首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cationic poly(ethylene glycol)-lipid conjugates (CPLs), a class of lipid designed to enhance the interaction of liposomes with cells, possess the following architectural features: 1) a hydrophobic lipid anchor of distearoylphosphatidylethanolamine (DSPE); 2) a hydrophilic spacer of poly(ethylene glycol); and 3) a cationic head group prepared with 0, 1, 3, or 7 lysine residues located at the distal end of the PEG chain, giving rise to CPL possessing 1, 2, 4, or 8 positive charges, respectively (CPL1 to CPL8). Previously we have described the synthesis of CPL, have characterized the postinsertion of CPL into PEG-containing LUVs and SPLP (stabilized plasmid-lipid particles), have shown significant increases in the binding of CPL-LUV to cells, and have observed dramatically enhanced transfection (up to a million-fold) of cells with CPL-SPLP in the presence of calcium [Chen et al. (2000) Bioconjugate Chem. 11, 433-437; Fenske et al. (2001) Biochim. Biophys. Acta 1512, 259-272; Palmer et al. (2003) Biochim. Biophys. Acta 1611, 204-216]. In the present study, we examine a variety of CPL properties (such as polarity and CMC) and characterize CPL-vesicular systems formed by extrusion and examine their interaction with cells. While CPL polarity was observed to increase dramatically with increasing charge number, CMC values were all found to be low, in the range of other PEGylated lipids, and exhibited only a small increase, going from CPL1 (1.3 microM) to CPL8 (2 microM). The CPLs were almost quantitatively incorporated into large unilamellar vesicles (LUVs) prepared by the extrusion method and were evenly distributed across the lipid bilayer. Lower levels of incorporation were obtained when CPLs were incubated with preformed liposomes (DSPC/Chol, 55:45) at 60 degrees C. The binding of CPL-LUVs to BHK cells in vitro was found to be dependent on the distal charge density of the CPL rather than total surface charge. Liposomes possessing CPL4 or CPL8 were observed to bind efficiently to cell surfaces and enhance cellular uptake in BHK cells (as observed with both lipid and aqueous content markers), whereas those possessing CPL1 or CPL2 exhibited little or no binding. These results suggest new directions for the design of liposomal systems capable of in vivo delivery of both conventional and genetic (plasmid and antisense) drugs.  相似文献   

2.
In this paper, the synthesis of novel divalent cationic lipids with poly(ethylene glycol) segments is described. The lipids consist of an unsaturated double-chain hydrophobic moiety based on 3, 4-dihydroxy benzoic acid, attached to a hydrophilic poly(ethylene glycol) spacer which contains a divalent cationic end group. As poly(ethylene glycol) spacers monodisperse triethylene glycol and telechelic poly(ethylene glycol)s with an average degree of polymerization of 9, 23, and 45 were used. The divalent cationic end group was attached by coupling a protected dibasic amino acid to the PEG spacer and following cleavage of the protecting groups. These novel class of cationic lipids is of particular interest for nonviral gene delivery applications.  相似文献   

3.
This paper describes a new method for enhancing the interaction of liposomes with cells. A novel class of cationic poly(ethyleneglycol) (PEG)-lipid (CPL) conjugates have been characterized for their ability to insert into pre-formed vesicles and enhance in vitro cellular binding and uptake of neutral and sterically-stabilized liposomes. The CPLs, which consist of a distearoylphosphatidylethanolamine (DSPE) anchor, a fluorescent dansyl moiety, a heterobifunctional PEG polymer (M(r) 3400), and a cationic headgroup composed of lysine derivatives, have been described previously [Bioconjug. Chem. 11 (2000) 433]. Five separate CPL, possessing 1-4 positive charges in the headgroup (referred to as CPL(1)-CPL(4), respectively), were incubated (as micellar solutions) in the presence of neutral or sterically-stabilized cationic large unilamellar vesicles (LUVs), and were found to insert into the external leaflet of the LUVs in a manner dependent on temperature, time, CPL/lipid ratio, and LUV composition. For CPL/lipid molar ratios < or =0.1, optimal insertion levels of approximately 70% of initial CPL were obtained following 3 h at 60 degrees C. The insertion of CPL resulted in aggregation of the LUVs, as assessed by fluorescence microscopy, which could be prevented by the presence of 40 mM Ca(2+). The effect of CPL-insertion on the binding of LUVs to cells was examined by fluorescence microscopy and quantified by measuring the ratio of rhodamine fluorescence to protein concentration. Neither control LUVs or LUVs containing CPL(2) displayed significant uptake by BHK cells. However, a 3-fold increase in binding was observed for LUVs possessing CPL(3), while for CPL(4)-LUVs values as high as 10-fold were achieved. Interestingly, the increase in lipid uptake did not correlate with total surface charge, but rather with increased positive charge density localized at the CPL distal headgroups. These results suggest that incorporation of CPLs into existing liposomal drug delivery systems may lead to significant improvements in intracellular delivery of therapeutic agents.  相似文献   

4.
A polyelectrolyte complex micelle (PECM)-based delivery system for targeting folate (FOL) receptor overexpressing tumor cells is demonstrated using poly(ethylene glycol) (PEG)-conjugated oligonucleotide (ODN). The tumor targeting property was conferred to the PECM by tethering a folate moiety to the distal end of the PEG segment in an anti-sense green fluorescent protein (GFP) ODN-PEG conjugate. Nanoscale PECMs were spontaneously produced from ionic interactions between the ODN-PEG-FOL conjugate and a cationic lipid, lipofectamine (Lf). When treated with FOL receptor overexpressing cells (KB), the PCEMs caused a significant reduction in GFP expression in a dose-dependent manner. This effect was not observed in FOL receptor deficient cells (A549). The enhanced transfection of ODN-PEG-FOL/Lf PECMs to KB cells was caused by FOL receptor mediated endocytosis. The efficiency of target-specific gene suppression by ODN-PEG-FOL/Lf PECMs was maintained even in the presence of 10% fetal bovine serum in the transfection medium.  相似文献   

5.
Two fluorescence energy transfer assays for phospholipid vesicle-vesicle fusion have been developed, one of which is also sensitive to vesicle aggregation. Using a combination of these assays it was possible to distinguish between vesicle aggregation and fusion as induced by poly(ethylene glycol) PEG 8000. The chromophores used were 1-(4′-carboxyethyl)-6-diphenyl-trans-1,3,5-hexatriene as fluorescent ‘donor’ and 1-(4′-carboxyethyl)-6-(4″-nitro)diphenyl-trans-1,3,5-hexatriene as ‘acceptor’. These acids were appropriately esterified giving fluorescent phospholipid and triacylglycerol analogues. At 20°C poly(ethylene glycol) 8000 (PEG 8000) caused aggregation of l-α-dipalmitoylphosphatidylcholine (DPPC) vesicles without extensive fusion up to a concentration of about 35% (w/w). Fusion occurred above this poly(ethylene glycol) concentration. The triacylglycerol probes showed different behaviour from the phospholipids: while not exchangeable through solution in the absence of fusogen, they appeared to redistribute between bilayers under aggregating conditions. DPPC vesicles aggregated with < 35% poly(ethylene glycol) could not be disaggregated by dilution, as monitored by the phospholipid probes. However, DPPC vesicles containing approx. 5% phosphatidylserine which had been aggregated by poly(ethylene glycol) could be disaggregated by either dilution or sonication. Phospholipid vesicles aggregated by low concentrations of poly(ethylene glycol) appear to fuse to multilamellar structures on heating above the lipid phase transition temperature.  相似文献   

6.
To conjugate water-soluble macromolecules on the surface of phospholipid vesicles, we synthesized a poly(ethylene glycol) (PEG)-lipid having four acyl chains using a lysine (Lys)-type monodendron structure. One end of the diamino-PEG was amidified with Lys, and then two amino groups of the Lys moiety were amidified with two Lys derivatives which had been acylated with two stearoyl groups. The other end of the PEG was activated with a triazine group or a pyridyldithio group. The hydrate of the lipid mixture of dipalmitoylphosphatidylcholine, cholesterol, dipalmitoylphosphatidylglycerol, and the PEG-lipid at a molar ratio of 5/5/1/0.3 was extruded in order to prepare the phospholipid vesicles with the average diameter of 270 +/- 20 nm. The coupling ratio of cytochrome c with the PEG-lipid was monitored by HPLC, detecting the pyridyl 2-thione liberated from the pyridyldithio group and determining it to be 26% on the basis of the incorporated PEG-lipid.  相似文献   

7.
Nonspecific binding is a frequently encountered problem with fluorescent labeling of tissue cultures when labeled with quantum dots. In these studies various cell lines were examined for nonspecific binding. Evidence suggests that nonspecific binding is related to cell type and may be significantly reduced by functionalizing quantum dots with poly(ethylene glycol) ligands (PEG). The length of PEG required to give a significant reduction in nonspecific binding may be as short as 12-14 ethylene glycol units.  相似文献   

8.
The conjugation of a bioactive, fluorescent PNA sequence to high-molecular weight poly(ethylene glycol) (PEG) is described and the properties of the PEG-PNA conjugate are evaluated.  相似文献   

9.
Protein adsorption to multicomponent lipid monolayers is presented as a means of inducing protein-specific binding pockets or imprints in membranes. Adsorption of the acidic protein ferritin to Langmuir monolayers of cationic dioctadecyldimethylammonium bromide (DOMA), nonionic methyl stearate (SME), and poly(ethylene glycol) (PEG) bearing phospholipids is investigated as a model system. The number, size, and distribution of protein binding pockets (domains of SME and DOMA in a PEG matrix) are defined by controlling the molar ratios, miscibility, and lateral mobility of the lipids. Protein patterning of binary SME:DOMA monolayers is limited by protein-protein interactions that hinder desorption to regenerate the imprint site. The incorporation of PEG bearing phospholipids as a third lipid component provides a successful approach to prevent protein surface aggregation during imprinting. Atomic force microscopy reveals a user-defined distribution of protein molecules where protein-protein interactions on the monolayer are eliminated, thus facilitating protein desorption and regeneration of the protein binding pockets.  相似文献   

10.
Jain A  Ashbaugh HS 《Biomacromolecules》2011,12(7):2729-2734
Hybrid polymer-peptide conjugates offer the potential for incorporating biological function into synthetic materials. The secondary structure of short helical peptides, however, frequently becomes less stable when expressed independent of longer protein sequences or covalently linked with a conformationally disordered synthetic polymer. Recently, new amphipathic peptide-poly(ethylene glycol) conjugates were introduced (Shu, J., et al. Biomacromolecules 2008, 9, 2011), which displayed enhanced peptide helicity upon polymer functionalization while retaining tertiary coiled-coil associations. We report here a molecular simulation study of peptide helix stabilization by conjugation with poly(ethylene glycol). The polymer oxygens are shown to favorably interact with the cationic lysine side chains, providing an alternate binding site that protects against disruption of the peptide hydrogen-bonds that stabilize the helical conformation. When the peptide lysine charges are neutralized or poly(ethylene glycol) is conjugated with polyalanine, the polymer exhibits a negligible effect on the secondary structure. We also observe the interactions of poly(ethylene glycol) with the amphipathic peptide lysines tends to segregate the polymer away from the nonpolar face of the helix, suggesting no disruption of the interactions that drive tertiary contacts between helicies.  相似文献   

11.
The permeability effects induced by single-chained and double-chained poly(ethylene glycol)-surfactants were investigated by measuring the leakage of the fluorescent dye 5(6)-carboxy fluorescein from EPC liposomes. The standard incorporated amount of the surfactants was 5 mol%. Depending on the size of the poly(ethylene glycol) chain and especially on the type of linkage between the polymer and the hydrophobic moiety different leakage profiles were obtained. The presence of a long PEG-polymer resulted in a slower leakage compared with a short analogue. More importantly, the linkage identity was decisive for whether an overall reduction or increase in permeability was obtained. When the hydrocarbon chains were attached to the PEG chain via an ether or an ester the leakage increased compared to pure EPC liposomes. In contrast, if the link was an amide, the leakage was significantly reduced. This effect is assumed to originate from headgroup-headgroup interactions, and most probably hydrogen bonding, between amide and phosphate groups of the PEG-surfactant and the EPC, respectively.  相似文献   

12.
Poly(DMAEMA-NVP)-b-PEG-galactose as gene delivery vector for hepatocytes   总被引:4,自引:0,他引:4  
A block copolymer composed of cationic polymer and poly(ethylene glycol) (PEG) was used as a DNA carrier. Poly(2-(dimethylamino)ethyl methacrylate (DMAEMA)-co-N-vinyl-2-pyrrolidone (NVP)) having a terminal carboxylic group was synthesized by free radical polymerization using an initiator, 4,4'-azobis(4-cyanovaleric acid). The terminal carboxylic acid was activated by N-hydroxysuccinimide (NHS) with dicyclohexylcarbodiimide (DCC) and then conjugated with PEG-bis(amine). For specific gene targeting to asialoglycoprotein receptor of hepatocytes, a galactose moiety was incorporated into the PEG terminal end of poly(DMAEMA-NVP)-b-PEG by reductive coupling using lactose and sodium cyanoborohydride. RSV luciferase plasmid was used as a reporter gene, and in vitro gene transfection efficiency was measured in HepG2 human hepatocarcinoma cells. Poly(DMAEMA-NVP)-b-PEG-galactose/DNA complexes formed at 0.5-2 polymer/plasmid weight ratio had compacted structures around 200 nm particle size and exhibited slightly negative surface charge. These complexes were coated with a cationic, pH sensitive, endosomolytic peptide, KALA, to generate positively charged poly(DMAEMA-NVP)-b-PEG-galactose/DNA/KALA complex particles. In the presence of serum proteins, both the PEG block and the galactose moiety of poly(DMAEMA-NVP)-b-PEG-galactose greatly enhanced the gene transfection efficiency, which was very close to that of Lipofectamine plus. Irrespective of the presence of serum proteins, as the KALA/DNA weight ratio increased, the transfection efficiency of poly(DMAEMA-NVP)-b-PEG-galactose was enhanced due to the pH dependent endosomal disruptive property of KALA. This study demonstrates that sufficient transfection efficiency as high as that of commercial agent could be attained by judicious formulation of molecular engineered poly(DMAEMA-NVP)-b-PEG-galactose in combination with an endosomolytic peptide, KALA.  相似文献   

13.
Human pancreatic ribonuclease (RNase 1) is a small secretory protein that catalyzes the cleavage of RNA. This highly cationic enzyme can enter human cells spontaneously but is removed rapidly from circulation by glomerular filtration. Here, this shortcoming is addressed by attaching a poly(ethylene glycol) (PEG) moiety to RNase 1. The pendant has no effect on ribonucleolytic activity but does increase persistence in circulation. The RNase 1-CPEG conjugates inhibit the growth of tumors in a xenograft mouse model of human lung cancer. Both retention in circulation and tumor growth inhibition correlate with the size of the pendant PEG. A weekly dose of the 60-kDa conjugate at 1 μmol/kg inhibited nearly all tumor growth without affecting body weight. Its molecular efficacy is ~5000-fold greater than that of erlotinib, which is a small molecule in clinical use for the treatment of lung cancer. These data demonstrate that the addition of a PEG moiety can enhance the in vivo efficacy of human proteins that act within cells and highlight a simple means of converting an endogenous human enzyme into a cytotoxin with potential clinical utility.  相似文献   

14.
In order to develop a new gene delivery vector, a novel cationic poly(organophosphazene) was synthesized by stepwise nucleophilic substitutions of poly(dichlorophosphazene) with a hydrophilic methoxy-poly(ethylene glycol) (MPEG) as a shielding group and a branched tetra(L-lysine), LysLys(LysEt)(2), as a cationic moiety. The cationic polymer has shown to form a polyplex by DNA condensation and very low in vitro cytotoxicity probably due to the shielding effect of MPEG, which provides a basis for improving the low gene transfection yield of cationic polyphosphazenes.  相似文献   

15.
In this work, we design and investigate the complex formation of highly uniform monomolecular siRNA complexes utilizing block copolymers consisting of a cationic peptide moiety covalently bound to a poly(ethylene glycol) (PEG) moiety. The aim of the study was to design a shielded siRNA construct containing a single siRNA molecule to achieve a sterically stabilized complex with enhanced diffusive properties in macromolecular networks. Using a 14 lysine-PEG (K14-PEG) linear diblock copolymer, formation of monomolecular siRNA complexes with a stoichiometric 1:3 grafting density of siRNA to PEG is realized. Alternatively, similar PEGylated monomolecular siRNA particles are achieved through complexation with a graft copolymer consisting of six cationic peptide side chains bound to a PEG backbone. The hydrodynamic radii of the resulting complexes as measured by fluorescence correlation spectroscopy (FCS) were found to be in good agreement with theoretical predictions using polymer brush scaling theory of a PEG decorated rodlike molecule. It is furthermore demonstrated that the PEG coating of the siRNA-PEG complexes can be rendered biodegradable through the use of a pH-sensitive hydrazone or a reducible disulfide bond linker between the K14 and the PEG blocks. To model transport under in vivo conditions, diffusion of these PEGylated siRNA complexes is studied in various charged and uncharged matrix materials. In PEG solutions, the diffusion coefficient of the siRNA complex is observed to decrease with increasing polymer concentration, in agreement with theory of probe diffusion in semidilute solutions. In charged networks, the behavior is considerably more complex. FCS measurements in fibrin gels indicate complete dissociation of the diblock copolymer from the complex, while transport in collagen solutions results in particle aggregation.  相似文献   

16.
The cytotoxicity and time-dependent membrane disruption by polypropylenimine dendrimer conjugates on cultured human umbilical vein endothelial cells (HUVEC) is reported. Fluorescently labeled derivatives of generation 5 polypropylenimine dendrimers were prepared via conversion of amines to acetamides or through the covalent attachment of high molecular weight poly(ethylene glycol) (PEG) chains. Direct interactions between the fluorescent dendrimer conjugates and HUVEC were monitored using confocal fluorescence microscopy to track dendrimer movement across the plasma membrane and the fluorescent staining of cell nuclei. Propidium iodide and lactate dehydrogenase cytotoxicity assays confirmed that chemical modification of the surface amines of the parental dendrimer to neutral acetamide or PEG functionalities eliminated their acute cytotoxicity. Cationic primary-amine-containing dendrimers demonstrated drastic time-dependent changes in the plasma membrane permeability and prominent cytotoxicity. However, complete removal of the primary amines or masking of the cationic surface via PEGylation decreased dendrimer cytotoxicity. Thus, preventing electrostatic interactions of dendrimers with cellular membranes apparently is a necessary step toward minimizing the toxicity of delivery vehicles to the endothelium.  相似文献   

17.
Mechanism of poly(ethylene glycol) interaction with proteins   总被引:10,自引:0,他引:10  
T Arakawa  S N Timasheff 《Biochemistry》1985,24(24):6756-6762
Poly(ethylene glycol) (PEG) is one of the most useful protein salting-out agents. In this study, it has been shown that the salting-out effectiveness of PEG can be explained by the large unfavorable free energy of its interaction with proteins. Preferential interaction measurements of beta-lactoglobulin with poly(ethylene glycols) with molecular weights between 200 and 1000 showed preferential hydration of the protein for those with Mr greater than or equal to 400, the degree of hydration increasing with the increase in poly(ethylene glycol) molecular weight. The preferential interaction parameter had a strong cosolvent concentration dependence, with poly(ethylene glycol) 1000 having the sharpest decrease with an increase in concentration. The preferential hydration extrapolated to zero cosolvent concentration increased almost linearly with increasing size of the additive, suggesting steric exclusion as the major factor responsible for the preferential hydration. The poly(ethylene glycol) concentration dependence of the preferential interactions could be explained in terms of the nonideality of poly(ethylene glycol) solutions. All the poly(ethylene glycols) studied, when used at levels of 10-30%, decreased the thermal stability of beta-lactoglobulin, suggesting that caution must be exercised in the use of this additive at extreme conditions such as high temperature.  相似文献   

18.
The synthesis of a novel water-soluble polymer drug carrier system based on biodegradable poly(ethylene glycol) block copolymer is described in this paper. The copolymer consisting of PEG blocks of molecular weight 2000 linked by means of an oligopeptide with amino end groups was prepared by interfacial polycondensation of the diamine and PEG bis(succinimidyl carbonate). The structure of the oligopeptide diamine consisting of glutamic acid and lysine residues was designed as a substrate for cathepsin B, a lysosomal enzyme, which was assumed to be one of the enzymes responsible for the degradation of the polymer carrier in vivo. Each of the oligopeptide blocks incorporated in the carrier contained three carboxylic groups of which some were used for attachment of an anti-cancer drug, doxorubicin (Dox), via a tetrapeptide spacer Gly-Phe-Leu-Gly. This tetrapeptide spacer is susceptible to enzymatic hydrolysis. In vitro release of Dox and the degradation of the polymer chain by cathepsin B as well as preliminary evaluation of in vivo anti-cancer activity of the conjugate are also demonstrated.  相似文献   

19.
Recently, we developed a new type of cationic lipid that consists of an amine-terminated poly(amidoamine) dendron and two long alkyl groups. These dendron-bearing lipids achieved efficient gene transfection of cells through synergetic action of the proton sponge effect and membrane fusion in combination with fusogenic lipid dioleoylphosphatidylethanolamine. Using those dendron-bearing lipids as a base material, we developed in this study a functional component of gene vectors that stabilizes lipoplexes by multiple PEG chains and promotes gene transfection through the proton sponge effect. We combined a poly(ethylene glycol) (PEG, 550 Da) graft to each of four chain ends of the G2 dendron-bearing lipid (P4-DL). An analogous molecule having single PEG graft was also synthesized using the G0 dendron-bearing lipid (P1-DL). Inclusion of P4-DL decreased the size of the G3 dendron-bearing lipid-based lipoplexes more efficiently than P1-DL. In addition, P4-DL-containing lipoplexes exhibited two-orders-higher transfection efficiency than P1-DL-containing lipoplexes with the same PEG graft density. These results indicate the superiority of multiple attachments of PEG graft chains to a lipid for heightened ability to increase colloidal stability of lipoplexes while retaining their transfection activity. The lipoplexes stabilized by P4-DL were small, around 250 nm, and achieved efficient transfection in the presence of serum. Therefore, P4-DL and its analogues will form the basis for production of efficient nonviral vectors for in vivo use.  相似文献   

20.
Reconstituted influenza virus envelopes (virosomes) containing the viral hemagglutinin (HA) have attracted attention as delivery vesicles for cytosolic drug delivery as they possess membrane fusion activity. Here, we show that influenza virosomes can be targeted towards ovarian carcinoma cells (OVCAR-3) with preservation of fusion activity. This was achieved by incorporating poly(ethylene glycol) (PEG)-derivatized lipids into the virosome membrane. This PEG layer serves as shield to prevent interaction of HA with ubiquitous sialic acid residues and as spatial anchor for antibody attachment. Coupling of Fab' fragments of mAb 323/A3 (anti-epithelial glycoprotein-2) to the distal ends of PEG lipids resulted in specific binding of virosomes to OVCAR-3 cells. These antibody-redirected virosomes fused with membranes of OVCAR-3 cells in a pH-dependent fashion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号