首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fridell RA  Qiu D  Valera L  Wang C  Rose RE  Gao M 《Journal of virology》2011,85(14):7312-7320
BMS-790052, targeting nonstructural protein 5A (NS5A), is the most potent hepatitis C virus (HCV) inhibitor described to date. It is highly effective against genotype 1 replicons and also displays robust genotype 1 anti-HCV activity in the clinic (M. Gao et al., Nature 465:96-100, 2010). BMS-790052 inhibits genotype 2a JFH1 replicon cells and cell culture infectious virus with 50% effective concentrations (EC(50)s) of 46.8 and 16.1 pM, respectively. Resistance selection studies with the JFH1 replicon and virus systems identified drug-induced mutations within the N-terminal region of NS5A. F28S, L31M, C92R, and Y93H were the major resistance mutations identified; the impact of these mutations on inhibitor sensitivity between the replicon and virus was very similar. The C92R and Y93H mutations negatively impacted fitness of the JFH1 virus. Second-site replacements at NS5A residue 30 (K30E/Q) restored efficient replication of the C92R viral variant, thus demonstrating a genetic interaction between NS5A residues 30 and 92. By using a trans-complementation assay with JFH1 replicons encoding inhibitor-sensitive and inhibitor-resistant NS5A proteins, we provide genetic evidence that NS5A performs the following two distinct functions in HCV RNA replication: a cis-acting function that likely occurs as part of the HCV replication complex and a trans-acting function that may occur outside the replication complex. The cis-acting function is likely performed by basally phosphorylated NS5A, while the trans-acting function likely requires hyperphosphorylation. Our data indicate that BMS-790052 blocks the cis-acting function of NS5A. Since BMS-790052 also impairs JFH1 NS5A hyperphosphorylation, it likely also blocks the trans-acting function.  相似文献   

2.
We report the use of pharmacophore-based virtual screening as an efficient tool for the discovery of novel HCV polymerase inhibitors. A three-dimensional pharmacophore model for the HCV-796 binding site, NNI site IV inhibitor, to the enzyme was built by means of the structure-based focusing module in Cerius2 program. Using these models as a query for virtual screening, we produced a successful example of using pharmacophore-based virtual screening to identify novel compounds with HCV replicon assay through inhibition of HCV polymerization. Among the hit compounds, compounds 1 and 2 showed 56% and 48% inhibition of NS5B polymerization activity at 20 μM, respectively. In addition, compound 1 also exhibited replicon activity with EC50 value of 2.16 μM. Following up the initial hit, we obtained derivatives of compound 1 and evaluated polymerization inhibition activity and HCV replicon assay. These results provide information necessary for the development of more potent NS5B inhibitors.  相似文献   

3.
Development of drug-resistant mutations has been a major problem with all currently developed Hepatitis C Virus (HCV) NS3/4A inhibitors, including the two FDA approved drugs, significantly reducing the efficacy of these inhibitors. The high incidence of drug-resistance mutations and the limited utility of these inhibitors against only genotype 1 highlight the need for novel, broad-spectrum HCV therapies. Here we used high-throughput screening (HTS) to identify low molecular weight inhibitors against NS3/4A from multiple genotypes. A total of 40,967 compounds from four structurally diverse molecular libraries were screened by HTS using fluorescence-based enzymatic assays, followed by an orthogonal binding analysis using surface plasmon resonance (SPR) to eliminate false positives. A novel small molecule compound was identified with an IC50 value of 2.2 µM against the NS3/4A from genotype 1b. Mode of inhibition analysis subsequently confirmed this compound to be a competitive inhibitor with respect to the substrate, indicating direct binding to the protease active site, rather than to the allosteric binding pocket that was discovered to be the binding site of a few recently discovered small molecule inhibitors. This newly discovered inhibitor also showed promising inhibitory activity against the NS3/4As from three other HCV genotypes, as well as five common drug-resistant mutants of genotype 1b NS3/4A. The inhibitor was selective for NS3 from multiple HCV genotypes over two human serine proteases, and a whole cell lysate assay confirmed inhibitory activity in the cellular environment. This compound provides a lead for further development of potentially broader spectrum inhibitors.  相似文献   

4.
VX-950 is a potent, small molecule, peptidomimetic inhibitor of the hepatitis C virus (HCV) NS3.4A serine protease and has recently been shown to possess antiviral activity in a phase I trial in patients chronically infected with genotype 1 HCV. In a previous study, we described in vitro resistance mutations against either VX-950 or another HCV NS3.4A protease inhibitor, BILN 2061. Single amino acid substitutions that conferred drug resistance (distinct for either inhibitor) were identified in the HCV NS3 serine protease domain. The dominant VX-950-resistant mutant (A156S) remains sensitive to BILN 2061. The major BILN 2061-resistant mutants (D168V and D168A) are fully susceptible to VX-950. Modeling analysis suggested that there are different mechanisms of resistance for these mutations induced by VX-950 or BILN 2061. In this study, we identified mutants that are cross-resistant to both HCV protease inhibitors. The cross-resistance conferred by substitution of Ala(156) with either Val or Thr was confirmed by characterization of the purified enzymes and reconstituted replicon cells containing the single amino acid substitution A156V or A156T. Both cross-resistance mutations (A156V and A156T) displayed significantly diminished fitness (or replication capacity) in a transient replicon cell system.  相似文献   

5.
West Nile virus (WNV) has spread throughout the United States and Canada and now annually causes a clinical spectrum of human disease ranging from a self-limiting acute febrile illness to acute flaccid paralysis and lethal encephalitis. No therapy or vaccine is currently approved for use in humans. Using high-throughput screening assays that included a luciferase expressing WNV subgenomic replicon and an NS1 capture enzyme-linked immunosorbent assay, we evaluated a chemical library of over 80,000 compounds for their capacity to inhibit WNV replication. We identified 10 compounds with strong inhibitory activity against genetically diverse WNV and Kunjin virus isolates. Many of the inhibitory compounds belonged to a chemical family of secondary sulfonamides and have not been described previously to inhibit WNV or other related or unrelated viruses. Several of these compounds inhibited WNV infection in the submicromolar range, had selectivity indices of greater than 10, and inhibited replication of other flaviviruses, including dengue and yellow fever viruses. One of the most promising compounds, AP30451, specifically blocked translation of a yellow fever virus replicon but not a Sindbis virus replicon or an internal ribosome entry site containing mRNA. Overall, these compounds comprise a novel class of promising inhibitors for therapy against WNV and other flavivirus infections in humans.  相似文献   

6.
7.
We have synthesized and evaluated a series of novel HCV NS3 protease inhibitors with various P4 capping groups, which include urea, carbamate, methoxy-carboxamide, cyclic carbamate and amide, pyruvic amide, oxamate, oxalamide and cyanoguanidine. Most of these compounds are remarkably potent, exhibiting single-digit to sub-nanomolar activity in the enzyme assay and cell-based replicon assay. Selected compounds were also evaluated in the protease-inhibitor-resistant mutant transient replicon assay, and they were found to show quite different potency profiles against a panel of HCV protease-inhibitor-resistant mutants.  相似文献   

8.
Subgenomic replicons of hepatitis C virus (HCV) have been widely used for studying HCV replication. Here, we report a new subgenomic replicon based on a strain isolated from a chronically infected patient. The coding sequence of HCV was recovered from a Chinese chronic hepatitis C patient displaying high serum HCV copy numbers. A consensus sequence designated as CCH strain was constructed based on the sequences of five clones and this was classified by sequence alignment as belonging to genotype 2a. The subgenomic replicon of CCH was replication-deficient in cell culture, due to dysfunctions in NS3 and NS5B. Various JFH1/CCH chimeric replicons were constructed, and specific mutations were introduced. The introduction of mutations could partially restore the replication of chimeric replicons. A replication-competent chimeric construct was finally obtained by the introduction of NS3 from JFH1 into the backbone of the CCH strain.  相似文献   

9.
While human leukocyte antigen B57 (HLA-B57) is associated with the spontaneous clearance of hepatitis C virus (HCV), the mechanisms behind this control remain unclear. Immunodominant CD8(+) T cell responses against the B57-restricted epitopes comprised of residues 2629 to 2637 of nonstructural protein 5B (NS5B(2629-2637)) (KSKKTPMGF) and E2(541-549) (NTRPPLGNW) were recently shown to be crucial in the control of HCV infection. Here, we investigated whether the selection of deleterious cytotoxic T lymphocyte (CTL) escape mutations in the NS5B KSKKTPMGF epitope might impair viral replication and contribute to the B57-mediated control of HCV. Common CTL escape mutations in this epitope were identified from a cohort of 374 HCV genotype 1a-infected subjects, and their impact on HCV replication assessed using a transient HCV replicon system. We demonstrate that while escape mutations at residue 2633 (position 5) of the epitope had little or no impact on HCV replication in vitro, mutations at residue 2629 (position 1) substantially impaired replication. Notably, the deleterious mutations at position 2629 were tightly linked in vivo to upstream mutations at residue 2626, which functioned to restore the replicative defects imparted by the deleterious escape mutations. These data suggest that the selection of costly escape mutations within the immunodominant NS5B KSKKTPMGF epitope may contribute in part to the control of HCV replication in B57-positive individuals and that persistence of HCV in B57-positive individuals may involve the development of specific secondary compensatory mutations. These findings are reminiscent of the selection of deleterious CTL escape and compensatory mutations by HLA-B57 in HIV-1 infection and, thus, may suggest a common mechanism by which alleles like HLA-B57 mediate protection against these highly variable pathogens.  相似文献   

10.
HCV NS3 protease domain has been one of the most attractive targets for developing new drugs for HCV infection and many drugs were successfully developed, but all of them were designed for targeting HCV genotype 1 infection. HCV genotype 4a dominant in Egypt has paid less attention. Here, we describe our protocol of virtual screening in identification of novel potential potent inhibitors for HCV NS3 of genotype 4a using homology modeling, PLIF (protein–ligand interaction fingerprint), docking, pharmacophore, and dynamic simulation. A high-quality 3D model of HCV NS3 protease of genotype 4a was constructed using crystal structure of HCV NS3 protease of genotype 1b (PDB ID: 4u01) as a template. PLIF was generated using five crystal structures of HCV NS3 (PDB ID: 4u01, 3kee, 4ktc, 4i33, and 5epn) which revealed the most important residues and their interactions with the co-crystalized ligands. A 3D pharmacophore model consisting of six features was developed from the generated PLIF data and then used as a screening filter for 11,244 compounds. Only 423 compounds passed the pharmacophore filter and entered the docking-based virtual screening stage. The highest ranked five hits from docking result (compound (C1–C5)) were selected for further analysis. They exhibited stronger interaction and higher binding affinity than HCV NS3 protease ligands. Dynamic simulation of the protein–best lead complex was performed to validate and augment the virtual screening results and it showed that these compounds have a strong binding affinity and could be very effective in treating HCV genotype 4a infections.  相似文献   

11.
Cyclosporine A (CsA) is an immunosuppressive drug that targets cyclophilins, cellular cofactors that regulate the immune system. Replication of hepatitis C virus (HCV) is suppressed by CsA, but the molecular basis of this suppression is still not fully understood. To investigate this suppression, we cultured HCV replicon cells (Con1, HCV genotype 1b, FLR-N cell) in the presence of CsA and obtained nine CsA-resistant FLR-N cell lines. We determined full-length HCV sequences for all nine clones, and chose two (clones #6 and #7) of the nine clones that have high replication activity in the presence of CsA for further analysis. Both clones showed two consensus mutations, one in NS3 (T1280V) and the other in NS5A (D2292E). Characterization of various mutants indicated that the D2292E mutation conferred resistance to high concentrations of CsA (up to 2 μM). In addition, the missense mutation T1280V contributed to the recovery of colony formation activity. The effects of these mutations are also evident in two established HCV replicon cell lines—HCV-RMT ([1], genotype 1a) and JFH1 (genotype 2a). Moreover, three other missense mutations in NS5A—D2303H, S2362G, and E2414K—enhanced the resistance to CsA conferred by D2292E; these double or all quadruple mutants could resist approximately 8- to 25-fold higher concentrations of CsA than could wild-type Con1. These four mutations, either as single or combinations, also made Con1 strain resistant to two other cyclophilin inhibitors, N-methyl-4-isoleucine-cyclosporin (NIM811) or Debio-025. Interestingly, the changes in IC50 values that resulted from each of these mutations were the lowest in the Debio-025-treated cells, indicating its highest resistant activity against the adaptive mutation.  相似文献   

12.
A novel series of 6-(indol-2-yl)pyridine-3-sulfonamides was prepared and evaluated for their ability to inhibit HCV RNA replication in the HCV replicon cell culture assay. Preliminary optimization of this series furnished compounds with low nanomolar potency against the HCV genotype 1b replicon. Among these, compound 8c has identified as a potent HCV replicon inhibitor (EC50 = 4 nM) with a selectivity index with respect to cellular GAPDH of more than 2500. Further, compound 8c had a good pharmacokinetic profile in rats with an IV half-life of 6 h and oral bioavailability (F) of 62%. Selection of HCV replicon resistance identified an amino acid substitution in HCV NS4B that confers resistance to these compounds. These compounds hold promise as a new chemotype with anti-HCV activity mediated through an underexploited viral target.  相似文献   

13.
PSI-352938, a cyclic phosphate nucleotide, and PSI-353661, a phosphoramidate nucleotide, are prodrugs of β-D-2'-deoxy-2'-α-fluoro-2'-β-C-methylguanosine-5'-monophosphate. Both compounds are metabolized to the same active 5'-triphosphate, PSI-352666, which serves as an alternative substrate inhibitor of the NS5B RNA-dependent RNA polymerase during HCV replication. PSI-352938 and PSI-353661 retained full activity against replicons containing the S282T substitution, which confers resistance to certain 2'-substituted nucleoside/nucleotide analogs. PSI-352666 was also similarly active against both wild-type and S282T NS5B polymerases. In order to identify mutations that confer resistance to these compounds, in vitro selection studies were performed using HCV replicon cells. While no resistant genotype 1a or 1b replicons could be selected, cells containing genotype 2a JFH-1 replicons cultured in the presence of PSI-352938 or PSI-353661 developed resistance to both compounds. Sequencing of the NS5B region identified a number of amino acid changes, including S15G, R222Q, C223Y/H, L320I, and V321I. Phenotypic evaluation of these mutations indicated that single amino acid changes were not sufficient to significantly reduce the activity of PSI-352938 and PSI-353661. Instead, a combination of three amino acid changes, S15G/C223H/V321I, was required to confer a high level of resistance. No cross-resistance exists between the 2'-F-2'-C-methylguanosine prodrugs and other classes of HCV inhibitors, including 2'-modified nucleoside/-tide analogs such as PSI-6130, PSI-7977, INX-08189, and IDX-184. Finally, we determined that in genotype 1b replicons, the C223Y/H mutation failed to support replication, and although the A15G/C223H/V321I triple mutation did confer resistance to PSI-352938 and PSI-353661, this mutant replicated at only about 10% efficiency compared to the wild type.  相似文献   

14.
The HCV non-structural protein NS5A has been established as a viable target for the development of direct acting antiviral therapy. From computational modeling studies strong intra-molecular hydrogen bonds were found to be a common structural moiety within known NS5A inhibitors that have low pico-molar replicon potency. Efforts to reproduce these γ-turn-like substructures provided a novel NS5A inhibitor based on a fluoro-olefin isostere. This fluoro-olefin containing inhibitor exhibited picomolar activity (EC(50)=79 pM) against HCV genotype 1b replicon without measurable cytotoxicity. This level of activity is comparable to the natural peptide-based inhibitors currently under clinic evaluation, and demonstrates that a peptidomimetic approach can serve as a useful strategy to produce potent and structurally unique inhibitors of HCV NS5A.  相似文献   

15.
RNA interference (RNAi) is a phenomenon in which small interfering RNA (siRNA), an RNA duplex 21 to 23 nucleotides (nt) long, or short hairpin RNA (shRNA) resembling siRNA, mediates degradation of the target RNA molecule in a sequence-specific manner. RNAi is now expected to be a useful therapeutic strategy for hepatitis C virus (HCV) infection. In the present study we compared the efficacy of a number of shRNAs directed against different target regions of the HCV genome, such as 5'-untranslated region (5'UTR) (nt 286 to 304), Core (nt 371 to 389), NS3-1 (nt 2052 to 2060), NS3-2 (nt 2104 to 2122), and NS5B (nt 7326 to 7344), all of which except for NS5B are conserved among most, if not all, HCV subtype 1b (HCV-1b) isolates in Japan. We utilized two methods to express shRNAs, one utilizing an expression plasmid (pAVU6+27) and the other utilizing a recombinant lentivirus harboring the pAVU6+27-derived expression cassette. Although 5'UTR has been considered to be the most suitable region for therapeutic siRNA and/or shRNA because of its extremely high degree of sequence conservation, we observed only a faint suppression of an HCV subgenomic replicon by shRNA against 5'UTR. In both plasmid-and lentivirus-mediated expression systems, shRNAs against NS3-1 and NS5B suppressed most efficiently the replication of the HCV replicon without suppressing host cellular gene expression. Synthetic siRNA against NS3-1 also inhibited replication of the HCV replicon in a dose-dependent manner. Taken together, the present results imply the possibility that the recombinant lentivirus expressing shRNA against NS3-1 would be a useful tool to inhibit HCV-1b infection.  相似文献   

16.
A novel series of HCV NS5B polymerase inhibitors comprising 1,1-dioxoisothiazoles and benzo[b]thiophene-1,1-dioxides were designed, synthesized, and evaluated. SAR studies guided by structure-based design led to the identification of a number of potent NS5B inhibitors with nanomolar IC50 values. The most potent compound exhibited IC50 less than 10 nM against the genotype 1b HCV polymerase and EC50 of 70 nM against a genotype 1b replicon in cell culture. The DMPK properties of selected compounds were also evaluated.  相似文献   

17.
The replicon system, which mimics viral genome replication in culture cells, has been widely used to analyze the genome replication of the hepatitis C virus (HCV). However, most HCV genomes used in the system include adaptive mutations (AMs) that are vital for replication in culture cells despite the nonexistence of such mutations in the genome of wild-type (WT) HCV in patients. In order to study the genome replications of WT HCV, new HCV subgenomic replicon (SGR) systems were established using Huh-7.5-derived cells producing Sec14-like protein 2 constitutively and SGR of KT9 (one of the HCV genotype 1b clones) with WT genome (SGR KT9WT) in this study. The replication efficiency and sensitivities of SGR KT9WT to anti-HCV drugs in the cloned cells permanently bearing replicon RNA, HS55-4 cells, were similar to those of reports using SGR, including AM. The SGR transient transfection system using SGR KT9WT and SGR KT9AM encoding secreted Nano-luciferase and HS55-4C cells established by the elimination of SGR KT9 RNA from HS55-4 cells, however, showed that the replication efficiency of SGR KT9WT was much lower than that of SGR KT9AM under a same condition. Furthermore, the sensitivities of SGR KT9WT to almost all tested anti-HCV reagents, except the inhibitor of miR-122, a cellular factor important for HCV replication, were quite low compared with SGR KT9AM. These results suggested that the new replicon systems might not only provide information about precise responses against new anti-HCV drugs but also reveal novel molecular mechanisms supporting negligent proliferation of HCV.  相似文献   

18.
We describe the development of a selectable, bi-cistronic subgenomic replicon for bovine viral diarrhea virus (BVDV) in Huh-7 cells, similar to that established for hepatitis C virus (HCV). The selection marker and reporter (Luc-Ubi-Neo) in the BVDV replicon was fused with the amino-terminal protease N(pro), and expression of the nonstructural proteins (NS3 to NS5B) was driven by an encephalomyocarditis virus internal ribosome entry site. This BVDV replicon allows us to compare RNA replication of these two related viruses in a similar cellular background and to identify antiviral molecules specific for HCV RNA replication. The BVDV replicon showed similar sensitivity as the HCV replicon to interferons (alpha, beta, and gamma) and 2'-beta-C-methyl ribonucleoside inhibitors. Known nonnucleoside inhibitor molecules specific for either HCV or BVDV can be easily distinguished by using the parallel replicon systems. The HCV replicon has been shown to block, via the NS3/4A serine protease, Sendai virus-induced activation of interferon regulatory factor 3 (IRF-3), a key antiviral signaling molecule. Similar suppression of IRF-3-mediated responses was also observed with the Huh-7-BVDV replicon but was independent of NS3/4A protease activity. Instead, the amino-terminal cysteine protease N(pro) of BVDV appears to be, at least partly, responsible for suppressing IRF-3 activation induced by Sendai virus infection. This result suggests that different viruses, including those closely related, may have developed unique mechanisms for evading host antiviral responses. The parallel BVDV and HCV replicon systems provide robust counterscreens to distinguish viral specificity of small-molecule inhibitors of viral replication and to study the interactions of the viral replication machinery with the host cell innate immune system.  相似文献   

19.
Telaprevir (VX-950) is a highly selective, potent inhibitor of the hepatitis C virus (HCV) NS3.4A serine protease. It has demonstrated strong antiviral activity in patients chronically infected with genotype 1 HCV when dosed alone or in combination with peginterferon alfa-2a. Substitutions of Arg(155) of the HCV NS3 protease domain have been previously detected in HCV isolates from some patients during telaprevir dosing. In this study, Arg(155) was replaced with various residues in genotype 1a protease domain proteins and in genotype 1b HCV subgenomic replicons. Characterization of both the purified enzymes and reconstituted replicon cells demonstrated that substitutions of Arg(155) with these residues conferred low level resistance to telaprevir (<25-fold). An x-ray structure of genotype 1a HCV protease domain with the R155K mutation, in a complex with an NS4A co-factor peptide, was determined at a resolution of 2.5A. The crystal structure of the R155K protease is essentially identical to that of the wild-type apoenzyme (Protein Data Bank code 1A1R) except for the side chain of mutated residue 155. Telaprevir was docked into the x-ray structure of the R155K protease, and modeling analysis suggests that the P2 group of telaprevir loses several hydrophobic contacts with the Lys(155) side chain. It was demonstrated that replicon cells containing substitutions at NS3 protease residue 155 remain fully sensitive to interferon alpha or ribavirin. Finally, these variant replicons were shown to have reduced replication capacity compared with the wild-type HCV replicon in cells.  相似文献   

20.
Efforts to improve the genotype 1a potency and pharmacokinetics of earlier naphthyridine-based HCV NS5A inhibitors resulted in the discovery of a novel series of pyrido[2,3-d]pyrimidine compounds, which displayed potent inhibition of HCV genotypes 1a and 1b in the replicon assay. SAR in this system revealed that the introduction of amides bearing an additional ‘E’ ring provided compounds with improved potency and pharmacokinetics. Introduction of a chiral center on the amide portion resulted in the observation of a stereochemical dependence for replicon potency and provided a site for the attachment of functional groups useful for improving the solubility of the series. Compound 21 was selected for administration in an HCV-infected chimpanzee. Observation of a robust viral load decline provided positive proof of concept for inhibition of HCV replication in vivo for the compound series.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号