首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Nitric oxide (NO) is an important signal molecule in stress responses. Accumulation of secondary metabolites often occurs in plants subjected to stresses including various elicitors or signal molecules. NO has been reported to play important roles in elicitor-induced secondary metabolite production in tissue and cell cultures of medicinal plants. Better understanding of NO role in the biosynthesis of such metabolites is very important for optimizing the commercial production of those pharmaceutically significant secondary metabolites. This paper summarizes progress made on several aspects of NO signal leading to the production of plant secondary metabolites, including various abiotic and biotic elicitors that induce NO production, elicitor-triggered NO generation cascades, the impact of NO on growth development and programmed cell death in medicinal plants, and NO-mediated regulation of the biosynthetic pathways of such metabolites. Cross-talks among NO signaling and reactive oxygen species, salicylic acid, and jasmonic acid are discussed. Some perspectives on the application of NO donors for induction of the secondary metabolite accumulation in plant cultures are also presented.  相似文献   

2.
S Parchmann  H Gundlach    M J Mueller 《Plant physiology》1997,115(3):1057-1064
Jasmonic acid (JA) is rapidly biosynthesized from alpha-linolenic acid in plants upon contact with pathogens or wounding, and triggers gene activation, leading to the synthesis of defensive secondary metabolites and proteins. Despite the recent finding that its precursor, 12-oxo-phytodienoic acid (PDA), is a more powerful inducer of gene activation, interest has focused so far almost exclusively on JA. A validated negative chemical ionization-gas chromatography-mass spectrometry method has been developed that allows the simultaneous quantification of endogenous 12-oxo-PDA and JA in plant tissues. In six out of eight plant species tested maximal levels of 12-oxo-PDA exceeded peak levels of JA by approximately 3- to 5-fold after elicitation with a yeast cell wall preparation or when plants were wounded. These experiments support the hypothesis that 12-oxo-PDA acts as the predominant jasmonate signal in most plants, whereas JA remains an active metabolite of its precursor. Furthermore, JA but not 12-oxo-PDA was shown to be secreted into the medium from cultured plant cells, suggesting that JA may also act as an intercellular signal.  相似文献   

3.
药用植物生长发育与有效成分积累关系研究进展   总被引:3,自引:0,他引:3  
李雁群  吴鸿 《植物学报》2018,53(3):293-304
药用植物有效成分是其发挥临床疗效的物质基础, 也是评价药材质量的重要指标, 而这些有效成分的产生和分布通常有种属、器官、组织以及生长发育时期的特异性。明确药用植物主要药用成分在植物不同生长发育阶段的积累变化规律和形成机制, 对中药品质与临床疗效有重要的指导意义。该文主要概述了不同发育阶段对药用植物不同药用部位(根、茎、叶、花、果实和种子)中有效成分积累的影响, 并对药用植物次生代谢产物合成和积累机制的相关研究技术进行了展望, 为生产实践上调控药用植物次生物质合成、药用植物的合理利用以及提高中药材品质奠定了理论基础。  相似文献   

4.
Medicinal plants have been used world-wide for thousands of years and are widely recognized as having high healing but minor toxic side effects. The scarcity and increasing demand for medicinal plants and their products have promoted the development of artificial cultivation of medicinal plants. Currently, one of the prominent issues in medicinal cultivation systems is the unstable quality of the products. Arbuscular mycorrhiza (AM) affects secondary metabolism and the production of active ingredients of medicinal plants and thus influence the quality of herbal medicines. In this review, we have assembled, analyzed, and summarized the effects of AM symbioses on secondary metabolites of medicinal plants. We conclude that symbiosis of AM is conducive to favorable characteristics of medicinal plants, by improving the production and accumulation of important active ingredients of medicinal plants such as terpenes, phenols, and alkaloids, optimizing the composition of different active ingredients in medicinal plants and ultimately improving the quality of herbal materials. We are convinced that the AM symbiosis will benefit the cultivation of medicinal plants and improve the total yield and quality of herbal materials. Through this review, we hope to draw attention to the status and prospects of, and arouse more interest in, the research field of medicinal plants and mycorrhiza.  相似文献   

5.
Chen H  Jones AD  Howe GA 《FEBS letters》2006,580(11):2540-2546
The phytohormone jasmonic acid (JA) regulates the synthesis of secondary metabolites in a wide range of plant species. Here, we show that exogenous methyl-JA (MeJA) elicits massive accumulation of caffeoylputrescine (CP) in tomato leaves. A mutant (jai1) that is defective in jasmonate perception failed to accumulate CP in flowers and MeJA-treated leaves. Conversely, a transgenic tomato line (called 35S::PS) that exhibits constitutive JA signaling accumulated high levels of leaf CP in the absence of jasmonate treatment. RNA blot analysis showed that genes encoding enzymes in the phenylpropanoid and polyamine pathways for CP biosynthesis are upregulated in MeJA-treated wild-type plants and in untreated 35S::PS plants. These results indicate that CP accumulation in tomato is tightly controlled by the jasmonate signaling pathway, and provide proof-of-concept that the production of some plant secondary metabolites can be enhanced by transgenic manipulation of endogenous JA levels.  相似文献   

6.
7.
microRNA(miRNA)作为一类内源性的短链非编码RNA,广泛存在于真核细胞中,主要通过对转录本剪切和抑制翻译等方式,参与转录后基因的表达调控。近年来研究表明,多种药用植物中鉴定出大量的miRNA。这些miRNA对药用植物的生长发育和次生代谢产物合成具有调控功能。次生代谢产物是药用植物的主要有效成分,研究miRNA对药用植物次生代谢过程的调控作用具有十分重要的意义。本文综述了miRNA在植物中的产生途径、作用方式和体内功能,在此基础上重点介绍了miRNA对药用植物生长发育和次生代谢产物生物合成的调控作用,并对药用植物miRNA的研究进行了展望,以期为提高药用植物产量,高效获得药用植物有效成分以及临床应用开拓新的思路。  相似文献   

8.
9.
Phytoalexins are antimicrobial secondary metabolites which accumulate in plants against fungal invasion. Their production is triggered not only by fungal invasion, but also by a variety of elicitors. In rice plants, we have shown that CuCl2 is a potent abiotic elicitor. Jasmonic acid has recently become known to play an important role in secondary metabolite production in plants at the cellular level. This led us to speculate, in CuCl2-elicited rice leaves, that JA might also play an important role as a signal transducer for phytoalexin production. The endogenous level of JA increased rapidly in CuCl2-elicited rice leaves, and exogenously applied JA caused a large amount of phytoalexin production in rice leaves. This phytoalexin production by CuCl2 decreased when rice leaves were treated with JA biosynthesis inhibitors, but that by JA did not. JA is thus suggested to play an important role in the elicitation process leading to phytoalexin production in rice leaves.  相似文献   

10.
11.
This work aims to detect the two signal events in the elicitation of plant defense responses and secondary metabolism in plant cell cultures by low-energy ultrasound (US), transient production of reactive oxygen species (ROS) or the oxidative burst and jasmonic acid (JA) biosynthesis, and examine their influence on secondary metabolism. Experiments were carried out in Taxus chinensis cell suspension culture which produces the anticancer diterpenoid Taxol (paclitaxel). The culture was exposed to low-frequency US for a short period of time (2 min). At sufficiently high US power levels the US exposure significantly enhanced the Taxol production and slightly depressed cell growth and viability. The US exposure induced transient production of O(2)*- and H(2)O(2) and an increase in the intracellular JA level as well as the activities of enzymes for JA synthesis, lipoxygenase (LOX), and allene oxide synthase (AOS). Inhibition of the ROS production by putative ROS scavengers or the JA accumulation by LOX inhibitors effectively suppressed the US-stimulated Taxol production. Inhibition of the ROS production also suppressed the US-induced JA accumulation. These results suggest that oxidative burst is an upstream event to JA accumulation, and both ROS from the oxidative burst and JA from the LOX pathway are key signal elements in the elicitation of Taxol production of T. chinensis cells by low-energy US.  相似文献   

12.
环境胁迫对雷公藤中雷公藤红素含量的影响   总被引:4,自引:0,他引:4       下载免费PDF全文
雷公藤(Tripterygium wilfordii)是我国的名贵药用植物, 其药用成分雷公藤红素是医药研究中重要的化学单体。环境胁迫能促进药用植物次生代谢物质的合成与积累, 该文通过正交设计, 探讨了水分、光照、土壤氮含量三因素两水平轻度胁迫处理对雷公藤幼苗中雷公藤红素含量的影响。研究结果表明: 根部是雷公藤红素含量最丰富的部位; 雷公藤幼苗在水分、光照及土壤氮含量胁迫条件下根系中雷公藤红素的含量分别提高了10.8%、14.4%和13.0%, 光照对雷公藤红素含量的增加最明显, 短期的轻度胁迫可提高根中雷公藤红素的含量。  相似文献   

13.
茉莉酸对棉花单宁含量和抗虫相关酶活性的诱导效应   总被引:4,自引:0,他引:4  
杨世勇  王蒙蒙  谢建春 《生态学报》2013,33(5):1615-1625
以植物生长调节物茉莉酸(Jasmonic acid,JA)为诱导子,以常规棉为研究对象,探讨了外源茉莉酸对棉花幼苗单宁和蛋白酶抑制素以及其它抗虫相关酶活性诱导的浓度依赖性和持久性,讨论了棉花抗虫相关物质的抗虫效果.结果表明,0.01、0.1和1.0 mmol/L茉莉酸都能在2周内诱导棉花单宁和胰蛋白酶抑制素(Proteinase inhibitors,PIs)含量增加,诱导多酚氧化酶(Polyphenol oxidase,PPO)、苯丙氨酸解氨酶(Phenylalanine ammonia-lyase,PAL)、过氧化物酶(Peroxidase,POD)和过氧化氢酶(Catalase,CAT)活性升高.对3种浓度茉莉酸的诱导效应进行分析表明,0.1 mmol/L茉莉酸对于诱导PIs、PPO、POD和CAT最有效,0.1和1.0 mmol/L茉莉酸对于诱导棉花单宁和苯丙氨酸解氨酶等效,二者的诱导效应均高于0.01 mmol/L.对茉莉酸诱导抗性的持久性进行分析表明,最佳诱导效应发生的时间各不相同:POD活性在JA处理后第1天最高,随后呈下降趋势,PIs和单宁含量分别在JA处理后第7天和第14天达最大值;JA处理后第1天和第7天的PPO活性无明显差异,但明显高于第14天;JA处理后第7天和第14天的PAL活性无明显差异,但明显高于第1天;JA处理后第1、7和14天棉花叶片的CAT活性均无明显差异.以上结果表明,茉莉酸可通过增加棉叶单宁和PIs含量、提高棉叶PAL、PPO、POD和CAT活性等增强棉花幼苗的抗虫性.  相似文献   

14.
众所周知,固着生长的植物经常受到环境中各种生物和非生物胁迫的威胁。所以在漫长的进化过程中,植物必须将多样的环境信号整合到其发育过程中,以实现适应性形态的发生和代谢途径的精确调控,最终使植物完成整个生长周期。研究显示,苯丙烷代谢作为植物重要的次级代谢途径之一,其代谢产物,例如木质素、孢粉素、花青素和有机酸等,在调控植物适应性生长的过程中发挥着重要功能。特别是在药用植物中,苯丙烷代谢还与众多药用活性成分的合成息息相关,几乎所有包含苯丙烷骨架的天然药效成分均由苯丙烷代谢途径直接或间接合成,例如黄酮类、萜类和酚类等。此外,经苯丙烷代谢途径产生的一些次级代谢产物还能由植物根系外泌到周际土壤中,通过改变根系微生物的菌群生态,而影响植物生长和抵抗生物或非生物胁迫的能力。同时,苯丙烷代谢介导的这种植物-微生物互作也与药用植物的道地品质密不可分。本文综述了近年来植物苯丙烷代谢途径的最新研究进展,重点对该代谢途径中代谢产物的生理功能及表达调控机制进行了介绍,以期更深入地理解药用植物苯丙烷代谢与药材性状之间的潜在关系,旨在指导优良中草药的遗传育种,以进一步促进我国中医药事业的蓬勃发展。  相似文献   

15.
药用植物是中药的原料,是中药产业的源头,其生长发育受遗传和环境等诸多因素的影响。以往研究强调植物基因型及生态因子对药用植物产量和品质的影响。近几年,随着人类微生物组研究的推进,植物微生物组作为植物整体的重要组成部分在药用植物的生长发育、品质形成甚至药效等方面的作用也日益受到重视,有关植物微生物组的多样性,微生物组在植物生长发育中的作用已有较详细的综述,而有关药用植物微生物组及其与药用植物次生代谢产物间关系的综述较少。本文重点总结了自2010年以来药用植物微生物组的研究进展,包括药用植物微生物组物种组成、功能及其与药用植物次生代谢产物产生的关系等,并对其在药用植物提质增效及其生态种植中的潜在应用进行了展望。  相似文献   

16.
Secondary metabolites not only play important ecological roles in plants but also are important pharmaceutical and source compounds for derivative synthesis. Production of plant secondary metabolites is believed to be controlled by the endogenous signal network of plants. However, the molecular basis is still largely unknown. Here we show that matrine production of Sophora flavescens Ait. cells treated with low levels of jasmonic acid (JA) and nitric oxide (NO) is significantly increased although treatment with low concentrations of JA or NO alone has no effects on matrine production, showing that JA and NO may act synergistically in triggering matrine production. Moreover, treatment with NO triggers lipoxygenase (LOX) activity and enhances JA levels of the cells, showing that NO may activate the endogenous JA biosynthesis of S. flavescens cells. External application of JA induces nitric oxide synthase-like activities and stimulates NO generation of S. flavescens cells, which suggests that JA may trigger NO generation of the cells. Thus, the results reveal a mutually amplifying reaction between JA and NO in S. flavescens cells. Furthermore, JA and NO inhibitors suppress not only the mutually amplifying reaction between JA and NO but also the synergistic effects of NO and JA on matrine production. Therefore, the data demonstrate that the synergistic action of JA and NO in inducing matrine production might be due to the mutually amplifying reaction between JA and NO in the cells.  相似文献   

17.
Although smoke treatments have successfully been used for promoting the germination of many seeds, there are no reports on the effect of smoke on secondary metabolite production in plants. This study highlights the effects of smoke-water on shoot growth and accumulation of indigo in shoots of Isatis indigotica Fort., a Chinese medicinal plant. Results showed that seedlings treated with smoke-water at a dilution of 1:1000 achieved the highest fresh and dry shoot mass, which was significantly (P < 0.05) different from the control and other smoke-water dilutions tested. A higher concentration of smoke-water (1:500) significantly increased (P < 0.05) the indigo concentration in shoots compared with untreated seedlings. The effect of 1:1000 and 1:2000 dilutions gave non-significant increases in the concentration of indigo. These findings suggest the possible use of smoke-water for promoting the growth and accumulation of secondary metabolites in plants.  相似文献   

18.
Jasmonate (JA), as an important signal, plays a key role in multiple processes of plant growth, deve lopment and stress response. Nicotine and related pyridine alkaloids in tobacco (Nicotiana tabacum L.) are essential secondary metabolites. Whether environmental factors control nicotine biosynthesis and the underlying mechanism remains previously unreported. Here, we applied physiological and biochemical approaches to investigate how salt stress affects nicotine biosynthesis in tobacco. We found that salt stress induced the biosynthesis of JA, which subsequently triggered the activation of JA responsive gene expression and, ultimately, nicotine synthesis. Bioinformatics analysis revealed the existence of many NtMYC2a recognized G box motifs in the promoter regions of NtLOX, NtAOS, NtAOC and NtOPR genes. Applying exogenous JA increased nicotine content, while suppressing JA biosynthesis reduced nicotine biosynthesis. Salt treatment could not efficiently induce nicotine biosynthesis in transgenic anti COI1 tobacco plants. These results demonstrate that JA acts as the essential signal which triggers nicotine biosynthesis in tobacco after salt stress.  相似文献   

19.
Plant parasitic nematodes cause severe damage to cultivated crops globally. Management of nematode population is a major concern as chemicals used as nematicides have negative impact on the environment. Natural plant products can be safely used for the control of nematodes. Among various plant metabolites, plant hormones play an essential role in developmental and physiological processes and also assist the plants to encounter stressful conditions. Keeping this in mind, the present study was designed to evaluate the effect of jasmonic acid (JA) on the growth, pigments, polyphenols, antioxidants, osmolytes, and organic acids under nematode infection in tomato seedlings. It was observed that nematode inoculation reduced the growth of seedlings. Treatment with JA improved root growth (32.79%), total chlorophylls (71.51%), xanthophylls (94.63%), anthocyanins (37.5%), and flavonoids content (21.11%) when compared to inoculated seedlings alone. The JA application enhanced the total antioxidant capacity (lipid- and water-soluble antioxidants) by 38.23 and 34.37%, respectively, in comparison to infected seedlings. Confocal studies revealed that there was higher accumulation of glutathione in hormone-treated seedlings under nematode infection. Treatment with JA increased total polyphenols content (74.56%) in comparison to nematode-infested seedlings. JA-treated seedlings also enhanced osmolyte and organic acid contents under nematode stress. Overall, treatment with JA improved growth, enhanced pigment levels, modulated antioxidant content, and enhanced osmolyte and organic acid content in nematode-infected seedlings.  相似文献   

20.
Jasmonic acid (JA) is an established wound signal and also plays a role in plant-pathogen interactions. Application of JA to tobacco leaf explants, tobacco seedlings or to intact leaves via the petiole resulted in an increase in the specific activity of acid phosphatase (AP) and a reduction in overall protein content. Similar changes in AP activity were observed in wounded tissue and in tissue undergoing a hypersensitive response (HR) following infiltration with a virulent bacteria. The AP activity increase was restricted to wounded tissue and HR lesions and was absent from unwounded or uninfiltrated tissue on the same leaf. The JA response (AP increase and protein loss combined) was investigated pharmacologically. Co-incubation with EGTA, ruthenium red, LaCl3 and ()-verapamil blocked the JA response suggesting a requirement for Ca2+ mobilization. Similarly, okadaic acid, cantharidin and microcystin LR abrogated the response to JA implicating a protein phosphatase in the JA signal transduction mechanism(s). No evidence was found for kinase involvement as a mediator of JA signalling in this system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号