. Cultured mouse astrocytes were treated with the cytotoxic concentrations of N-methyl-N'-nitro-N-nitrosoguanidine or 3-morpholinosydnonimine to induce DNA damage and PARP-1 activation. The resulting cell death was preceded by NAD(+) depletion, mitochondrial membrane depolarization, and MPT. Sub-micromolar concentrations of cyclosporin A blocked MPT and cell death, suggesting that MPT is a necessary step linking PARP-1 activation to cell death. In astrocytes, extracellular NAD(+) can raise intracellular NAD(+) concentrations. To determine whether NAD(+) depletion is necessary for PARP-1-induced MPT, NAD(+) was restored to near-normal levels after PARP-1 activation. Restoration of NAD(+) enabled the recovery of mitochondrial membrane potential and blocked both MPT and cell death. Furthermore, both cyclosporin A and NAD(+) blocked translocation of the apoptosis-inducing factor from mitochondria to nuclei, a step previously shown necessary for PARP-1-induced cell death. These results suggest that NAD(+) depletion and MPT are necessary intermediary steps linking PARP-1 activation to AIF translocation and cell death.  相似文献   

3.
4.
Poly(ADP-ribose) polymerase-1 (PARP-1) safeguards genomic integrity by limiting sister chromatid exchanges. Overstimulation of PARP-1 by extensive DNA damage, however, can result in cell death, as prolonged PARP-1 activation depletes NAD(+), a substrate, and elevates nicotinamide, a product. The decline of NAD(+) and the rise of nicotinamide may downregulate the activity of Sir2, the NAD(+)-dependent deacetylases, because deacetylation by Sir2 is dependent on high concentration of NAD(+) and inhibited by physiologic level of nicotinamide. The Sir2 deacetylase family has been implicated in mediating gene silencing, longevity and genome stability. It is conceivable that poly(ADP-ribosyl)ation by PARP-1, which is induced by DNA damage, could modulate protein deacetylation by Sir2 via the NAD(+)/nicotinamide connection. The possible linkage of the two ancient pathways that mediate broad biological activities may spell profound evolutionary roles for the conserved PARP-1 and Sir2 gene families in multicellular eukaryotes.  相似文献   

5.
6.
A novel FlashPlate scintillation proximity assay has been developed for the high-throughput screening (HTS) of large compound libraries to identify inhibitors of poly(ADP-ribose) polymerase-1 (PARP-1), an important enzyme involved in DNA repair. The assay was originally developed for the 96-well FlashPlate but is easily transferred to a 384-well format. Moreover, the authors demonstrate that the assay is sufficiently sensitive to determine accurate IC(50) values and adaptable for kinetic evaluation of lead molecules. The mechanism of action of the assay requires the binding of PARP-1 to a double-stranded DNA oligonucleotide leading to the active enzyme. Using NAD(+) and (3)H-NAD(+) as substrate, activated PARP-1 synthesizes labeled poly(ADP-ribose) chains. Once the reaction is stopped, ADP-ribose polymers are brought into proximity with the pretreated FlashPlate walls, resulting in signal amplification. This signal is then detected by a TopCount scintillation plate reader. The developed assay is a robust and reproducible method of screening for PARP-1 inhibitors that is low maintenance and cost-effective and can easily be automated.  相似文献   

7.
After genotoxic stress poly(ADP-ribose) polymerase-1 (PARP-1) can be hyperactivated, causing (ADP-ribosyl)ation of nuclear proteins (including itself), resulting in NAD(+) and ATP depletion and cell death. Mechanisms of PARP-1-mediated cell death and downstream proteolysis remain enigmatic. beta-lapachone (beta-lap) is the first chemotherapeutic agent to elicit a Ca(2+)-mediated cell death by PARP-1 hyperactivation at clinically relevant doses in cancer cells expressing elevated NAD(P)H:quinone oxidoreductase 1 (NQO1) levels. Beta-lap induces the generation of NQO1-dependent reactive oxygen species (ROS), DNA breaks, and triggers Ca(2+)-dependent gamma-H2AX formation and PARP-1 hyperactivation. Subsequent NAD(+) and ATP losses suppress DNA repair and cause cell death. Reduction of PARP-1 activity or Ca(2+) chelation protects cells. Interestingly, Ca(2+) chelation abrogates hydrogen peroxide (H(2)O(2)), but not N-Methyl-N'-nitro-N-nitrosoguanidine (MNNG)-induced PARP-1 hyperactivation and cell death. Thus, Ca(2+) appears to be an important co-factor in PARP-1 hyperactivation after ROS-induced DNA damage, which alters cellular metabolism and DNA repair.  相似文献   

8.
Herpes simplex virus 1 infection triggers multiple changes in the metabolism of host cells, including a dramatic decrease in the levels of NAD(+). In addition to its role as a cofactor in reduction-oxidation reactions, NAD(+) is required for certain posttranslational modifications. Members of the poly(ADP-ribose) polymerase (PARP) family of enzymes are major consumers of NAD(+), which they utilize to form poly(ADP-ribose) (PAR) chains on protein substrates in response to DNA damage. PAR chains can subsequently be removed by the enzyme poly(ADP-ribose) glycohydrolase (PARG). We report here that the HSV-1 infection-induced drop in NAD(+) levels required viral DNA replication, was associated with an increase in protein poly(ADP-ribosyl)ation (PARylation), and was blocked by pharmacological inhibition of PARP-1/PARP-2 (PARP-1/2). Neither virus yield nor the cellular metabolic reprogramming observed during HSV-1 infection was altered by the rescue or further depletion of NAD(+) levels. Expression of the viral protein ICP0, which possesses E3 ubiquitin ligase activity, was both necessary and sufficient for the degradation of the 111-kDa PARG isoform. This work demonstrates that HSV-1 infection results in changes to NAD(+) metabolism by PARP-1/2 and PARG, and as PAR chain accumulation can induce caspase-independent apoptosis, we speculate that the decrease in PARG levels enhances the auto-PARylation-mediated inhibition of PARP, thereby avoiding premature death of the infected cell.  相似文献   

9.
Poly(ADP-ribose) polymerase (PARP-1) is an abundant nuclear protein with a high affinity for single- and double-strand DNA breaks. Its binding to strand breaks promotes catalysis of the covalent modification of nuclear proteins with poly(ADP-ribose) synthesised from NAD(+). PARP-1-knockout cells are extremely sensitive to alkylating agents, suggesting the involvement of PARP-1 in base excision repair; however, its role remains unclear. We investigated the dependence of base excision repair pathways on PARP-1 and NAD(+) using whole cell extracts derived from normal and PARP-1 deficient mouse cells and DNA substrates containing abasic sites. In normal extracts the rate of repair was highly dependent on NAD(+). We found that in the absence of NAD(+) repair was slowed down 4-6-fold after incision of the abasic site. We also established that in extracts from PARP-1 deficient mouse cells, repair of both regular and reduced abasic sites was increased with respect to normal extracts and was NAD(+)-independent, suggesting that in both short- and long-patch BER PARP-1 slows down, rather than stimulates, the repair reaction. Our data support the proposal that PARP-1 does not play a major role in catalysis of DNA damage processing via either base excision repair pathway.  相似文献   

10.
11.
Tao Z  Gao P  Hoffman DW  Liu HW 《Biochemistry》2008,47(21):5804-5813
Poly(ADP-ribose) polymerase-1 (PARP-1) is a multimodular nuclear protein that participates in many fundamental cellular activities. Stimulated by binding to nicked DNA, PARP-1 catalyzes poly(ADP-ribosyl)ation of the acceptor proteins using NAD (+) as a substrate. In this work, NMR methods were used to determine the solution structure of human PARP-1 protein. Domain C was found to contain a zinc-binding motif of three antiparallel beta-strands with four conserved cysteines positioned to coordinate the metal ligand, in addition to a helical region. The zinc-binding motif is structurally reminiscent of the "zinc-ribbon" fold, but with a novel spacing between the conserved cysteines (CX2CX12CX 9C). Domain C alone does not appear to bind to DNA. Interestingly, domain C is essential for PARP-1 activity, since a mixture containing nicked DNA and the PARP-1 ABDEF domains has only basal enzymatic activity, while the addition of domain C to the mixture initiated NAD (+) hydrolysis and the formation of poly(ADP-ribose), as detected by an NMR-based assay and autoradiography. The structural model for domain C in solution provides an important framework for further studies aimed at improving our understanding of how the various domains within the complex PARP-1 enzyme play their respective roles in regulating the enzyme activity when cells are under conditions of genotoxic stress.  相似文献   

12.
In ischemia/reperfusion (I/R) injury increased intracellular Ca(2+) and production of reactive oxygen species (ROS) may cause cell death by intrinsic apoptotic pathways or by necrosis. In this review, an alternative intrinsic cell death pathway, mediated by poly(ADP-ribose) polymerase-1 (PARP-1) and apoptosis-inducing factor (AIF), is described. ROS-induced DNA strand breaks lead to overactivation of the nuclear enzyme poly(ADP-ribose) polymerase-1 (PARP-1; EC 2.4.2.30), causing excessive use of energetic substrates such as NAD(+) and ATP, inducing cell death either by apoptosis or by necrosis. Recently, it was demonstrated that activation of PARP-1 induces translocation of apoptosis-inducing factor from the mitochondria to the nucleus, causing DNA condensation and fragmentation, and subsequent cell death. This pathway seems to be triggered by depletion of NAD(+) and appears to be caspase independent. Several lines of evidence suggest that this pathway plays a role in I/R injury, although some studies indicate that mitochondrial dysfunction may also trigger AIF translocation and cell death. At present, the exact mechanisms linking PARP-1 and AIF in the induction of the ROS-induced cell death are still unclear. Therefore, it appears that further investigations will yield valuable information on underlying mechanisms and potential interventions to reduce caspase-independent cell death during ischemia-reperfusion.  相似文献   

13.
Protein modification by ADP-ribose polymers is a common regulatory mechanism in eukaryotic cells and is involved in several aspects of brain physiology and physiopathology, including neurotransmission, memory formation, neurotoxicity, ageing and age-associated diseases. Here we show age-related misregulation of poly(ADP-ribose) synthesis in rat cerebellum as revealed by: (i) reduced poly(ADP-ribose) polymerase-1 (PARP-1) activation in response to enzymatic DNA cleavage, (ii) altered protein poly(ADP-ribosyl)ation profiles in isolated nuclei, and (iii) cell type-specific loss of poly(ADP-ribosyl)ation capacity in granule cell layer and Purkinje cells in vivo. In particular, although PARP-1 could be detected in virtually all granule cells, only a fraction of them appeared to be actively engaged in poly(ADP-ribose) synthesis and this fraction was reduced in old rat cerebellum. NAD(+), quantified in tissue homogenates, was essentially the same in the cerebellum of young and old rats suggesting that in vivo factors other than PARP-1 content and/or NAD(+) levels may be responsible for the age-associated lowering of poly(ADP-ribose) synthesis. Moreover, PARP-1 expression was substantially down-regulated in Purkinje cells of senescent rats.  相似文献   

14.
In neurons, DNA is prone to free radical damage, although repair mechanisms preserve the genomic integrity. However, activation of the DNA repair system, poly(ADP-ribose) polymerase (PARP-1), is thought to cause neuronal death through NAD+ depletion and mitochondrial membrane potential (delta psi(m)) depolarization. Here, we show that abolishing PARP-1 activity in primary cortical neurons can either enhance or prevent apoptotic death, depending on the intensity of an oxidative stress. Only in severe oxidative stress does PARP-1 activation result in NAD+ and ATP depletion and neuronal death. To investigate the role of PARP-1 in an endogenous model of oxidative stress, we used an RNA interference (RNAi) strategy to specifically knock down glutamate-cysteine ligase (GCL), the rate-limiting enzyme of glutathione biosynthesis. GCL RNAi spontaneously elicited a mild type of oxidative stress that was enough to stimulate PARP-1 in a Ca2+-calmodulin kinase II-dependent manner. GCL RNAi-mediated PARP-1 activation facilitated DNA repair, although neurons underwent delta psi(m) loss followed by some apoptotic death. PARP-1 inhibition did not prevent delta psi(m) loss, but enhanced the vulnerability of neurons to apoptosis upon GCL silencing. Conversely, mild expression of PARP-1 partially prevented to GCL RNAi-dependent apoptosis. Thus, in the mild progressive damage likely occur in neurodegenerative diseases, PARP-1 activation plays a neuroprotective role that should be taken into account when considering therapeutic strategies.  相似文献   

15.
The alkylating agent N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) alters DNA and stimulates the activity of poly(ADP-ribose) polymerase-1 (PARP-1), a nuclear enzyme involved in DNA repair. The consumption of cellular NAD(+) by PARP-1 is accompanied by ATP depletion, mitochondrial depolarization and release of proapoptotic proteins, but whether a causal relationship exists among these events remains an open question. Most of cellular NAD(+) is stored in the mitochondrial matrix and becomes available for cytosolic and nuclear processes only after its release through the permeability transition pore (PTP), a voltage-gated inner membrane channel. Here we have explored whether MNNG affects mitochondrial function upstream of PARP-1 activation. We show that MNNG has a dual effect on isolated mitochondria. At relatively low concentrations (up to 0.1 mM), it selectively sensitizes the PTP to opening, while at higher concentrations (above 0.5 mM) it inhibits carbonyl cyanide 4-(trifluoromethoxy)phenylhydrazone (FCCP)-stimulated respiration. MNNG caused PTP opening and activation of the mitochondrial proapoptotic pathway in intact HeLa cells, which resulted in cell death that could be prevented by the PTP inhibitor CsA. We conclude that a key event in MNNG-dependent cell death is induction of PTP opening that occurs independently of PARP-1 activation.  相似文献   

16.
To obtain further information on time course and mechanisms of cell death after poly(ADP-ribose) polymerase-1 (PARP-1) hyperactivation, we used HeLa cells exposed for 1 h to the DNA alkylating agent N-methyl-N'-nitro-N-nitrosoguanidine. This treatment activated PARP-1 and caused a rapid drop of cellular NAD(H) and ATP contents, culminating 8-12 h later in cell death. PARP-1 antagonists fully prevented nucleotide depletion and death. Interestingly, in the early 60 min after challenge with N-methyl-N'-nitro-N-nitrosoguanidine, mitochondrial membrane potential and superoxide production significantly increased, whereas cellular ADP contents decreased. Again, these events were prevented by PARP-1 inhibitors, suggesting that PARP-1 hyperactivity leads to mitochondrial state 4 respiration. Mitochondrial membrane potential collapsed at later time points (3 h), when mitochondria released apoptosis-inducing factor and cytochrome c. Using immunocytochemistry and targeted luciferase transfection, we found that, despite an exclusive localization of PARP-1 and poly(ADP-ribose) in the nucleus, ATP levels first decreased in mitochondria and then in the cytoplasm of cells undergoing PARP-1 activation. PARP-1 inhibitors rescued ATP (but not NAD(H) levels) in cells undergoing hyper-poly(ADP-ribosyl)ation. Glycolysis played a central role in the energy recovery, whereas mitochondria consumed ATP in the early recovery phase and produced ATP in the late phase after PARP-1 inhibition, further indicating that nuclear poly(ADP-ribosyl)ation rapidly modulates mitochondrial functioning. Together, our data provide evidence for rapid nucleus-mitochondria cross-talk during hyper-poly(ADP-ribosyl)ation-dependent cell death.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号