首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
4-苯基丁酸钠(4-phenylbutyric acid,4-PBA)是协助内质网中蛋白质转录后修饰和折叠的分子伴侣,故可减轻非折叠蛋白反应(unfolded protein response,UPR)及其介导的细胞凋亡。既往研究表明,4-PBA可以减轻脑组织的缺血性损伤,但采用原代皮层神经元构建氧糖剥夺/再灌注(oxygen glucose deprivation/reoxygenation, OGD/R)损伤模型,来研究4-PBA对神经元损伤的保护作用及其机制尚未见报道。本文采用原代培养的皮层神经元OGD/R损伤模型,同时给予4-PBA处理,探讨4-PBA对OGD/R诱导的神经元内质网应激(endoplasmic reticulum stress,ERS)的作用及其机制。分别采用MTT、LDH和Hoechst 33342染色法检测神经元存活率、细胞膜完整性和细胞凋亡情况。Western印迹检测ERS标志物葡萄糖调节蛋白78 (glucose regulated protein 78,GRP78),以及肌醇必需酶1(inositol requiring enzyme 1, IRE1)通路相关蛋白质的表达。Western印迹结果显示,在OGD/R后0~48 h,GRP78的表达较对照组明显升高。MTT、LDH漏出率和Hoechst 33342染色法检测显示,4-PBA显著改善OGD/R所导致的神经元存活率下降、LDH漏出率升高和细胞凋亡增加,且具有明显的剂量依赖性。通过Western印迹检测发现,4-PBA显著逆转OGD/R所致GRP78蛋白表达水平的上调。此外,对肌醇必需酶1通路相关蛋白质的检测显示,4-PBA下调氧糖剥夺/再灌注组神经元p IRE1和p JNK的表达,增加抗凋亡蛋白Bcl 2表达。上述研究结果表明,4-PBA在氧糖剥夺/再灌注情况下对神经元具有保护作用,该保护作用可能是通过抑制肌醇必需酶1信号通路介导的非折叠蛋白反应和内质网应激实现的。  相似文献   

2.
Yao ST  Sang H  Yang NN  Kang L  Tian H  Zhang Y  Song GH  Qin SC 《生理学报》2010,62(5):433-440
The purpose of the present study is to explore the effect of oxidized low density lipoprotein (ox-LDL) on the induction of endoplasmic reticulum stress (ERS) and the underlying mechanisms in ox-LDL-induced macrophage foam-forming process. RAW264.7 macrophages were cultured in DMEM medium containing 10% fetal bovine serum, and then treated with ox-LDL (25, 50 and 100 mg/L), anti-CD36 monoclonal antibody+ox-LDL and tunicamycin (TM), respectively. After incubation for 24 h, the cells were collected. The cellular lipid accumulation was showed by oil red O staining and the content of cellular total cholesterol was quantified by enzymatic colorimetry. The expression of glucose-regulated protein 94 (GRP94), a molecular marker of ERS, was determined by immunocytochemistry assay. The levels of GRP94 protein, phosphorylated inositol-requiring enzyme 1 (p-IRE1) and X box binding protein 1 (XBP1) in RAW264.7 cells were detected by Western blotting. The results indicated that after incubation with ox-LDL (25, 50 and 100 mg/L) for 24 h, a large amount of lipid droplets were found in the cytoplasm, and the contents of cellular total cholesterol were increased by 2.1, 2.8 and 3.1 folds compared with the control, respectively. Anti-CD36 antibody decreased markedly the cellular lipid accumulation induced by ox-LDL at 100 mg/L. Both ox-LDL and TM, a specific ERS inducer, could up-regulate the protein expression of GRP94 in a dose-dependent manner. Furthermore, p-IRE1 and XBP1, two key components of the unfolded protein response, were also significantly induced by the treatment with ox-LDL. The up-regulations of the three proteins induced by ox-LDL were inhibited significantly when the macrophages were pre-incubated with anti-CD36 antibody. These results suggest that ox-LDL may induce ERS in a dose-dependent way and subsequently activate the unfolded protein response signaling pathway in RAW264.7 macrophages, which is potentially mediated by scavenger receptor CD36.  相似文献   

3.
Oxidative-nitrosative stress and inflammatory responses are associated with endoplasmic reticulum (ER) stress in diabetic retinopathy, raising the possibility that disturbances in ER protein processing may contribute to CNS dysfunction in diabetics. Upregulation of the unfolded protein response (UPR) is a homeostatic response to accumulation of abnormal proteins in the ER, and the present study tested the hypothesis that the UPR is upregulated in two models for diabetes, cultured astrocytes grown in 25 mmol/L glucose for up to 4 weeks and brain of streptozotocin (STZ)-treated rats with diabetes for 1–7 months. Markers associated with translational blockade (phospho-eIF2α and apoptosis (CHOP), inflammatory response (inducible nitric oxide synthase, iNOS), and nitrosative stress (nuclear translocation of glyceraldehyde-3-phosphate dehydrogenase, GAPDH) were not detected in either model. Nrf2 was present in nuclei of low- and high-glucose cultures, consistent with oxidative stress. Astrocytic ATF4 expression was not altered by culture glucose concentration, whereas phospho-IRE and ATF6 levels were higher in low- compared with high-glucose cultures. The glucose-regulated chaperones, GRP78 and GRP94, were also expressed at higher levels in low- than high-glucose cultures, probably due to recurrent glucose depletion between feeding cycles. In STZ-rat cerebral cortex, ATF4 level was transiently reduced at 4 months, and p-IRE levels were transiently elevated at 3 months. However, GRP78 and GRP94 expression was not upregulated, and iNOS, amyloid-β, and nuclear accumulation of GAPDH were not evident in STZ-diabetic brain. High-glucose cultured astrocytes and STZ-diabetic brain are relatively resistant to diabetes-induced ER stress, in sharp contrast with cultured retinal Müller cells and diabetic rodent retina.  相似文献   

4.
5.
6.

Purpose

To investigate the activation of three unfolded protein response (UPR) pathways in the lenses of age-related, high myopia-related and congenital cataracts.

Methods and Materials

Lens specimens were collected from patients during small incision cataract surgery. Lenses from young cadaver eyes were collected as normal controls. Real-time PCR and Western blotting were performed to detect the expression of GRP78, p-eIF2α, spliced XBP1, ATF6, ATF4 and p-IRE1α in the lenses of normal human subjects and patients with age-related, myopia-related or congenital cataracts.

Results

In the lenses of the age-related and high myopia-related cataract groups, the protein levels of ATF6, p-eIF2α and p-IRE1α and the gene expression levels of spliced XBP1, GRP78, ATF6 and ATF4 were greatly increased. Additionally, in the congenital cataract group, the protein levels of p-eIF2α and p-IRE1α and the gene expression levels of spliced XBP1, GRP78 and ATF4 were greatly increased. However, the protein and gene expression levels of ATF6 were not up-regulated in the congenital cataract group compared with the normal control group.

Conclusions

The UPR is activated via different pathways in the lenses of age-related, high myopia-related and congenital cataracts. UPR activation via distinct pathways might play important roles in cataractogenesis mechanisms in different types of cataracts.  相似文献   

7.
Role of the unfolded protein response in cell death   总被引:10,自引:0,他引:10  
Unfolded protein response (UPR) is an important genomic response to endoplasmic reticulum (ER) stress. The ER chaperones, GRP78 and Gadd153, play critical roles in cell survival or cell death as part of the UPR, which is regulated by three signaling pathways: PERK/ATF4, IRE1/XBP1 and ATF6. During the UPR, accumulated unfolded protein is either correctly refolded, or unsuccessfully refolded and degraded by the ubiquitin-proteasome pathway. When the unfolded protein exceeds a threshold, damaged cells are committed to cell death, which is mediated by ATF4 and ATF6, as well as activation of the JNK/AP-1/Gadd153-signaling pathway. Gadd153 suppresses activation of Bcl-2 and NF-κB. UPR-mediated cell survival or cell death is regulated by the balance of GRP78 and Gadd153 expression, which is coregulated by NF-κB in accordance with the magnitude of ER stress. Less susceptibility to cell death upon activation of the UPR may contribute to tumor progression and drug resistance of solid tumors.  相似文献   

8.
Disturbance of endoplasmic reticulum (ER) homeostasis causes ER stress (ERS), and triggers the unfolded protein response (UPR) that consequently reduces accumulation of unfolded proteins by increasing the quantity of ER chaperones. Calumenin, a Ca2+-binding protein with multiple EF hand motifs, which is located in the ER/SR, is highly expressed during the early developmental stage of the heart, similar to other ER-resident chaperones. The aim of this study was to investigate the functional role of calumenin during ERS in the heart. Like other chaperones (e.g., GRP94 and GRP78), calumenin expression was highly upregulated during ERS induced by 10 μg/ml tunicamycin, but attenuated in the presence of 500 μM PBA, the chemical chaperone in neonatal rat ventricular cardiomyocytes (NRVCs). Upon 7.5-fold overexpression of calumenin using a recombinant adenovirus system, the expression levels of ERS markers (GRP78, p-PERK, and p-elF2α) and ER-initiated apoptosis markers (CHOP and p-JNK) were reduced, whereas the survival protein BCL-2 was upregulated during ERS compared to the control. Evaluation of cell viability by TUNEL assay showed that apoptosis was also significantly reduced by calumenin overexpression in ERS-induced cells. Taken together, our results suggest that calumenin plays an essential role in the alleviation of ERS in neonatal rat cardiomyocytes.  相似文献   

9.
10.
Endoplasmic reticulum stress (ERS)-induced unfolded protein response (UPR) and the subsequent cell deaths are essential steps in the pathogenesis of diabetic cardiomyopathy (DCM), a main cause of diabetics’ morbidity and mortalities. The bis(maltolato)oxovanadium(IV) (BMOV), a potent oral vanadium complex with anti-diabetic properties and insulin-mimicking effects, was shown to improve cardiac dysfunctions in diabetic models. Here, we examined the effects of BMOV on UPR pathway protein expression and apoptotic cell deaths in both high glucose-treated cardiac H9C2 cells and in the hearts of diabetic rats. We show that in both the high glucose-treated cardiac cells and in the hearts of streptozotocin (STZ) diabetic rats, there was an overall activation of the UPR signaling, including both apoptotic (e.g., the cascades of PERK/EIf2α/ATF4/CHOP and of IRE1/caspase 12/caspase 3) and pro-survival (GRP78 and XBP1) signaling. A high amount of apoptotic cell deaths was also detected in both diabetic conditions. The administration of BMOV suppressed both the apoptotic and pro-survival UPR signaling and significantly attenuated apoptotic cell deaths in both conditions. The overall suppression of UPR signaling by BMOV suggests that the drug protects diabetic cardiomyopathy by counteracting reactive oxygen species (ROS) and endoplasmic reticulum (ER) stress. Our findings lend support to promote the use of BMOV in the treatment of diabetic heart diseases.  相似文献   

11.
12.
13.
14.
15.
16.
Continued exposure of endothelial cells to mechanical/shear stress elicits the unfolded protein response (UPR), which enhances intracellular homeostasis and protect cells against the accumulation of improperly folded proteins. Cells commit to apoptosis when subjected to continuous and high endoplasmic reticulum (ER) stress unless homeostasis is maintained. It is unknown how endothelial cells differentially regulate the UPR. Here we show that a novel Girdin family protein, Gipie (78 kDa glucose-regulated protein [GRP78]-interacting protein induced by ER stress), is expressed in endothelial cells, where it interacts with GRP78, a master regulator of the UPR. Gipie stabilizes the interaction between GRP78 and the ER stress sensor inositol-requiring protein 1 (IRE1) at the ER, leading to the attenuation of IRE1-induced c-Jun N-terminal kinase (JNK) activation. Gipie expression is induced upon ER stress and suppresses the IRE1-JNK pathway and ER stress-induced apoptosis. Furthermore we found that Gipie expression is up-regulated in the neointima of carotid arteries after balloon injury in a rat model that is known to result in the induction of the UPR. Thus our data indicate that Gipie/GRP78 interaction controls the IRE1-JNK signaling pathway. That interaction appears to protect endothelial cells against ER stress-induced apoptosis in pathological contexts such as atherosclerosis and vascular endothelial dysfunction.  相似文献   

17.

Purpose

To investigate the expression of αA- and αB-crystallin and the unfolded protein response in the lens epithelium of patients with high myopia-related cataracts.

Methods and Materials

The central portion of the human anterior lens capsule together with the adhering epithelial cells, approximately 5 mm in diameter, were harvested and processed within two hours after cataract surgery from high myopia-related (spherical equivalent ≥-10.00 diopters) and age-related cataract patients or from high myopia but non-cataractous patients (tissue were collected from ocular trauma patients with high myopia and lens trauma). Anterior lens samples from fresh cadaver normal human eyes were used as normal control (collected within 6 hours from death). Real-time PCR was performed to detect the mRNA levels of α-crystallins as well as unfolded protein response (UPR)-related GRP78, spliced-XBP1, ATF4 and ATF6. Western blot analysis was used to determine the protein level of α-crystallin, GRP78, p-IRE1α, p-eIF2α and ATF6.

Results

In the lens epithelium of the high myopia-related cataract group and the age related cataract group, the mRNA and soluble protein expression of αA- and αB-crystallin were both decreased; additionally, the protein levels of ATF6, p-eIF2α and p-IRE1α and the gene expression levels of spliced XBP1, GRP78, ATF6 and ATF4 were greatly increased relative to the normal control.

Conclusion

These results suggest the significant loss of soluble α-crystallin and the activation of the UPR in the lens epithelium of patients with high myopia-related cataract, which may be associated with the cataractogenesis of high myopia-related cataract.  相似文献   

18.
19.
Inflammation plays an important pathogenic role in a number of metabolic diseases such as obesity, type 2 diabetes, and atherosclerosis. The activation of inflammation in these diseases depends at least in part on the combined actions of TLR4 signaling and endoplasmic reticulum stress, which by acting in concert can boost the inflammatory response. Defining the mechanisms involved in this phenomenon may unveil potential targets for the treatment of metabolic/inflammatory diseases. Here we used LPS to induce endoplasmic reticulum stress in the human monocyte cell-line, THP-1. The unfolded protein response, produced after LPS, was dependent on CD14 activity but not on RNA-dependent protein kinase and could be inhibited by an exogenous chemical chaperone. The induction of the endoplasmic reticulum resident chaperones, GRP94 and GRP78, by LPS was of a much lower magnitude than the effect of LPS on TLR4 and MD-2 expression. In face of this apparent insufficiency of chaperone expression, we induced the expression of GRP94 and GRP78 by glucose deprivation. This approach completely reverted endoplasmic reticulum stress. The inhibition of either GRP94 or GRP78 with siRNA was sufficient to rescue the protective effect of glucose deprivation on LPS-induced endoplasmic reticulum stress. Thus, insufficient LPS-induced chaperone expression links TLR4 signaling to endoplasmic reticulum stress.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号