首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 329 毫秒
1.
Oxidative stress responses were tested in the unicellular cyanobacterium Synechococcus PCC 7942 (R2). Cells were exposed to hydrogen peroxide, cumene hydroperoxide and high light intensities. Activities of ascorbate peroxidase and catalase were correlated with the extent and time-course of oxidative stresses. Ascorbate peroxidase was found to be the major enzyme involved in the removal of hydrogen peroxide under the tested oxidative stresses. Catalase activity was inhibited in cells treated with high H2O2 concentrations, and was not induced under photo-oxidative stress. Regeneration of ascorbate in peroxide-treated cells was found to involve mainly monodehydroascorbate reductase and to a lesser extent dehydroascorbate reductase. The induction of the antioxidative enzymes was dependent on light and was inhibited by chloramphenicol. Peroxide treatment was found to induce the synthesis of eight proteins, four of which were also induced by heat shock.Abbreviations ASC ascorbate - DHA dehydroascorbate - MDA monodehydroascorbate - GSH reduced glutathione - GSSG oxidized glutathione - ASC Per ascorbate peroxidase - DHA red. dehydroascorbate reductase - MDA red. monodehydroascorbate reductase - GSSG red. glutathione reductase - HSP heat shock proteins - PSP peroxide shock proteins - Cm chloramphenicol  相似文献   

2.
Vitrification of shoots of Prunus avium L. L. was induced and expressed in a four week in vitro multiplication cycle simply by replacing agar by gelrite. The first vitrification symptoms were visible from the 7th day on. Enzymatic antioxidants were compared weekly in crude extract of normal (on agar) and vitrifying (on gelrite) shoots. The activity of superoxide dismutase was higher in vitrifying shoots. The other enzymes (gaîacol-peroxidase, catalase, ascorbate peroxidase, mono- and dehydro-ascorbate reductases, glutathione reductase) had lower activities. Increased superoxide dismutase activity might mean hydrogen peroxide accumulation and decreased activities of the other enzymes, deficiency in its detoxification. The question therefore is raised whether the hyperhydric morphological abnormalities result from the accumulation of toxic oxygen forms. Vitrification is often considered as a morphological response to several stresses. Contrary to most plants which adapt themselves to stresses by increasing all the above defence enzymes, in vitro shoots under vitrifying conditions appear unable to react in a similar manner.Abbreviations Apx ascorbate peroxidase - Gpx gaîacol peroxidase - CAT catalase - H2O2 hydrogen peroxide - SOD superoxide dismutase - MDHAR monodehydroascorbate reductase - DHAR dehydroascorbate reductase - GR glutathione reductase - MS Murashige and Skoog (1962) - IBA indolebutyric acid - BAP benzyladenine - GA3 gibberellic acid  相似文献   

3.
Utilization of highly enriched preparations of steroidogenic Leydig cells have proven invaluable for studying the direct effects of various hormones and agents on Leydig cell functionin vitro. However, recent work indicates that isolated Leydig cells are often subjected to oxygen (O2) toxicity when cultured at ambient (19%) oxygen concentrations. Because intracellular antioxidants play an important role in protecting cells against oxygen toxicity, we have investigated the intracellular antioxidant defense system of isolated Leydig cells. The cellular levels of several antioxidants including catalase, glucose-6-phosphate dehydrogenase (G-6-PDH), superoxide dismutase (SOD) of the Cu/Zn & Mn variety, glutathione peroxidase, glutathione reductase and total glutathione were quantitated using enriched populations of Leydig cells isolated from adult male guinea pig testes. Compared to whole testicular homogenates, Leydig cells contained significantly (P<0.01) less G-6-PDH, total SOD, glutathione reductase and total glutathione, but significantly (P<0.001) more glutathione peroxidase. Compared to hepatic values previously reported in the guinea pig, Leydig cells contain nearly 400 times less catalase, about 14 times less glutathione peroxidase and almost 11 times less glutathione reductase. Since G-6-PDH and glutathione reductase are both necessary to regenerate reduced gluthathione (GSH) which couples with glutathione peroxidase to breakdown hydrogen peroxide (H2O2) under normal conditions, it is plausible that the oxygen toxicity observed in isolated Leydig cells is due to the intracellular accumulation of H2O2. Using the dichlorofluorescin diacetate (DCF-DA) assay, we found that Leydig cells incubated in the presence of 19% O2 produced significantly (P<0.001) higher levels of H2O2 with time in culture compared to Leydig cells maintained at 3% O2. These results support the hypothesis that the increased susceptibility of isolated Leydig cells to oxygen toxicity may be due, in part, to decreased amounts of certain antioxidant defenses and an increased production of the reactive oxygen species H2O2.  相似文献   

4.
1. In order to test the hypothesis that the alcoholic cardiomyopathy under partial catalase inhibition is associated with the activation of lipid peroxidation in cardiomyocytes (Panchenko et al., Experientia 43, 580-581, 1987), the effects of ethanol and catalase inhibitor 3-amino-1,2,4-triazole (aminotriazole) on rat heart and liver content of reduced glutathione and on the activity of enzymes related to peroxide metabolism: catalase, superoxide dismutase, glutathione peroxidase, glutathione reductase, glutathione-S-transferase and glucose-6-phosphate dehydrogenase were investigated. 2. In accordance with the data obtained by Kino (J. molec, cell. Cardiol. 13, 5-12, 1981), when ethanol (36% of dietary calories) and aminotriazole were simultaneously administered an alcoholic cardiomyopathy developed while in the liver moderate fatty degeneration was revealed. 3. Chronic combined or separate administration of ethanol and aminotriazole was shown to increase glutathione concentration and glutathione-S-transferase activity in rat liver. In the groups of animals which received isocaloric carbohydrates in the diet instead of ethanol the liver glucose-6-phosphate dehydrogenase was increased. 4. Acute and chronic aminotriazole injections led to catalase inactivation and in the latter case also to inhibition of the liver superoxide dismutase and glutathione peroxidase activities. 5. Ethanol and aminotriazole treatment did not alter the glutathione level and the activity of all enzymes tested (except catalase) in rat myocardium.  相似文献   

5.
Hydrogen peroxide in methylotrophic yeasts can be metabolized in at least two distinct ways. Addition of exogenous hydrogen peroxide removes the dependance of catalase on endogenously-produced hydrogen peroxide resulting enhanced rates of alcohol oxidation. Exogenous hydrogen peroxide is also efficiently degraded by cytochrome c peroxidase (CCP), a competitive reaction which does not result in enhanced alcohol oxidation. To overcome the influence of cytochrome c peroxidase, artificial peroxisomes were prepared by coimmobilization of alcohol oxidase and catalase. These artificial peroxisomes mimic the peroxide-induced rate enhancement observed with whole cells.  相似文献   

6.
1. Glutathione peroxidase has been demonstrated in cattle, rabbit and guineapig lenses. 2. The enzyme will oxidize GSH either with hydrogen peroxide added at the start of the reaction or with hydrogen peroxide generated enzymically with glucose oxidase. 3. No product other than GSSG was detected. 4. Oxidation of GSH can be coupled with oxidation of malate through the intermediate reaction of glutathione reductase and NADPH2. 5. Traces of hydrogen peroxide are present in aqueous humour: it is formed when the ascorbic acid of aqueous humour is oxidized. 6. Hydrogen peroxide will diffuse into the explanted intact lens and oxidize the contained GSH. The addition of glucose to the medium together with hydrogen peroxide maintains the concentration of lens GSH. 7. Glutathione peroxidase in lens extracts will couple with the oxidation of ascorbic acid. 8. It is suggested that, as there is only weak catalase activity in lens, glutathione peroxidase may act as one link between the oxygen of the aqueous humour and NADPH2.  相似文献   

7.
To investigate the effects of exogenously applied brassinosteroids on the thermotolerance of plants, leaf CO2 assimilation, chlorophyll fluorescence parameters, and antioxidant enzyme metabolism were examined in tomato (Lycopersicon esculentum Mill. cv. 9021) plants with or without 24-epibrassinolide (EBR) application. Tomato plants were exposed to 40/30°C for 8 days and then returned to optimal conditions for 4 days. High temperature significantly decreased the net photosynthetic rate (P n), stomatal conductance (G s), and maximum carboxylation rate of Rubisco (V cmax), the maximum potential rate of electron transport contributed to ribulose-1,5-bisphosphate (RuBP), as well as the relative quantum efficiency of PSII photochemistry (ФPSII), photochemical quenching (q P), and increased nonphotochemical quenching (NPQ). However, only slight reversible photoinhibition occurred during heat stress. Interestingly, EBR pretreatment significantly alleviated high-temperature-induced inhibition of photosynthesis. The activities of antioxidant enzymes such as superoxide dismutase (SOD), ascorbate peroxidase (APX), guaiacol peroxidase (GPOD), and catalase (CAT) increased during heat treatments, and these increases proved to be more significant in EBR-treated plants. EBR application also reduced total hydrogen peroxide (H2O2) and malonaldehyde (MDA) contents, while significantly increasing shoot weight following heat stress. It was concluded that EBR could alleviate the detrimental effects of high temperatures on plant growth by increasing carboxylation efficiency and enhancing antioxidant enzyme systems in leaves.  相似文献   

8.
Jeyaramraja  P.R.  Raj Kumar  R.  Pius  P.K.  Thomas  Jibu 《Photosynthetica》2003,41(4):579-582
Net photosynthetic rate (P N) in the mother leaves was higher in the drought tolerant (DT) clones of tea (Camellia sinensis) while liberation of the fixed 14C in light from the mother leaves was higher in the drought susceptible (DS) clones. The DT clones translocated more photosynthates to the crop shoots (three leaves and a bud) from the mother leaf than the DS clones. Concentrations of RuBP carboxylase (RuBPC) or oxygenase (RuBPO) had no relationship with the drought tolerant nature of tea clones but their ratio correlated with the same. DT tea clones had higher catalase activity that could scavenge the hydrogen peroxide formed in the photorespiratory pathway and thereby reduced photorespiration rate (P R). The ratio of RuBPC/RuBPO had a positive correlation with P N and catalase activity. Negative correlation between RuBPC/RuBPO and P R and between catalase activity and RuBPO activity was established.  相似文献   

9.
The compartmentation of hydrogen peroxide catabolism was studied in isolated hepatocytes. Hydrogen peroxide generation in the peroxisomal compartment was stimulated by addition of glycolate and in the endoplasmic reticular compartment (cytosolic compartment) by ethylmorphine. The rate of catabolism by catalase was estimated from the concentration of methanol required to decrease the steady-state concentration of catalase Compound I to the half-maximal value. The rate of catabolism by glutathione peroxidase was assessed in a semiquantitative manner by the rate of GSSG efflux. The relationship of GSSG efflux to catalase-dependent metabolism of H2O2 in the presence of increasing concentrations of glycolate was sigmoidal. This indicates that the function of glutathione peroxidase is small relative to that of catalase at low rates of H2O2 production in the peroxisomal fraction, but that the contribution of the former system increases as the peroxisomal H2O2 production rate is enhanced, and suggests that the accumulation of a steady-state concentration of H2O2 in the nanomolar range in the peroxisomes is sufficient to allow diffusion of H2O2 into the cytosol. Following pretreatment of animals with aminotriazole to inhibit catalase, glycolate caused GSSG release at rates nearly double those in control cells. This indicates that even incomplete inhibition of catalase in cells can result in enhanced release of H2O2 into the cytosol and demonstrates the relationship of GSSG release to H2O2 production under these conditions. An estimate of the rate of H2O2 diffusion to catalase during ethylmorphine metabolism was made from the steady-state level of Compound I and measured formate concentrations. This rate increased threefold as the rate of GSH loss increased from 1 to 2 nmol/106 cells per min, indicating that as the rate of H2O2 production in the endoplasmic reticulum becomes maximally stimulated in the presence of ethylmorphine, the rate of H2O2 metabolism by catalase becomes larger. A comparison of ethylmorphine-stimulated rates of GSSG efflux from cells of control and aminotriazole-treated rats shows that, unlike experiments with glycolate, no difference in the rate of efflux is observed. These results support the conclusion that in hepatocytes catalase has a relatively minor role in catabolism of H2O2 at low rates of H2O2 generation in the endoplasmic reticulum, but that the catalase function increases as the rate of H2O2 production is enhanced.  相似文献   

10.
Heat caused reduction in membrane protein thiol content, increased accumulation of thiobarbituric acid reactive substances and reduced germination rate and early growth in germinating Amaranthus lividus seeds. Imposition of heat stress during early germination also causes accumulation of reactive oxygen species like superoxide and hydrogen peroxide while activities of antioxidative enzymes catalase, ascorbate peroxidase, and glutathione reductase decreased. Calcium chelator (EGTA), calcium channel blocker (LaCl3) and calmodulin inhibitor (trifluroperazine) aggravated these effects. Added calcium reversed the effect of heat, implying that protection against heat induced oxidative damage and improvement of germination requires calcium and calmodulin during the recovery phase of post-germination events in Amaranthus lividus.  相似文献   

11.
Thermotolerance and related antioxidant enzyme activities induced by both heat acclimation and exogenous salicylic acid (SA) application were studied in grapevine (Vitis vinifera L. cv. Jingxiu). Heat acclimation and exogenous SA application induced comparable changes in thermotolerance, ascorbic acid (AsA), glutathione (GSH), and hydrogen peroxide (H2O2) concentrations, and in activities of the antioxidant enzymes superoxide dismutase (SOD), peroxidase (POD), glutathione reductase (GR), ascorbic peroxidase (APX) and catalase (CAT) in grape leaves. Within 1 h at 38 °C, free SA concentration in leaves rose from 3.1 μg g−1 FW to 19.1 μg g−1 FW, then sharply declined. SA application and heat acclimation induced thermotolerance were related to changes of antioxidant enzyme activities and antioxidant concentration, indicating a role for endogenous SA in heat acclimation in grape leaves.  相似文献   

12.
The activities of catalase, glutathione peroxidase, and glutathione reductase, were not significantly different from normal whereas that of superoxide dismutase was decreased (P<0.05) in erythrocytes from patients with multiple sclerosis. Assay of the lipid peroxidation product, malondialdehyde, after incubation of erythrocytes with 10 mM H2O2 under carefully controlled conditions (peroxide stress test) demonstrated that MS erythrocytes are significantly (P<0.001) less susceptible to H2O2-induced lipid peroxidation in vitro. This finding suggests that the level of an endogenous antioxidant, possibly vitamin E, may be elevated in MS red cells. After treatment with hyperbaric O2, the activity of MS erythrocyte catalase is significantly (P<0.01) elevated by 2–6-fold.  相似文献   

13.
Superoxide dismutase, catalase, glutathione peroxidase, and glutathione reductase activities in pigmented and unpigmented liver tissues of frog and albino rat, respectively, were studied. Our results show that pigmented tissue is lacking in manganese superoxide dismutase activity and that the main enzymatic activity utilized in the cytosol by pigmented cells to reduce the hydrogen peroxide to water is represented by catalase; on the contrary, for the same reaction, the cells of albino rat liver primarily utilize the glutathione peroxidase activity. Both a low glutathione peroxidase activity and a low glutathione reductase activity were found in pigmented tissue of frog liver when compared with unpigmented tissue of rat liver. In light of our results, we also report a hypothetical interrelationship between melanin and reduced glutathione: We believe that in pigmented cells the melanin could act as a reducing physiological agent replacing the glutathione in the reduction of hydrogen peroxide. This reducing action of melanin could cause a diminished need for GSH and therefore could provoke the low glutathione peroxidase and reductase activities in pigmented tissue.  相似文献   

14.
Li  Yuefei  Fan  Yong  Ma  Ying  Zhang  Zhen  Yue  Haobo  Wang  Lijie  Li  Jing  Jiao  Yang 《Journal of Plant Growth Regulation》2017,36(2):436-449

The effects of γ-aminobutyric acid (GABA) treatment on parameters of photosynthesis and antioxidant defense system were measured in pepper (Capsicum annuum L.) leaves under low-light (LL) stress. Seedlings exposed to LL stress showed increased chlorophyll content as well as decreased net photosynthetic rate (P n), stomatal conductance (g s), maximum quantum yield of PSII (F v/F m), actual PSII photochemical efficiency (ΦPSII), electron transport rates and photochemical quenching coefficient (q p). However, almost all the photosynthetic parameters above were enhanced markedly in seedlings treated with GABA under LL stress. Moreover, LL stress increased malondialdehyde (MDA) content, superoxide anion radical (O2 ·?) and hydrogen peroxide (H2O2) production. GABA-treated, LL-stressed seedlings exhibited lower MDA, O2 ·? and H2O2 production, and showed an activated antioxidant defense system, including increased activities of superoxide dismutase, catalase, ascorbate peroxidase, glutathione peroxidase, monodehydroascorbate reductase, dehydroascorbate reductase, glutathione reductase, ascorbate and glutathione. Moreover, seedlings subjected to LL stress showed increased endogenous GABA levels, and the level was further improved by application of exogenous GABA. These results suggest that GABA mitigates the LL-induced stress via regulating the antioxidant defense system and maintaining a high level of photochemical efficiency in pepper seedlings.

  相似文献   

15.
The ability of transparent and cataractous human, rabbit and mice lenses to metabolize hydrogen peroxide in the surrounding medium was evaluated. Using a chemiluminescence method in a system of luminol-horseradish peroxidase and a photometric technique, the temperature-dependent kinetics of H2O2 decomposition by lenses were measured. The ability of opaque human lenses to catalyze the decomposition of 10?4 M H2O2 was significantly decreased. However, this was reserved by the addition of GSH to the incubation medium. Incubation of the mice lenses with the initial concentration H2O2 10?4 M led to partial depletion of GSH in normal and cataractous lenses. Human cataractous lenses showed decreased activities of glutathione reductase, glutathione peroxidase (catalyzing reduction of organic hydroperoxides including hydroperoxides of lipids), superoxide dismutase, but no signs of depletion in activities of catalase or glutathione peroxidase (utilizing H2O2). The findings indicated an impairment in peroxide metabolism of the mature cataractous lenses compared to normal lenses to be resulted from a deficiency of GSH. An oxidative stress induced by accumulation of lipid peroxidation products in the lens membranes during cataract progression could be considered as a primary cause of GSH deficiency and disturbance of the redox balance in the lens.  相似文献   

16.
When segments of rye leaves (Secale cereale L.) grown at 90 μmol m?2 s?1 PAR were incubated at a higher photon flux of 400–500 μ mol m?2 s?1 PAR in the presence of 0.2-0.6 M NaCl, a preferential loss of catalase activity was induced. The extent of this decline increased with the concentration of NaCl. In addition, the accumulation of alternative antioxidative components, such as ascorbate, glutathione, glutathione reductase, or peroxidase, was inhibited. The total content of H2O2 was, however, lower in catalase-depleted than in untreated control leaves. The occurrence of strong oxidative stress in NaCl-treated leaves was indicated by marked declines in the ratios of reduced to oxidized ascorbate and glutathione and by the degradation of chlorophyll in light. The specific elimination of catalase activity by the inhibitor aminotriazole was also accompanied by a rapid decline in the ratio of reduced to oxidized glutathione but other symptoms of oxidative stress were much less severe than in the presence of NaCl. However, all symptoms of photooxidative damage seen in NaCl-treated leaves were closely mimicked by treatment with the translation inhibitor, cycloheximlde, in light. The results suggest that NaCl-induced oxidative damage in light was predominantly mediated by the inhibition of protein synthesis. By this inhibition the resynthesis of catalase, which has a high turnover in light, was blocked and the leaves were thus depleted of catalase activity and, in addition, the intensification of alternative antioxidative systems was also prevented.  相似文献   

17.
Salinity stress is a major factor limiting plant growth and productivity of many crops including oilseed. The present study investigated the identification of salt tolerant mustard genotypes and better understanding the mechanism of salinity tolerance. Salt stresses significantly reduced relative water content (RWC), chlorophyll (Chl) content, K+ and K+ /Na+ ratio, photosynthetic rate (PN), transpiration rate (Tr), stomatal conductance (gs), intercellular CO2 concentration (Ci) and increased the levels of proline (Pro) and lipid peroxidation (MDA) contents, Na+ , superoxide (O2•− ) and hydrogen peroxide (H2O2) in both tolerant and sensitive mustard genotypes. The tolerant genotypes maintained higher Pro and lower MDA content than the salt sensitive genotypes under stress condition. The activities of superoxide dismutase (SOD), catalase (CAT), peroxidase (POD), glutathione peroxidase (GPX), monodehydroascorbate reductase (MDHAR) and dehydroascorbate reductase (DHAR) were increased with increasing salinity in salt tolerant genotypes, BJ-1603, BARI Sarisha-11 and BARI Sarisha-16, but the activities were unchanged in salt sensitive genotype, BARI Sarisha-14. Besides, the increment of ascorbate peroxidase (APX) activity was higher in salt sensitive genotype as compared to tolerant ones. However, the activities of glutathione reductase (GR) and glutathione S-transferase (GST) were increased sharply at stress conditions in tolerant genotypes as compared to sensitive genotype. Higher accumulation of Pro along with improved physiological and biochemical parameters as well as reduced oxidative damage by up-regulation of antioxidant defense system are the mechanisms of salt tolerance in selected mustard genotypes, BJ-1603 and BARI Sarisha-16.  相似文献   

18.
We induced an oxidative stress by means of exogenous hydrogen peroxide in two wheat genotypes, C 306 (tolerant to water stress) and Hira (susceptible to water stress), and investigated oxidative injury and changes in antioxidant enzymes activity. H2O2 treatment caused chlorophyll degradation, lipid peroxidation, decreased membrane stability and activity of nitrate reductase. Hydrogen peroxide increased the activity of antioxidant enzymes, glutathione reductase and catalase. These effects increased with increasing H2O2 concentrations. However, no change was observed in the activity of superoxide dismutase and proline accumulation.  相似文献   

19.
The effect of stand density on the antioxidant system of Scots Pine (Pinus silvestris L.) and Siberian Pine (Pinus sibirica Du Tour) was studied. The dynamics of concentrations of chlorophyll, hydrogen peroxide, glutathione, ascorbic acid, and dehydroascorbic acid were investigated during the vegetation period. In addition, the activities of superoxide dismutase, catalase, peroxidase, glutathione reductase, and ascorbate peroxidase were observed in the 1-year needles of 26-year-old trees with an initial stand density of 0.5 and 128 thousand individuals ha?1.  相似文献   

20.
Lemna minor L. treated with 20, 50, or 100 μM CuSO4 accumulated Cu and reactive oxygen species (hydrogen peroxide and superoxide radical) in frond and root cells. The time-course analysis of lipid peroxidation showed high increment in malondialdehyde production only after 12 and 48 h of Cu treatment. Guaiacol peroxidase and superoxide dismutase activities decreased after 48 h while glutathione reductase activity enhanced 48 h after Cu-treatment. Ascorbate and glutathione contents increased with the increasing Cu stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号