首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
在反溶剂法制备纳米粒过程中,pH值在一定程度上会对其产生影响。本文通过在不同酸碱环境下运用反溶剂法制备牛血清白蛋白包被酒石酸长春瑞滨纳米粒,进而借助于电位耦合作用来研究纳米粒制备工艺。研究结果表明:当pH=4.5至7.5时,酒石酸长春瑞滨和牛血清白蛋白带有异种电荷,而当pH=2.5,3.5,8.5,9.5时它们均带有同种电荷。当pH=7.5时,牛血清白蛋白带有负电荷即-8.52 mV,酒石酸长春瑞滨带有正电荷即+4.48mV。此时得到牛血清白蛋白包被酒石酸长春瑞滨纳米粒粒径为193.3 nm,Zeta电位为-30.86 mV,而且在该pH下对纳米粒制备工艺进行了优化,最终它的载药量和包封率达到了45.6%和90.6%。  相似文献   

2.
The main objective of the present study was to investigate the influence of various formulation parameters on the preparation of zein nanoparticles. 6,7-dihydroxycoumarin (DHC) was used as a model hydrophobic compound. The influence of pH of the aqueous phase, buffer type, ionic strength, surfactant, and zein concentration on particle size, polydispersity index, and zeta potential of DHC-loaded zein nanoparticles were studied. Smaller nanoparticles were formed when the pH was close to the isoelectric point of zein. DHC-loaded zein nanoparticles prepared using citrate buffer (pH 7.4) was better than phosphate buffer in preventing particle aggregation during lyophilization. The ionic strength did not have a significant influence on the particle size of DHC-loaded zein nanoparticles. A combination of Pluronic F68 and lecithin in 2:1 ratio stabilized the zein nanoparticles. An increase in zein concentration led to increase in particle size of DHC-loaded zein nanoparticles. The use of optimal conditions produced DHC-loaded nanoparticles of 256 ± 30 nm and an encapsulation efficiency of 78 ± 7%. Overall, the study demonstrated the optimal conditions to prepare zein nanoparticles for drug encapsulation.KEY WORDS: drug delivery, particle size distribution, pH nanoprecipitation, protein polymers, zein, zeta potential  相似文献   

3.
The present investigation was aimed at developing cytarabine-loaded poly(lactide-coglycolide) (PLGA)-based biodegradable nanoparticles by a modified nanoprecipitation which would have sustained release of the drug. Nine batches were prepared as per 32 factorial design to optimize volume of the co-solvent (0.22–0.37 ml) and volume of non-solvent (1.7–3.0 ml). A second 32 factorial design was used for optimization of drug: polymer ratio (1:5) and stirring time (30 min) based on the two responses, mean particle size (125 ± 2.5 nm), and percentage entrapment efficiency (21.8 ± 2.0%) of the Cyt-PLGA nanoparticles. Optimized formulation showed a zeta potential of −29.7 mV indicating good stability; 50% w/w of sucrose in Cyt-PLGA NP was added successfully as cryoprotectant during lyophilization for freeze-dried NPs and showed good dispersibility with minimum increase in their mean particle sizes. The DSC thermograms concluded that in the prepared PLGA NP, the drug was present in the amorphous phase and may have been homogeneously dispersed in the PLGA matrix. In vitro drug release from the pure drug was complete within 2 h, but was sustained up to 24 h from PLGA nanoparticles with Fickian diffusion. Stability studies showed that the developed PLGA NPs should be stored in the freeze-dried state at 2–8°C where they would remain stable in terms of both mean particle size and drug content for 2 months.  相似文献   

4.
The purpose of this research was to improve the entrapment efficiency of a model hydrophilic drug substance, sodium cromoglycate, loaded inside polylactic acid nanoparticles by a modified nanoprecipitation method. The effect of formulation parameters was studied to improve the entrapment efficiency of the drug substance inside the nanoparticles. Several parameters (changes in the amount of model drug, solvent selection, electrolyte addition, pH alteration) were tested in order to increase the loading of the hydrophilic drug in the hydrophobic nanoparticles. Lowering of the pH was the most efficiency way to increase the drug loading; up to approximately 70% of the sodium cromoglycate used in the particle formation process could be loaded inside the particles. The loading efficiency without the pH change was around 10% to 15% at maximum. The crystallinity values and crystal habits of the sodium cromoglycate nanoparticles were studied (x-ray diffraction) before and after the lowering of the pH. The change in pH conditions during the nanoprecipitation process did not affect markedly the crystallinity properties of the drug substance. According to this study, it is possible to improve the entrapment efficiency of hydrophilic sodium cromoglycate inside of the nanoparticles by small changes in the process parameters without alterations in the physical properties of the original drug subtance.  相似文献   

5.
The purpose of this research was to improve the entrapment efficiency of a model hydrophilic drug substance, sodium cromoglycate, loaded inside polylactic acid nanoparticles by a modified nanoprecipitation method. The effect of formulation parameters was studied to improve the entrapment efficiency of the drug substance inside the nanoparticles. Several parameters (changes in the amount of model drug, solvent selection, electrolyte addition, pH alteration) were tested in order to increase the loading of the hydrophilic drug in the hydrophobic nanoparticles. Lowering of the pH was the most efficient way to increase the drug loading; up to approximately 70% of the sodium cromoglycate used in the particle formation process could be loaded inside the particles. The loading efficiency without the pH change was around 10% to 15% at maximum. The crystallinity values and crystal habits of the sodium cromoglycate nanoparticles were studied (x-ray diffraction) before and after the lowering of the pH. The change in pH conditions during the nanoprecipitation process did not affect markedly the crystallinity properties of the drug substance. According to this study, it is possible to improve the entrapment efficiency of hydrophilic sodium cromoglycate inside of the nanoparticles by small changes in the process parameters without alterations in the physical properties of the original drug substance.  相似文献   

6.
Lee CM  Lim S  Kim GY  Kim DW  Rhee JH  Lee KY 《Biotechnology letters》2005,27(19):1487-1490
Hydrocortisone (HC)-loaded rosin nanoparticles were prepared by a dispersion and dialysis method without addition of surfactant. They were spherical: 167–332 nm diam. The drug was loaded approximately 50% of initial feeding amount in all formulation. Release of hydrocortisone from the nanoparticles in vitro gradually decreased with increasing initial rosin content at pH 7.4. HC was also released very slowly at pH 1.2. Nanoparticles based on rosin thus are potentially useful as a drug delivery system.  相似文献   

7.
The morphology of gelatin nanoparticles loaded with three different drugs (Tizanidine hydrochloride, Gatifloxacin and Fluconazole) and their characteristics of entrapment and release from gelatin nanoparticles were investigated by the analysis on nanoparticle size distribution, SEM and FT-IR in this study. The particles were prepared by nanoprecipitation using water and ethanol as a solvent and a nonsolvent, respectively. The exclusion of a crosslinking agent from the procedure led the system to have an irregularly-shaped morphology. Nonetheless, the uncrosslinked case of Gatifloxacin loading generally led to a more homogeneous population of nanoparticles than the uncrosslinked case of Tizanidine hydrochloride loading. No loading was achieved in the case of Fluconazole, whereas both Tizanidine hydrochloride and Gatifloxacin are observed of being capable of being loaded by nanoprecipitation. Tizanidine hydrochloride-loaded, blank and Gatifloxacin-loaded nanoparticles yielded, under crosslinked condition, 59.3, 23.1 and 10.6% of the used dried mass. The crosslinked Tizanidine hydrochloride-loaded particles showed the loading efficiency of 13.8%, which was decreased to 1.1% without crosslinking. A crosslinker such as glutaraldehyde is indispensable to enhance the Tizanidine hydrochloride-loading efficiency. To the contrary, the Gatifloxacin-loading efficiency for crosslinked ones was lower by a factor of 2-3 times than that for uncrosslinked ones. This is due to the carboxylic groups of Gatifloxacin and the aldehyde groups of glutaraldehyde competing with each other during the crosslinking process, to react with the amino groups of gelatin molecules. The loading efficiency of gelatin nanoparticles reported by other investigators greatly varies. Nevertheless, the loading efficiency reported by us is in good agreement with the drug-loading data of gelatin nanoparticles reported by other investigators. The 80% of loaded Tizanidine hydrochloride was released around 15 h after start-up of the release experiment, while the 20% of loaded Gatifloxacin was released more rapidly, as free Gatifloxacin, than the loaded Tizanidine hydrochloride and it showed the trend of sustained slow release during the remaining period of its release experiment. Furthermore, the result of comparative FT-IR analysis is consistent to that of the corresponding drug release study.  相似文献   

8.
The aim of the investigation was to prepare and characterize wheat germ agglutinin(WGA)-conjugated poly(d,l-lactic-co-glycolic) acid nanoparticles encapsulating mometasone furoate (MF) as a model drug and assess changes in its fate in terms of cellular interactions. MF loaded nanoparticles were prepared using emulsion–solvent evaporation technique. WGA-conjugation was done by carbodiimide coupling method. The nanoparticles were characterized for size, zeta potential, entrapment efficiency and in-vitro drug release. The intracellular uptake of nanoparticles, drug cellular levels, and anti-proliferative activity studies of wheat germ agglutinin-conjugated and unconjugated nanoparticles were assessed on alveolar epithelial (A549) cells to establish cellular interactions. Prepared nanoparticles were spherical with 10–15 μg/mg of WGA conjugated on nanoparticles. The size of nanoparticles increased after conjugation and drug entrapment and zeta potential reduced from 78 ± 5.5% to 60 ± 2.5% and −15.3 ± 1.9 to −2.59 ± 2.1 mV respectively after conjugation. From the cellular drug concentration–time plot, AUC was found to be 0.4745, 0.6791 and 1.24 for MF, MF-nanoparticles and wheat germ agglutinin-MF-nanoparticles respectively. The in-vitro antiproliferative activity was improved and prolonged significantly after wheat germ agglutinin-conjugation. The results conclusively demonstrate improved availability and efficacy of antiasthmatic drug in alveolar epithelial cell lines. Hence, a drug once formulated as mucoadhesive nanoparticles and incorporated in dry powder inhaler formulation may be used for targeting any segment of lungs for more improved therapeutic response in other lung disorders as well.  相似文献   

9.
BackgroundRifaximin is a non-systemic antibiotic used in the treatment of inflammatory bowel disease (IBD). Antibiotics are demonstrating a significant role in the treatment of IBD by altering the dysbiotic colonic microbiota and decreases the immunogenic and inflammatory response in the patient population. Mucoadhesive colon targeted nanoparticles provide the site-specific delivery and extended stay in the colon. Since the bacteria occupy the lumen, spread over the surface of epithelial cells, and adhere to the mucosa, delivering the rifaximin as a nanoparticles with the mucoadhesive polymer enhances the therapeutic efficacy in IBD. The objective was to fabricate and characterize the rifaximin loaded tamarind gum nanoparticles and study the therapeutic efficacy in the TNBS-induced IBD model ratsMaterials and methodsThe experimentation includes fabrication and characterization of drug excipient compatibility by FTIR. The fabricated nanoparticles were characterized for the hydrodynamic size and zeta potential by photon correlation spectroscopy and also analyzed by TEM. Selected best formulation was subjected to the therapeutic efficacy study in TNBS-induced IBD rats, and the macroscopic, microscopic and biochemical parameters were reported.ResultsThe study demonstrated that the formulation TGN1 is best formulation in terms of nanoparticle characterization and hydrodynamic size which showed the hydrodynamic size of 171.4 nm and the zeta potential of −26.44 mV and other parameters such as TEM and drug release studies were also reported.ConclusionsThe therapeutic efficacy study revealed that TGN1 is efficiently reduced the IBD inflammatory conditions as compared to the TNBS control group and reference drug mesalamine group.  相似文献   

10.
In the current study, gefitinib loaded PLGA nanoparticles (GFT-PLGA-NPs) and chitosan coated PLGA nanoparticles (GFT-CS-PLGA-NPs) were synthesized to investigate the role of surface charge of NPs for developing drug delivery system for non-small-cell lung cancer (NSCLC). The developed NPs were evaluated for their size, PDI, zeta potential (ZP), drug entrapment, drug loading, DSC, FTIR, XRD, in vitro release profile, and morphology. The anti-cancer activity of GFT loaded PLGA NPs and GFT loaded CS-PLGA-NPs were examined in human A549 lung cancer cell lines. In vitro release studies of GFT-CS-PLGA-NPs showed more sustained release in comparison to GFT-PLGA-NPs due surface charge attraction of chitosan. In addition, viability of A549 cells decreases significantly with the increasing concentration of GFT-PLGA NPs and GFT-CS-PLGA-NPs when compared to that of pure GFT and blank PLGA NPs. In addition, the microscopic analysis and counting of viable cells also validate the cytotoxicity of the developed NPs. This investigation proved that the developed NPs would be efficient carriers to deliver GFT with improved efficacy against NSCLC.  相似文献   

11.
Since therapeutic peptides and oligonucleotides are gathering interests as active pharmaceutical ingredients (APIs), nanoparticulate drug delivery systems are becoming of great importance. Thereby, the possibility to design drug delivery systems according to the therapeutic needs of APIs enhances clinical implementation. Over the last years, the focus of our group was laid on protamine-oligonucleotide-nanoparticles (so called proticles), however, the possibility to modify the size, zeta potential or loading efficiencies was limited. Therefore, at the present study we integrated a stepwise addition of protamine (titration) into the formation process of proticles loaded with the angiogenic neuropeptide secretoneurin (SN). A particle size around 130 nm was determined when proticles were assembled by the commonly used protamine addition at once. Through application of the protamine titration process it was possible to modify and adjust the particle size between approx. 120 and 1200 nm (dependent on mass ratio) without influencing the SN loading capacity. Dynamic light scattering pointed out that the difference in particle size was most probably the result of a secondary aggregation. Initially-formed particles of early stages in the titration process aggregated towards bigger assemblies. Atomic-force-microscopy images also revealed differences in morphology along with different particle size. In contrast, the SN loading was only influenced by the applied mass ratio, where a slight saturation effect was observable. Up to 65% of deployed SN could be imbedded into the proticle matrix. An in-vivo biodistribution study (i.m.) showed a retarded distribution of SN from the site of injection after the application of a SN-proticle formulation. Further, it was demonstrated that SN loaded proticles can be successfully freeze-dried and resuspended afterwards. To conclude, the integration of the protamine titration process offers new possibilities for the formulation of proticles in order to address key parameters of drug delivery systems as size, API loading or modified drug release.  相似文献   

12.
Exposure of skin to various chemical and physical agents results in excessive stress to the outermost cell layer of the skin, causing different degenerative effects that can be minimized by using antioxidant formulations. The major challenge, in this regard, is to develop a formulation, which can prevent photodegradation of the actives, thus allowing a significant amount to be deposited at the site. In recent decades, liposomal formulations have been extensively employed to overcome the barrier properties of the skin and photodegradation of actives. In the present study, chitosan-reduced gold nanoparticles were investigated for its potential as a carrier to prepare liposomes by a spray-drying method. Liposomes so obtained were characterized for phospholipid recovery, diffuse reflectance infrared Fourier transform (DRIFT) spectroscopy, particle size, zeta potential, encapsulation efficiency, and deposition of drug and gold nanoparticles in the rat skin. Further, a liposomal gel formulation was prepared using Carbopol® 980 NF (Noveon Systems, Kochi, India) and evaluated for drug deposition in the skin. Antioxidant activity of vitamin C encapsulated in gold liposomes was determined on a human leukemia (HL-60) cell line. The use of gold nanoparticles as a carrier showed improved phospholipid recovery and thus overcomes the liposome scalability problem. DRIFT spectra confirmed the presence of phospholipid in the formulation. Liposomal gel showed improved drug deposition, as compared to control and marketed preparations. A more interesting contribution of the chitosan-reduced gold nanoparticles was an enhanced antioxidant activity seen in case of the vitamin C–loaded gold liposomal formulation. Liposomal formulation was found to be stable for 3 months at 30°C and 65% relative humidity.  相似文献   

13.
目的:活细胞药物递送系统具有主动靶向至肿瘤部位,防止被免疫系统清除等诸多优势。本文提供了一种巨噬细胞负载纳米颗粒的递送方法,并探讨不同载药量对巨噬细胞的活性以及运动性的影响。方法:通过超声乳化法制备包载阿霉素的DOX@PLGA纳米颗粒。纳米粒度分析仪测量粒径和表面电位,透射电镜观察纳米颗粒形态。将DOX@PLGA纳米颗粒与巨噬细胞共同孵育,即得到负载DOX@PLGA纳米颗粒的巨噬细胞用以药物递送。然后通过CCK-8法、LDH法以及细胞迁移实验检测不同载药量情况下细胞活力水平、细胞损伤程度以及细胞运动性。结果:制备的DOX@PLGA纳米颗粒呈圆形或椭圆形,粒径为109.2±2.3 nm;表面电位为-45.0±2.0 m V;载药量为4.61%。当单个巨噬细胞负载0.15 pg DOX时细胞存活率为:71.5±4.4(%);细胞损伤率为:26.3±1.8(%);迁移率为:61.6±5.7(%)。结论:成功制备巨噬细胞负载DOX@PLGA纳米颗粒的递药系统,载药量适当的情况下载体细胞依然具有良好的活性和运动性。  相似文献   

14.
Vincristine-sulfate–loaded liposomes were prepared with an aim to improve stability, reduce drug leakage during systemic circulation, and increase intracellular uptake. Liposomes were prepared by the thin-film hydration method, followed by coating with calcium phosphate, using the sequential addition approach. Prepared formulations were characterized for size, zeta potential, drug-entrapment efficiency, morphology by transmission electron microscopy (TEM), in vitro drug-release profile, and in vitro cell cytotoxicity study. Effect of formulation variables, such as drug:lipid ratio as well as nature and volume of hydration media, were found to affect drug entrapment, and the concentration of calcium chloride in coating was found to affect size and coating efficiency. Size, zeta potential, and TEM images confirmed that the liposomes were effectively coated with calcium phosphate. The calcium phosphate nanoshell exhibited pH-dependent drug release, showing significantly lower release at pH 7.4, compared to the release at pH 4.5, which is the pH of the tumor interstitium. The in vitro cytotoxicity study done on the lung cancer cell line indicated that coated liposomes are more cytotoxic than plain liposomes and drug solution, indicating their potential for intracellular drug delivery. The cell-uptake study done on the lung cancer cell line indicated that calcium-phosphate–coated liposomes show higher cell uptake than uncoated liposomes.  相似文献   

15.
This study reports the simultaneous delivery of EGFP siRNA and the chemotherapeutic drug, doxorubicin by means of the composition that results from the electrostatic interaction between positively charged siRNA-complexes of gold nanoparticles (AuNPs) capped with PEI, 25 kDa (P25-AuNPs) and negatively charged carboxymethyl cellulose formulated PLGA nanoparticles loaded with doxorubicin. The nanoparticles and their facile interaction were studied by means of dynamic light scattering (DLS), zeta potential, transmission electron microscopic (TEM) measurements. The flow cytometric and confocal microscopic analysis evidenced the simultaneous internalization of both labelled siRNA and doxorubin into around 55% of the HeLa cancer cell population. Fluorescence microscopic studies enabled the visual analysis of EGFP expressing HeLa cells which suggested that the composition mediated codelivery resulted in a substantial downregulation of EGFP expression and intracellular accumulation of doxorubicin. Interestingly, codelivery treatment resulted in an increased cellular delivery of doxorubicin when compared to PLGA-DOX alone treatment. On the other hand, the activity of siRNA complexes of PEI-AuNPs was completely retained even when they were part of composition. The results suggest that this formulation can serve as promising tool for delivery applications in combinatorial anticancer therapy.  相似文献   

16.
Introduction – Safranal is an effective anticonvulsant shown to act as an agonist at GABAA receptors. Nose to brain delivery via nanoparticle formulation might improve its brain delivery. A selective and sensitive analytical method is required for evaluation of safranal‐based novel drug delivery systems. Objective – To develop and validate a high‐performance thin‐layer chromatographic (HPTLC) method for the quantitative analysis of safranal as bulk, in saffron extract and in developed safranal‐loaded nanoparticle formulation. Methodology – Chromatographic separation was achieved on silica gel pre‐coated TLC aluminium plates 60F‐254, using n‐hexane:ethyl acetate (9 : 1, v/v) as the mobile phase. Quantitative analysis was carried out by densitometry at a wavelength of 310 nm. The method was validated and applied to detect related impurities, to analyse safranal in saffron extract and to evaluate safranal‐loaded nanoparticles. Results – Compact spots of safranal were observed at Rf value 0.51 ± 0.02. The method was linear (r = 0.9991) between 0.5 and 5.0 μg/spot. The intra‐ and inter‐day precisions were 1.08–2.17 and 1. 86–3.47%, respectively. The limit of detection was 50 ng/spot and the limit of quantification was 150 ng/spot. The method proved to be accurate (recovery 97.4–102.0%) and was selective for safranal. Evaluation of safranal‐loaded nanoparticle formulation demonstrated drug loading of 23.0%, encapsulation efficiency of 42.0% and sustained drug release following biphasic pattern. Conclusion – The present method is useful for the quantitative and qualitative analysis of safranal and safranal‐loaded nanoparticle formulation. It provides significant advantages in terms of greater specificity and rapid analysis. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

17.
Theranostic nanoparticles (NPs) are promising for opening new windows toward personalized disease management. Using a single particle capable of both diagnosis and drug delivery, is the major benefit of such particles. In the present study, chitosan NPs were used as a dual action carrier for doxorubicin (DOX; chemotherapeutic agent) and superparamagnetic iron oxide nanoparticles (SPIONs; imaging agent). SPIONs and DOX were loaded at different concentrations within poly-l -arginine-chitosan-triphosphate matrix (ACSD) using the ionic gelation method. NPs’ size were in the range of 184.33 ± 4.4 nm. Drug release analysis of DOX loaded NPs (NP-DOX) showed burst release at pH 5.5 (as in tumor environment) and slow release at pH 7.4 (physiological condition), demonstrating pH-sensitive drug release profile. NP-DOX internalization was confirmed by flowcytometry and fluorescent microscopy. Uptake process results were corroborated by accumulation of drug in the intracellular space. Iron content was evaluated by inductively coupled plasma and prussian blue staining. In vitro magnetic resonance imaging (MRI) showed a decline in T 2 relaxation times by increasing iron concentration. MRI analysis also confirmed uptake of NPs at the optimum concentration in C6 glioma cells. In conclusion, ACSD NPs could be utilized as a promising theranostic formulation for both diagnosis and treatment of glioblastoma.  相似文献   

18.
Water-soluble chitosan (WSC)-poly(l-aspartic acid) (PASP)-polyethylene glycol (PEG) nanoparticles (CPP nanoparticles) were prepared spontaneously under quite mild conditions by polyelectrolyte complexation. These nanoparticles were well dispersed and stable in aqueous solution, and their physicochemical properties were characterized by turbidity, FTIR spectroscopy, dynamic light scattering (DLS), transmission electron microscope (TEM), and zeta potential. PEG was chosen to modify WSC-PASP nanoparticles to make a protein-protective agent. Investigation on the encapsulation efficiency and loading capacity of the bovine serum albumin (BSA)-loaded CPP nanoparticles was also conducted. Encapsulation efficiency was obviously decreased with the increase of initial BSA concentration. Furthermore, its in vitro release characteristics were evaluated at pH 1.2, 2.5, and 7.4. In vitro release showed that these nanoparticles provided an initial burst release, followed by a slowly sustained release for more than 24 h. The BSA released from CPP nanoparticles showed no significant conformational change compared with native BSA, which is superior to the BSA released from nanoparticles without PEG. A cell viability study suggested that the nanoparticles had good biocompatibility. This nanoparticle system was considered promising as an advanced drug delivery system for the peptide and protein drug delivery.  相似文献   

19.
Phe-Tyr dipeptide which was investigated in Wakame food with greatest ACE-inhibitory activity is used as a pharmaceutical drug for the treatment of hypertension, cardiovascular diseases, and diabetic nephropathy. To improve the bioavailability of Phe-Tyr, a delivery system based on poly (lactic-co-glycolic acid) (PLGA) nanoparticles loaded with Phe-Tyr (Phe-Tyr-PLGA NPs) for treating hypertension and cardiovascular diseases was prepared in this study. In the experiments, poly(lactic-co-glycolic acid) (PLGA) and Phe-Tyr dipeptide-loaded PLGA nanoparticles were prepared using the double emulsion (w/o/w) method. The characterizations of the nanoparticles were performed with a UV–vis spectrometer, the Zeta-sizer system, and FTIR spectrometer. The optimum size of the Phe-Tyr dipeptide-loaded PLGA nanoparticle was obtained with a 213.8 nm average particle size, and a 0.061 polydispersity index, ?19.5 mV zeta potential, 34% of loaded and 90.09% of encapsulation efficiency. From TEM analysis, it was clearly seen that the dipeptide loaded nanoparticles had the spherical and non-aggregated morphology and Phe-Tyr dipeptide loaded-PLGA nanoparticles were obtained successfully. Cell toxicity of nanoparticles at different concentrations was assayed with XTT methods on L929 fibroblast cells. This study determined that the nanoparticles have low toxicity at lower concentration and toxicity augmented with increasing concentration of dipeptide. To analyze the effect of solvents on structure of Phe-Tyr, Molecular dynamics simulation was performed with GROMACS program and molecular orbital calculations were carried out to obtain structural and electronic properties of dipeptide. Moreover, molecular docking calculations were also employed to model and predict protein–drug interactions.  相似文献   

20.
To increase the antimicrobial activities of chitosan, chitosan nanoparticles loaded with Fe2+ or Fe3+ were prepared by surfactant‐assisted chitosan chelating Fe2+, Fe3+ and ionic gelation chitosan. Their chelating rates were determined by spectrophotometry. The particle sizes and zeta potentials of chitosan nanoparticles loaded with Fe2+ or Fe3+ were measured by size and zeta potential analysis. The nanoparticles antimicrobial activities were evaluated by different concentration against Escherichia coli, Staphylococcus aureus, Candida albicans in vitro. Results showed that the mean diameter of chitosan nanoparticles loaded with Fe2+ or Fe3+ were 206.4 and 195.2 nm, respectively. Their zeta potentials were +28.82 and +28.26 mV, respectively. The chelating rate of chitosan nanoparticles loaded with Fe2+ was greatly higher than with Fe3+. Their antimicrobial activity was showed greatly higher at lower concentrations compared to chitosan, and the antibacterial effect of chitosan nanoparticles loaded with Fe2+ or Fe3+ was preliminary observed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号