首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 292 毫秒
1.
Human keratinocyte growth factor (KGF) is an epithelial cell specific mitogen which is secreted by normal stromal fibroblasts. In the present studies, we demonstrate that KGF is as potent as EGF in stimulating proliferation of primary or secondary human keratinocytes in tissue culture. Exposure of KGF- or EGF-stimulated keratinocytes to 1.0 mM calcium, an inducer of differentiation, led to cessation of cell growth. However, immunologic analysis of early and late markers of terminal differentiation, K1 and filaggrin, respectively, revealed striking differences in keratinocytes propagated in the presence of these growth factors. With KGF, the differentiation response was associated with expression of both markers whereas their appearance was retarded or blocked by EGF. TGF alpha, which also interacts with the EGF receptor, gave a similar response to that observed with EGF. These findings functionally distinguish KGF from the EGF family and support the role of KGF in the normal proliferation and differentiation of human epithelial cells.  相似文献   

2.
Stromal-derived growth factors are required for normal epithelial growth but are also implicated in tumour progression. We have observed inactivation of the retinoblastoma protein (Rb), through phosphorylation, in cancer-associated fibroblasts in oro-pharyngeal cancer specimens. Rb is well known for its cell-autonomous effects on cancer initiation and progression; however, cell non-autonomous functions of Rb are not well described. We have identified a cell non-autonomous role of Rb, using three-dimensional cultures, where depletion of Rb in stromal fibroblasts enhances invasive potential of transformed epithelia. In part, this is mediated by upregulation of keratinocyte growth factor (KGF), which is produced by the depleted fibroblasts. KGF drives invasion of epithelial cells through induction of MMP1 expression in an AKT- and Ets2-dependent manner. Our data identify that stromal fibroblasts can alter the invasive behaviour of the epithelium, and we show that altered expression of KGF can mediate these functions.  相似文献   

3.
The mechanism by which transforming growth factor-β (TGFβ) regulates differentiation in human epidermal keratinocytes is still poorly understood. To assess the role of Smad signaling, we engineered human HaCaT keratinocytes either expressing small interfering RNA against Smads2, 3, and 4 or overexpressing Smad7 and verified impaired Smad signaling as decreased Smad phosphorylation, aberrant nuclear translocation, and altered target gene expression. Besides abrogation of TGFβ-dependent growth inhibition in conventional cultures, epidermal morphogenesis and differentiation in organotypic cultures were disturbed, resulting in altered tissue homeostasis with suprabasal proliferation and hyperplasia upon TGFβ treatment. Neutralizing antibodies against TGFβ, similar to blocking the actions of EGF-receptor or keratinocyte growth factor, caused significant growth reduction of Smad7-overexpressing cells, thereby demonstrating that epithelial hyperplasia was attributed to TGFβ-induced "dermis"-derived growth promoting factors. Furthermore impaired Smad signaling not only blocked the epidermal differentiation process or caused epidermal-to-mesenchymal transition but induced a switch to a complex alternative differentiation program, best characterized as mucous/intestinal-type epithelial differentiation. As the same alternative phenotype evolved from both modes of Smad-pathway interference, and reduction of Smad7-overexpression caused reversion to epidermal differentiation, our data suggest that functional TGFβ/Smad signaling, besides regulating epidermal tissue homeostasis, is not only essential for terminal epidermal differentiation but crucial in programming different epithelial differentiation routes.  相似文献   

4.
In normal prostate, keratinocyte growth factor (KGF), also known as fibroblast growth factor-7 (FGF-7) serves as a paracrine growth factor synthesized in stromal cells that acts on epithelial cells through its receptor, KGFR. KGF and KGFR were found in human cancer epithelial cells as well as stromal cells. Since KGF expressed in epithelial cells of benign prostatic hyperplasia (BPH) and in prostate cancer, it has been suggested that KGF might act as an autocrine factor in BPH and prostate cancer. To investigate the roles of KGF in cancerous stroma, primary cultured human prostate cancer stromal cells (PCSCs) were isolated and evaluated. These PCSCs possessed estrogen receptors and KGFR, but not androgen receptor as determined by RT-PCR and Western blot, respectively. KGF exhibited mitogenic and anti-apoptotic effects that correlated with induction of cyclin-D1, Bcl-2, Bcl-xL and phospho-Akt expression in PCSCs, where treatment with KGF antiserum abolished cell proliferation and anti-apoptotic protein expression. PCSCs exposed to KGF for various time periods resulted in phosphorylation of Akt and subsequent up-regulation of Bcl-2. KGF modulated dynamic protein expression indicated that KGF triggered cell cycle machinery and then activated anti-apoptotic actions in PCSCs. Cell proliferation analysis indicated that tamoxifen or ICI 182,780 reduced cell viability in a dose-dependent manner; however, KGF prevented this inhibition, which further demonstrated KGF triggered anti-apoptotic machinery through activating Bcl-2 and phospho-Akt expression. In summary, KGF has an autocrine effect and serves as a survival factor in primary cultured human prostate cancer stromal cells.  相似文献   

5.
The growth of isolated epithelial and stromal cells from both androgen-dependent normal rat prostate and an androgen-responsive model rat prostate tumor is androgen-independent. When added to co-cultures of epithelial and stromal cells separated by a semipermeable membrane, androgen stimulated epithelial cell growth without an effect on stromal cell growth. Northern blot and nuclease protection analysis of mRNA revealed that stromal cells specifically expressed an androgen-sensitive secreted member of the heparin-binding fibroblast growth factor family [keratinocyte growth factor (KGF)/fibroblast growth factor-7]. KGF was mitogenic for epithelial cells, but not for stromal cells. Epithelial cells expressed specifically a splice variant of the bek receptor gene that specifically binds KGF. Expression of the bek receptor gene in stromal cells was undetectable by Northern blot and nuclease protection analyses. The results suggest that stromal cell-derived KGF has the properties of an andromedin, which mediates the indirect control of epithelial cell proliferation by androgen through a directional stromal-to-epithelial cell paracrine mechanism.  相似文献   

6.
Regulation of proliferation and differentiation in keratinocyte is a complex and dynamic process that involves activation of multiple signaling pathways triggered by different growth factors. Keratinocyte growth factor (KGF) is not only a potent mitogen, but differently from other growth factors, is a potent inducer of differentiation. The MAP kinase and AKT pathways are involved in proliferation and differentiation of many cell types including keratinocytes. We investigated here the role of KGF in modulating AKT and MAPK activity during differentiation of human keratinocytes. Our results show that the mechanisms of action of KGF are dose-dependent and that a sustained activation of the MAPK signaling cascade causes a negative regulation of AKT. We also demostrated increasing expression of KGFR substrates, such as PAK4 during keratinocyte differentiation parallel to the receptor upregulation.  相似文献   

7.
8.
Pulmonary emphysema results from an excessive degradation of lung parenchyma associated with a failure of alveolar repair. Secretion by pulmonary fibroblasts of hepatocyte growth factor (HGF) and keratinocyte growth factor (KGF) is crucial to an effective epithelial repair after lung injury. We hypothesized that abnormal HGF or KGF secretion by pulmonary fibroblasts could play a role in the development of emphysema. We measured in vitro production of HGF and KGF by human fibroblasts cultured from emphysematous and normal lung samples. HGF and KGF production was quantified at basal state and after stimulation. Intracellular content of HGF was lower in emphysema (1.52 pg/mug, range of 0.15-7.40 pg/mug) than in control fibroblasts (14.16 pg/mug, range of 2.50-47.62 pg/mug; P = 0.047). HGF production by emphysema fibroblasts (19.3 pg/mug protein, range of 10.4-39.2 pg/mug) was lower than that of controls at baseline (57.5 pg/mug, range of 20.4-116 pg/mug; P = 0.019) and after stimulation with interleukin-1beta or prostaglandin E(2). Neither retinoic acids (all-trans and 9-cis) nor N-acetylcysteine could reverse this abnormality. KGF production by emphysema fibroblasts (5.3 pg/mug, range of 2.2-9.3 pg/mug) was similar to that of controls at baseline (2.6 pg/mug, range of 1-6.1 pg/mug; P = 0.14) but could not be stimulated with interleukin-1beta. A decreased secretion of HGF by pulmonary fibroblasts could contribute to the insufficient alveolar repair in pulmonary emphysema.  相似文献   

9.
The expression of the keratinocyte growth factor receptor (KGFR) has been analyzed on intestinal epithelial Caco-2 cells upon confluence-induced spontaneous differentiation. Western blot and immunofluorescence analysis showed that the expression of functional KGFRs, differently from that of epidermal growth factor receptor (EGFR), was up-modulated in post-confluent differentiated cultures compared with the pre-confluent cells. Confocal microscopy and immunoelectron microscopy revealed that the up-regulated KGFRs displayed a basolateral polarized distribution on the cell surfaces in the monolayer. In vivo immunohistochemical analysis on normal human colon tissue sections showed that KGFRs, differently from EGFRs, were mostly distributed on the more differentiated cells located on the upper portion of the intestinal crypt. Bromodeoxyuridine incorporation assay and Ki67 labeling indicated that the differentiated cells were able to proliferate in response to the two ligands of KGFR, KGF and FGF-10, whereas they were not stimulated by the EGFR ligands TGFalpha and EGF. Western blot and quantitative immunofluorescence analysis of the expression of carcinoembryonic antigen (CEA) in post-confluent cells revealed that incubation with KGF induced an increase of cell differentiation. Taken together these results indicate that up-modulation of KGFR may be required to promote proliferation and differentiation in differentiating cells and that, among the cells componing the intestinal epithelial monolayer, the target cells for KGFR ligands appear to be different during differentiation from those responsive to EGFR ligands.  相似文献   

10.
Epithelial-mesenchymal interactions are essential for growth, differentiation, and regeneration of exocrine and endocrine cells in the pancreas. The keratinocyte growth factor (KGF) is derived from mesenchyme and has been shown to promote epithelial cell differentiation and proliferation in a paracrine fashion. Here, we have examined the effect of ectopic expression of KGF on pancreatic differentiation and proliferation in transgenic mice by using the proximal elastase promoter. KGF transgenic mice were generated following standard procedures and analyzed by histology, morphometry, immunohistochemistry, Western blot analysis, and glucose tolerance testing. In KGF transgenic mice, the number of islets, the average size of islets, and the relation of endocrine to exocrine tissue are increased compared with littermate controls. An expansion of the beta-cell population is responsible for the increase in the endocrine compartment. Ectopic expression of KGF results in proliferation of beta-cells and pancreatic duct cells most likely through activation of the protein kinase B (PKB)/Akt signaling pathway. Glucose tolerance and insulin secretion are impaired in transgenic animals. These results provide evidence that ectopic expression of KGF in acinar cells promotes the expansion of the beta-cell lineage in vivo through activation of the PKB/Akt pathway. Furthermore, the observed phenotype demonstrates that an increase in the beta-cell compartment does not necessarily result in an improved glucose tolerance in vivo.  相似文献   

11.
12.
In vitro studies have shown that keratinocyte growth factor (KGF, also known as FGF-7) is secreted by fibroblasts and is mitogenic specifically for epithelial cells. Therefore, KGF may be an important paracrine mediator of epithelial cell proliferation in vivo. Because stromal cells are thought to influence glandular proliferation in the primate endometrium, we investigated the hormonal regulation and cellular localization of KGF mRNA expression in the rhesus monkey uterus. Tissues were obtained both from naturally cycling monkeys in the follicular and luteal phases of the cycle, and from spayed monkeys that were either untreated or treated with estradiol (E2) alone, E2 followed by progesterone (P), E2 plus P, or E2 plus P plus an antiprogestin (RU 486). Northern blot analysis of total RNA with 32P- labeled probes revealed that the level of KGF mRNA in the endometrium was 70-100-fold greater in the luteal phase or after P treatment than in untreated, E2-treated, or follicular phase animals. Northern analysis also showed that KGF mRNA was present in the myometrium but was unaffected by hormonal state. RU 486 treatment prevented the P- induced elevation of endometrial KGF mRNA. P-dependent elevation of endometrial KGF expression was confirmed by measurement of KGF protein in tissue extracts using a two-site enzyme-linked immunosorbent assay. In situ hybridization with nonradioactive digoxigenin-labeled cDNA probes revealed that the KGF mRNA signal, which was present only in stromal and smooth muscle cells, was substantially increased by P primarily in the stromal cells located in the basalis region. Smooth muscle cells in the myometrium and the walls of the spiral arteries also expressed KGF mRNA, but the degree of this expression did not differ with hormonal state. P treatment led to increased proliferation in the glandular epithelium of the basalis region and to extensive growth of the spiral arteries. We conclude that the P-dependent increase in endometrial KGF resulted from a dual action of P: (a) a P- dependent induction of KGF expression in stromal cells, especially those in the basalis (zones III and IV), and (b) a P-dependent increase in the number of KGF-positive vascular smooth muscle cells caused by the proliferation of the spiral arteries. KGF is one of the first examples in primates of a P-induced, stromally derived growth factor that might function as a progestomedin.  相似文献   

13.
14.
A variety of cytokines have been detected in inflamed intestinal mucosal tissues, including the pro-inflammatory cytokine, interleukin-1 (IL-1), along with growth factors involved in wound healing processes such as proliferation and cell migration. However, little is known about how IL-1 and growth factors interact with intestinal epithelial cells to regulate the production of inflammatory cytokines such as interleukin-8 (IL-8). Previously, we have shown that hepatocyte growth factor (HGF) could significantly enhance IL-1-stimulated IL-8 secretion by the Caco-2 colonic epithelial cell line, yet HGF, by itself, did not stimulate IL-8 secretion. In this report, a second growth factor, keratinocyte growth factor (KGF), was also found to significantly enhance IL-1-induced IL-8 secretion by Caco-2 cells, yet KGF, by itself, also had no effect. Simultaneous addition of both IL-1 and KGF was also required for the enhancing effect. Treatment of the Caco-2 cells with wortmannin or triciribine suppressed the enhancing effect of HGF, suggesting that the effect was mediated by signaling through phosphatidylinositol-3-kinase (PI3K) and the kinase AKT. The enhancing effect of KGF was not affected by wortmannin, but was suppressed by triciribine, suggesting that the effect of KGF was through a PI3K-independent activation of AKT. These results suggest that the growth factors HGF and KGF may play a role in enhancing IL-1-stimulated production of IL-8 by epithelial cells during mucosal inflammations. However, the mechanism by which the growth factors enhance the IL-1 response may be through different initial signaling pathways.  相似文献   

15.
An extract of bovine hypothalamus is known to be mitogenic for human keratinocytes in vitro. In order to identify the responsible substance(s), biochemical characterization and subsequent bioassay of the extract in a serum-free culture system were performed. The keratinocyte growth-promoting activity of the hypothalamic extract was unaffected by heating (100 degrees C, 10 min); acidification to pH 3.3; or by exposure to lipase, RNAase, or proteolytic enzymes; but was abolished by alkalinization to pH 11. An approximate molecular weight of 1,700 daltons was determined by elution on a calibrated Sephadex G-25 column, and an approximate pl of 3.5 was determined by isoelectric focusing. Optimal concentrations of the crude extract (150-300 micrograms/ml) increased keratinocyte growth approximately 50-fold compared to control cultures lacking the extract. Partial purification resulted in a preparation biologically active at 30 ng/ml protein equivalent and was consistent with the presence of a single mitogen which we have termed keratinocyte growth factor (KGF). Mitogenic activity for human melanocytes, dermal fibroblasts, and endothelial cells, present in the crude hypothalamic extract, was lacking in heat-treated preparations that contained KGF. Optimal concentrations of purified epidermal growth factor and ethanolamine, the only remotely similar substances previously reported to augment keratinocyte growth in vitro, could not substitute for KGF in the serum-free culture system. Keratinocyte growth-promoting activity comparable to that observed in bovine hypothalamic extracts was present in human hypothalamic extracts prepared in the same manner.  相似文献   

16.
17.
The interfollicular dermis of adult human skin is partitioned into histologically and physiologically distinct papillary and reticular zones. Each of these zones contains a unique population of fibroblasts that differ in respect to their proliferation kinetics, rates at which they contract type I collagen gels, and in their relative production of decorin and versican. Here, site-matched papillary and reticular dermal fibroblasts couples were compared to determine whether each population interacted with keratinocytes in an equivalent or different manner. Papillary and reticular fibroblasts grown in monolayer culture differed significantly from each other in their release of keratinocyte growth factor (KGF) and granulocyte-macrophage colony stimulating factor (GM-CSF) into culture medium. Some matched fibroblast couples also differed in their constitutive release of interleukin-6 (IL-6). Papillary fibroblasts produced a higher ratio of GM-CSF to KGF than did corresponding reticular fibroblasts. Interactions between site-matched papillary and reticular couples were also assayed in a three-dimensional culture system where fibroblasts and keratinocytes were randomly mixed, incorporated into type I collagen gels, and allowed to sort. Keratinocytes formed distinctive cellular masses in which the keratinocytes were organized such that the exterior most layer of cells exhibited characteristics of basal keratinocytes and the interior most cells exhibited characteristics of terminally differentiated keratinocytes. In the presence of papillary dermal fibroblasts, keratinocyte masses were highly symmetrical and cells expressed all levels of differentiation markers. In contrast, keratinocyte masses that formed in the presence of reticular fibroblasts tended to have irregular shapes, and terminal differentiation was suppressed. Furthermore, basement membrane formation was retarded in the presence of reticular cells. These studies indicate that site-matched papillary and reticular dermal fibroblasts qualitatively differ in their support of epidermal cells, with papillary cells interacting more effectively than corresponding reticular cells.  相似文献   

18.
Epidermis reconstructed on de-epidermized dermis was used to investigate the effects of growth factors and culture temperature on epidermal morphogenesis and the expression of cornified envelope precursors. Cultures grown at 33°C or 37°C in the absence or presence of transforming growth factor alpha (TGFα), keratinocyte growth factor (KGF), basic fibroblast growth factor (bFGF), or insulin-like growth factor (IGF) show a similar morphology to that of native epidermis. Loricrin and SPRR2 are expressed in the stratum granulosum and SPRR3 is absent. Cultures grown in epidermal growth factor (EGF)-supplemented medium at 37°C have a normal morphology, whereas cultures grown at 33°C have a disorganized basal layer, no stratum granulosum, and nuclei are present in the stratum corneum. Loricrin is absent, and SPRR2 and SPRR3 expression extend into the spinous layers. Irrespective of the culture condition used, involucrin is aberrantly expressed in all suprabasal layers. EGF stimulated keratinocyte proliferation and migration to a greater degree than TGFα. Epidermis reconstructed on fibroblast-populated collagen gels at 33°C led to the same disturbances in keratinocyte differentiation as seen in cultures grown on de-epidermized dermis at 33°C in the presence of EGF, whereas parallel cultures grown at 37°C have a similar morphology to that of native epidermis.  相似文献   

19.
20.
Epithelial-mesenchymal interactions control epidermal growth and differentiation, but little is known about the mechanisms of this interaction. We have examined the effects of human dermal microvascular endothelial cells (DMEC) and fibroblasts on keratinocytes in conventional (feeder layer) and organotypic cocultures (lifted collagen gels) and demonstrated the induction of paracrine growth factor gene expression. Clonal keratinocyte growth was similarly stimulated in cocultures with irradiated DMEC and fibroblasts as feeder cells. This effect is most probably caused by induction of growth factor expression in cocultured dermal cells. Keratinocytes stimulated mRNA levels for KGF and IL-6 in both mesenchymal cell types and GM-CSF in fibroblasts. The feeder effect could not be replaced by conditioned media or addition of isolated growth factors. In organotypic cocultures with keratinocytes growing on collagen gels (repopulated with dermal cells), a virtually normal epidermis was formed within 7 to 10 d. Keratinocyte proliferation was drastically stimulated by dermal cells (histone 3 mRNA expression and BrdU labeling) which continued to proliferate as well in the gel. Expression of all typical differentiation markers was provoked in the reconstituted epithelium, though with different localization as compared to normal epidermis. Keratins K1 and K10 appeared coexpressed but delayed, reflecting conditions in epidermal hyperplasia. Keratin localization and proliferation were normalized under in vivo conditions, i.e., in surface transplants on nude mice. From these data it is concluded that epidermal homeostasis is in part controlled by complex reciprocally induced paracrine acting factors in concert with cell-cell interactions and extracellular matrix influences.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号