首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 18 毫秒
1.
Bacterial strains expressing toluene and naphthalene dioxygenase were used to examine the sequence of reactions involved in the oxidation of 1,2-dihydronaphthalene. Toluene dioxygenase of Pseudomonas putida F39/D oxidizes 1,2-dihydronaphthalene to (+)-cis-(1S,2R)-dihydroxy-1,2,3,4-tetrahydronaphthalene, (+)-(1R)-hydroxy-1,2-dihydronaphthalene, and (+)-cis-(1R,2S)-dihydroxy-1,2-dihydronaphthalene. In contrast, naphthalene dioxygenase of Pseudomonas sp. strain NCIB 9816/11 oxidizes 1,2-dihydronaphthalene to the opposite enantiomer, (-)-cis-(1R,2S)-dihydroxy-1,2,3,4-tetrahydronaphthalene and the identical (+)-cis-(1R,2S)-dihydroxy-1,2-dihydronaphthalene. Recombinant Escherichia coli strains expressing the structural genes for toluene and naphthalene dioxygenases confirmed the involvement of these enzymes in the reactions catalyzed by strains F39/D and NCIB 9816/11. 1-Hydroxy-1,2-dihydronaphthalene was not formed by strains expressing naphthalene dioxygenase. These results coupled with time course studies and deuterium labelling experiments indicate that, in addition to direct dioxygenation of the olefin, both enzymes have the ability to desaturate (dehydrogenate) 1,2-dihydronaphthalene to naphthalene, which serves as a substrate for cis dihydroxylation.  相似文献   

2.
A Mycobacterium sp. isolated from oil-contaminated sediments was previously shown to mineralize 55% of the added naphthalene to carbon dioxide after 7 days of incubation. In this paper, we report the initial steps of the degradation of naphthalene by a Mycobacterium sp. as determined by isolation of metabolites and incorporation of oxygen from 18O2 into the metabolites. The results indicate that naphthalene is initially converted to cis- and trans-1,2-dihydroxy-1,2-dihydronaphthalene by dioxygenase and monooxygenase catalyzed reactions, respectively. The ratio of the cis to trans-naphthalene dihydrodiol isomers was approximately 25:1. Thin layer and high pressure liquid chromatographic and mass spectrometric techniques indicated that besides the cis- and trans-1,2-dihydroxy-1,2-dihydronaphthalene, minor amounts of ring cleavage products salicylate and catechol were also formed. Thus the formation of both cis and trans-naphthalene dihydrodiols by the Mycobacterium sp. is unique. The down-stream reactions to ring cleavage products proceed through analogous dioxygenase reactions previously reported for the bacterial degradation of naphthalene.  相似文献   

3.
Pseudomonas paucimobilis Q1 originally isolated as biphenyl degrading organism (Furukawa et al. 1983), was shown to grow with naphthalene. After growth with biphenyl or naphthalene the strain synthesized the same enzyme for the ring cleavage of 2,3-dihydroxybiphenyl or 1,2-dihydroxynaphthalene. The enzyme, although characterized as 2,3-dihydroxybiphenyl dioxygenase (Taira et al. 1988), exhibited considerably higher relative activity with 1,2-dihydroxynaphthalene. These results demonstrate that this enzyme can function both in the naphthalene and biphenyl degradative pathway.Abbreviations DHBP dihydroxybiphenyl - DHBPDO 2,3-dihydroxybiphenyl dioxygenase - DHDHNDH 1,2-dihydroxy-1,2-dihydronaphthalene dehydrogenase - DHN 1,2-dihydroxynaphthalene - DHNDO 1,2-dihydroxynaphthalene dioxygenase - HBP cis-2-hydroxybenzalpyruvate - HOPDA 2-hydroxy-6-oxo-6-phenylhexa-2,4-dienoate - PCB polychlorinated biphenyl - 2NS naphthalene-2-sulfonic acid  相似文献   

4.
The regulation of naphthalene and 1-naphthol metabolism in a Rhodococcus sp. (NCIMB 12038) has been investigated. The microorganism utilizes separate pathways for the degradation of these compounds, and they are regulated independently. Naphthalene metabolism was inducible, but not by salicylate, and 1-naphthol metabolism, although constitutive, was also repressed during growth on salicylate. The biochemistry of naphthalene degradation in this strain was otherwise identical to that found in Pseudomonas putida, with salicylate as a central metabolite and naphthalene initially being oxidized via a naphthalene dioxygenase enzyme to cis-(1R,2S)-1,2-dihydroxy-1,2-dihydronaphthalene (naphthalene cis-diol). A dioxygenase enzyme was not expressed under growth conditions which facilitate 1-naphthol degradation. However, biotransformations with indene as a substrate suggested that a monooxygenase enzyme may be involved in the degradation of this compound. Indole was transformed to indigo by both naphthalene-grown NCIMB 12038 and by cells grown in the absence of an inducer. Therefore, the presence of a naphthalene dioxygenase enzyme activity was not necessary for this reaction. Thus, the biotransformation of indole to indigo may be facilitated by another type of enzyme (possibly a monooxygenase) in this organism.  相似文献   

5.
Naphthalene dioxygenase (NDO) fromPseudomonas sp strain NCIB 9816 is a multicomponent enzyme system which initiates naphthalene catabolism by catalyzing the addition of both atoms of molecular oxygen and two hydrogen atoms to the substrate to yield enantiomerically pure (+)-cis-(1R,2S)-dihydroxy-1,2-dihydronaphthalene. NDO has a relaxed substrate specificity and catalyzes the dioxygenation of many related 2- and 3-ring aromatic and hydroaromatic (benzocyclic) compounds to their respectivecis-diols. Biotransformations with a diol-accumulating mutant, recombinant strains and purified enzyme components have established that in addition tocis-dihydroxylation, NDO also catalyzes a variety of other oxidations which include monohydroxylation, desaturation (dehydrogenation),O-andN-dealkylation and sulfoxidation reactions. In several cases, the absolute stereochemistry of the oxidation products formed by NDO are opposite to those formed by toluene dioxygenase (TDO). The reactions catalyzed by NDO and other microbial dioxygenases can yield specific hydroxylated compounds which can serve as chiral synthons in the preparation of a variety of compounds of interest to pharmaceutical and specialty chemical industries. We present here recent work documenting the diverse array of oxidation reactions catalyzed by NDO. The trends observed in the oxidation of a series of benzocyclic aromatic compounds are compared to those observed with TDO and provide the basis for prediction of regio- and stereospecificity in the oxidation of related substrates. Based on the types of reactions catalyzed and the biochemical characteristics of NDO, a mechanism for oxygen activation by NDO is proposed.  相似文献   

6.
Biochemical and biophysical parameters, including D1-protein turnover, chlorophyll fluorescence, oxygen evolution activity and zeaxanthin formation were measured in the marine seagrassZostera capricorni (Aschers) in response to limiting (100 mol·m–2·–1), saturating (350 mol·m–2·s–1) or photoinhibitory (1100 mol·m–2·s–1) irradiances. Synthesis of D1 was maximal at 350 mol·m–2·s–1 which was also the irradiance at which the rate of photosynthetic O2 evolution was maximal. Degradation of D1 was saturated at 350 mol·m–2·s–1. The rate of D1 synthesis at 1100 mol·m–2·s–1 was very similar to that at 350 mol·m–2·s–1 for the first 90 min but then declined. At limiting or saturating irradiance little change was observed in the ratio of variable to maximal fluorescence (Fv/Fm) measured after dark adaptation of the leaves, while significant photoinhibition occurred at 1100 mol·m–2·s–1. The proportion of zeaxanthin in the total xanthophyll pool increased with increasing irradiance, indicative of the presence of a photoprotective xanthophyll cycle in this seagrass. These results are consistent with a high level of regulatory D1 turnover inZostera under non-photoinhibitory irradiance conditions, as has been found previously for terrestrial plants.We would like to thank Professor Peter Böger (Department of Plant Biochemistry, University of Konstanz, Germany) for the kind gift of D1 antibodies. This work was partly supported by a University of Queensland Enabling Grant to CC.  相似文献   

7.
Summary Cellobiose oxidase from Phanerochaete chrysosporium was used for continuous monitoring of cellulase action on microcrystalline cellulose (Avicel). Two protocols are described, the parameter monitored being either the decline in electrode potential as ferricyanide is reduced or consumption of dioxygen. Most experiments used a commercial cellulase preparation from Trichoderma reesei and ferricyanide as acceptor. Within 1 min of an addition of cellulase, ferricyanide reduction reached a steady rate. This was converted into a rate of production of substrate for celobiose oxidase, in mol·min–1. Experiments were conducted either with a constant concentration of cellulase and increasing Avicel, or with constant Avicel and increasing cellulase. Kinetic analysis of the experiments with constant cellulase indicated a K mof 4.8 ± 1.0 (g cellulose)·1–1, which was close to the value predicted from binding studies. The specific activity of the cellulase was measured as 375±25 mol·(g cellulase)–1·min–1 in experiments with a high cellulose concentration, but was less than half this value when the cellulose was saturated with cellulase. The maximal rate of cellulose degradation was 9.6±1.3 mol·(g cellulose)–1·min–1.  相似文献   

8.
Short-term applications of very high concentrations of 1-naphthaleneacetic acid (NAA) to expiants from flower stalks of tobacco (Nicotiana tabacum L. cv. Samsun) induced flower-bud regeneration to the same extent as longer or continuous incubation on lower concentrations. The maximum number of flower buds per explant after 15 d of culture was obtained not only by continuous culturing at 1 mol·l–1 NAA but also by 12 h of culturing at 22 mol·l–1 or 0.5 h at 220 mol· l–1, followed by incubation on medium without auxin for the remaining period. Continuous application of such high concentrations resulted in callus formation or caused the death of the explanted tissue. In all experiments in which auxin concentration and time of application were independently varied, the product of concentration and time determined the number of buds formed. Most, but not all, of the NAA taken up by the tissues was converted into conjugates. In expiants which had received a dose which was optimal for regeneration, the internal concentration of free NAA remaining beyond the pulse period was between 1.7 and 6.2 mol·l–1. Suboptimal applications led to lower values, supraoptimal treatments to much higher internal concentrations. The physiological effect, which depends on the internal hormone concentration, thus manifested itself as dose-dependent with regard to applied hormone.Abbreviations BAP N6-benzylaminopurine - NAA 1-naphthaleneacetic acid  相似文献   

9.
We examined transepithelial transport of Ca2+ across the isolated opercular epithelium of the euryhaline killifish adapted to fresh water. The opercular epithelium, mounted in vitro with saline on the serosal side and fresh water (0.1 mmol·l–1 Ca2+) bathing the mucosal side, actively transported Ca2+ in the uptake direction; net flux averaged 20–30 nmol·cm–2·h–1. The rate of Ca2+ uptake varied linearly with the density of mitochondria-rich cells in the preparations. Ca2+ uptake was saturable, apparent K 1/2 of 0.348 mmol·l–1, indicative of a multistep transcellular pathway. Ca2+ uptake was inhibited partially by apically added 0.1 mmol·l–1 La3+ and 1.0 mmol·l–1 Mg2+. Addition of dibutyryl-cyclic adenosine monophosphate (0.5 mmol·l–1)+0.1 mmol·l–1 3-isobutyl-l-methylxanthine inhibited Ca2+ uptake by 54%, but epinephrine, clonidine and isoproterenol were without effect. Agents that increase intracellular Ca2+, thapsigargin (1.0 mol·l–1, serosal side), ionomycin (1.0 mol·l–1, serosal side) and the calmodulin blocker trifluoperazine (50 mol·l–1, mucosal side) all partially inhibited Ca2+ uptake. In contrast, apically added ionomycin increased mucosal to serosal unidirectional Ca2+ flux, indicating Ca2+ entry across the apical membrane is rate limiting in the transport. Verapamil (10–100 mol·l–1, mucosal side), a Ca2+ channel blocker, had no effect. Results are consistent with a model of Ca2+ uptake by mitochondria rich cells that involves passive Ca2+ entry across the apical membrane via verapamil-insensitive Ca2+ channels, intracellular complexing of Ca2+ by calmodulin and basolateral exit via an active transport process. Increases in intracellular Ca2+ invoke a downregulation of transcellular Ca2+ transport, implicating Ca2+ as a homeostatic mediator of its own transport.Abbreviations DASPEI 2-(4-dimethylaminostyryl)-N-ethylpyridinium iodide - db-cAMP dibutyryl-cyclic adenosine monophosphate - FW fresh water - G t transepithelial conductance - I sc short-circuit current - IBMX 3-isobutyl-1-methylxanthine - SW sea water - TFP trifluoperazine - V t transepithelial potential  相似文献   

10.
In rat cardiac sarcolemmal membranes a phosphoinositide-specific phospholipase C (PLC) was found to be present. The enzyme hydrolysed exogenous [3H-]phosphatidylinositol 4,5-biphosphate ([3H-]PtdIns(4,5)P 2) in an optimized assay mixture containing 15 leg SL protein, 100 mM NaCl, 1 mM free Ca2+,14 mM Na-cholate and 20 AM [3H-]PtdIns (4,5)P 2 (400–500 dpm/gm-l) in 30 mM HEPES-Tris buffer (pH 7.0). The average specific activity was 9.14±0.55 nmol-mg–1·2.5 min–1. The addition of Mg2+ to the assay mixture did not change PLC activity but increased the relative amounts of dephosphorylated inositol products. In the absence of Na+ and at a low Ca2+ concentration (0.3 M), Mg2+ also enhanced the intraSL levels of PtdIns4P and PtdIns, and, moreover, inhibited PLC activity (IC500.07 mM). PtdIns4P seemd to be a good substrate for the rat SL PLC (23.07 ± 1.57 nmol·mg–1·2.5 min–1) whereas PtdIns was hydrolysed at a very low rate (0.36 ± 0.08 nmol·mg–1·2.5 min–1). Unlike PtdIns(4,5)P 2, PLC-dependent PtdIns4P and PtdIns hydrolysis was not inhibited by Ca2+ concentrations over 1 mM. The possibility of distinct isozymes being responsible for the different hydrolytic activities is discussed. (Mol Cell Biochem116: 27–31, 1992).Abbreviations DAG sn-1,2-diacylglycerol - EGTA ethyleneglycol-O,O-bis(aminoethyl)-N,N,N,N,-tetraacetic acid - Ins(1,4,5)P 3 inositol 1,4,5-trisphosphate - InsP inositol monophosphate (unidentified isomer) - InsP 2 inositol bisphosphate (unidentified isomer) - InsP 3 inositol trisphosphate (unidentified isomer) - InsP x any inositol phosphate - PLC phospholipase C - PtdIns phosphatidylinositol - PtdIns(4,5)P 2 phosphatidylinositol 4,5-bisphosphate - PtdIns4P phosphatidylinositol 4-monophosphate - SL sarcolemma  相似文献   

11.
Naphthalene and two naphthalenesulfonic acids were degraded by Pseudomonas sp. A3 and Pseudomonas sp. C22 by the same enzymes. Gentisate is a major metabolite. Catabolic activities for naphthalene, 1-naphthalenesulfonic acid, and 2-naphthalenesulfonic acid are induced by growth with naphthalene, 1-naphthalenesulfonic acid, 2-naphthalenesulfonic acid, methylnaphthalene, or salicylate. Gentisate is also an inducer in strain A3. Inhibition kinetics show that naphthalene and substituted naphthalenes are hydroxylated by the same naphthalene dioxygenase. Substrates with nondissociable substituents such as CH3, OCH3, Cl, or NO2 are hydroxylated in the 7,8-position, and 4-substituted salicylates are accumulated. If CO2H, CH2CO2H, or SO3H are substituents, hydroxylation occurs with high regioselectivity in the 1,2-position. Thus, 1,2-dihydroxy-1,2-dihydronaphthalene-2-carboxylic acids are formed quantitatively from the corresponding naphthalenecarboxylic acids. Utilization of naphthalenesulfonic acids proceeds by the same regioselective 1,2-dioxygenation which labilizes the C—SO3 bond and eliminates sulfite.  相似文献   

12.
The effect of action potential duration and elevated cytosolic sodium concentration on the forcefrequency relationship in isolated rabbit, guinea pig and rat papillary muscle preparations was studied. Shortening of action potential duration in guinea pig and rabbit from 150–200 ms to values characteristic of rat (20–40 ms), using the K(ATP) channel activator levkromakalim (15 mol·l–1), markedly reduced the force of contraction and converted the positive force-frequency relationship into negative one at longer pacing cycle lengths. This conversion was greatly enhanced in the presence of acetylstrophanthidin (0.2–1 mol·l–1), an inhibitor of the Na-K pump. Acetylstrophanthidin (1 mol·l–1) alone, however, had no effect on the forcefrequency relationship. Prolongation of action potential duration in rat with inhibitors of cardiac K channels (4-aminopyridine [10 mmol·l–1] plus tetraethylammonium [2 mmol·l–1) increased the force of contraction and abolished the negative force-frequency relationship observed in rat at longer pacing-cycle lengths. It is concluded that both action potential duration and cytosolic sodium concentration are major determinants of the force-frequency relationship in mammalian myocardium.Abbreviations AC acetylstrophanthidin - APD action potential duration - APD 50 and APD 90 action potential duration measured at 50% and 90% level of repolarization, respectively - SR sarcoplasmic reticulum  相似文献   

13.
The use of whole cell biotransformations for single and multistep enzyme conversions is gaining widespread application. In this study the naphthalene dioxygenasenah A gene was transferred intoPseudomonas aeruginosa PAC 1R,Escherichia coli JM107 andPseudomonas putida PpG 277. The effect of ethanol on these genetically engineered Gram-negative bacteria was studied by measurement of enzyme activity, stability and cell integrity. Ethanol has been used in biotransformations as a co-substrate carbon source for co-factor recycling and as a co-solvent increasing dissolved substrate and product levels. Ethanol increased the dissolved substrate (naphthalene) concentration slightly and dissolved product ((+)-cis-(1R, 2S)-dihydroxy-1,2-dihydronaphthalene) by approximately 30% at 4% (w/v) ethanol. BothP. aeruginosa PAC 1R andP. putida PpG 277 showed decreased activity with increasing ethanol concentration whilstE. coli enzyme activity increased with increasing ethanol concentration being comparable to that when glucose was used as a carbon source. This project highlighted the many factors involved in the selection of microbial hosts for whole cell biotransformation processes.  相似文献   

14.
Pseudomonas putida NCIMB 11767 oxidized phenol, monochlorophenols, several dichlorophenols and a range of alkylbenzenes (C1–C6) via an inducible toluene dioxygenase enzyme system. Biphenyl and naphthalene were also oxidized by this enzyme. Growth on toluene and phenol induced the meta-ring-fission enzyme, catechol 2,3-oxygenase, whereas growth on benzoate, which did not require expression of toluene dioxygenase, induced the ortho-ringcleavage enzyme, catechol 1,2-oxygenase. Monochlorobenzoate isomers and 2,3,5-trichlorophenol were gratuitous inducers of toluene dioxygenase, whereas 3,4-dichlorophenol was a fortuitous oxidation substrate of the enzyme. The organism also grew on 2,4- and 2,5-dichloro isomers of both phenol and benzoate, on 2,3,4-trichlorophenol and on 1-phenylheptane. During growth on toluene in nitrogen-limited chemostat culture, expression of both toluene dioxygenase and catechol 2,3-oxygenase was positively correlated with increase in specific growth rate (0.11–0.74 h-1), whereas the biomass yield coefficient decreased. At optimal dilution rates, the predicted performance of a 1-m3 bioreactor supplied with 1 g nitrogen l-1 for removal of toluene was 57 g day-1 and for removal of trichloroethylene was 3.4 g day-1. The work highlights the oxidative versatility of this bacterium with respect to substituted hydrocarbons and shows how growth rate influences the production of competent cells for potential use as bioremediation catalysts. Received: 26 June 1995 / Received revision: 4 September 1995 / Accepted: 20 September 1995  相似文献   

15.
Summary Stem photosynthetic responses to environmental parameters were investigated with Psorothamnus spinosus in the Sonoran Desert of California. Light saturation of stem photosynthesis was equal to maximum midday summer irradance (1600–2000 mol·m-2·s-1). The optimum temperature for stem photosynthesis was 39°C, and lower stem temperatures (27–35°C) caused significant decreases (up to 50%) in stem photosynthesis. Positive stem photosynthesis was maintained up to 51°C. Stem photosynthesis was relatively insensitive to increasing vpd up to 5 kPa; However, stem conductance decreased by 25% at a vpd of 5 kPa. At vpd greater than 5 kPa stem photosynthesis decreased relatively more than that of stem conductance causing a decrease in water use efficiency and an increase an intercellular carbon dioxide concentration. Maximum stem photosynthetic rates were low (6.2–10.6 mol·m-2·s-1) on a stem surface area, but, stem photosynthetic rates of young shoots were substantially higher (19.5–33.3 mol· m-2·s-1) on a projected area basis.Dedicated to the memory of Dr. W.H. Muller  相似文献   

16.
The initial reactions in the oxidation of naphthalene by Pseudomonas sp. strain NCIB 9816 involves the enzymatic incorporation of one molecule of oxygen into the aromatic nucleus to form (+)-cis-(1R,2S)-dihydroxy-1,2-dihydronaphthalene. The enzyme catalyzing this reaction, naphthalene dioxygenase, was resolved into three protein components, designated A, B, and C, by DEAE-cellulose chromatography. Incubation of naphthalene with components A, B, and C in the presence of NADH resulted in the formation of (+)-cis-(1R,2S)-dihydroxy-1,2-dihydronaphthalene. The ratio of oxygen and NADH utilization to product formation was 1:1:1. NADPH also served as an electron donor for naphthalene oxygenation. However, its activity was less than 50% of that observed with NADH. Component A showed NAD(P)H-cytochrome c reductase activity which was stimulated by the addition of flavin adenine dinucleotide and flavin mononucleotide. A similar stimulation was observed when these flavin nucleotides were added to the naphthalene dioxygenase assay system. These preliminary observations indicate that naphthalene dioxygenase has properties in common with both monooxygenase and dioxygenase multicomponent enzyme systems.  相似文献   

17.
The regression of oxygen uptake (O2) on power output and the O2 demand predicted for suprapeak oxygen uptake (O2peak) exercise (power output = 432 W) were compared in ten male cyclists [C, mean O2peak = 67.9 (SD 4.2) ml · kg–1 · min–1] and nine active, yet untrained men [UT, mean O2peak = 54.1 (SD 6.5) ml · kg–1 · min–1]. The O2-power regression was determined using a continuous incremental cycle test (CON4), performed twice, which comprised several 4-min exercise periods progressing in intensity from approximately 40%–85% O2peak. Minute ventilation (E), heart rate (HR), respiratory exchange ratio (R), blood lactate concentration ([1a]b) and rectal temperature (T re) were measured at rest and during CON4. The slope of the O2-power regression was greater (P 0.05) in C [12.4 (SD 0.7) ml · min–1. W–1] compared to UT [11.7 (SD 0.4) ml · min–1 W–1]; as a result, the O2 demand (at 432 W) was also higher (P 0.05) in C [5.97 (SD 0.23) l · min–1] than UT [5.70 (SD 0.15) 1 · min–1]. ExerciseR and [la]b were lower (P 0.05) in C .in comparison to UT at all power outputs, whereas E and HR were relatively lower (P 0.05) in C at power outputs approximating 180 W, 220 W and 270 W. Differences in fat metabolism estimated over the first three power outputs accounted for approximately 19% of the difference in O2-power slopes between the groups and up to 46% of the difference in O2 at a given intensity. Although the O2-power regressions were linear for C [r = 0.997 (SD 0.001)] and UT [r = 0.997 (SD 0.001)], the O2-power slope was higher at power outputs at or above the lactate threshold (13.2 ml · min–1 · W–1 than at lower intensities (11.6 ml · min–1 · W–1) in C, an effect which was less profound in UT. As a result, the exclusion of O2 at the highest power outputs completely abolished the difference in O2-power slopes between C and UT. Thus, the relatively higher O2 during incremental exercise in C can be almost entirely attributed to the higher O2 cost of cycling at higher power outputs. In addition, the presence of non-linear responses in O2 at higher intensities also confirms the invalidity of describing the O2 response across a wide range of power outputs using a linear function, and challenges the validity of predicting the O2 demand of more intense exercise by a linear extrapolation of this same function.  相似文献   

18.
Evidence is presented that the high levels of internal l-glutamic and l-aspartic acid in frog Rana esculenta red blood cells are due to the existence of a specific carrier for acidic amino acids of high affinity K m = 3 m and low capacity (Vmax) 0.4 mol l-Glu · Kg–1 dry cell mass · 10 min–1. It is Na+ dependent and the incorporation of l-glutamic acid can be inhibited by l and d-aspartate and l-cysteic acid, while d-glutamic does not inhibit. Moreover, this glutamic uptake shows a bell-shaped dependence on the external pH. All these properties show that this carrier belongs to the system X AG family. Besides the incorporation through this system, l-glutamic acid is also taken up through the ASC system, although, under physiological conditions, this transport is far less important, since it has relatively low affinity K m 39 m but high capacity (V max) 1.8 mol l-Glu · Kg–1 dry cell mass · 10 min–1.  相似文献   

19.
2,4-Dinitrotoluene (DNT) dioxygenase from Burkholderia sp. strain DNT catalyzes the initial oxidation of DNT to form 4-methyl-5-nitrocatechol (MNC) and nitrite. The displacement of the aromatic nitro group by dioxygenases has only recently been described, and nothing is known about the evolutionary origin of the enzyme systems that catalyze these reactions. We have shown previously that the gene encoding DNT dioxygenase is localized on a degradative plasmid within a 6.8-kb NsiI DNA fragment (W.-C. Suen and J. C. Spain, J. Bacteriol. 175:1831-1837, 1993). We describe here the sequence analysis and the substrate range of the enzyme system encoded by this fragment. Five open reading frames were identified, four of which have a high degree of similarity (59 to 78% identity) to the components of naphthalene dioxygenase (NDO) from Pseudomonas strains. The conserved amino acid residues within NDO that are involved in cofactor binding were also identified in the gene encoding DNT dioxygenase. An Escherichia coli clone that expressed DNT dioxygenase converted DNT to MNC and also converted naphthalene to (+)-cis-(1R,2S)-dihydroxy-1,2-dihydronaphthalene. In contrast, the E. coli clone that expressed NDO did not oxidize DNT. Furthermore, the enzyme systems exhibit similar broad substrate specificities and can oxidize such compounds as indole, indan, indene, phenetole, and acenaphthene. These results suggest that DNT dioxygenase and the NDO enzyme system share a common ancestor.  相似文献   

20.
The balance equations pertaining to the modelling of a slap-shaped bead containing immobilized enzyme uniformly distributed which catalyzes the sequential reactions of degradation of a polymeric substrate were written and analytically solved in dimensionless form. The effect of the Thiele modulus on the selectivity of consumption of each multimeric product was studied for a simple case. Whereas plain diffusional regime leads to lower selectivities than plain kinetic regime, improvements in selectivity of species A i relative to species Ai+1 may be obtained at the expense of higher Thiele moduli within a limited range when the diffusivity of A i is larger than that of A i +1, or when the pseudo first order kinetic constant describing the rate of consumption of A i is lower than that of Ai+1.List of Symbols A i polymeric substrate containing i monomeric subunits - C i mol·m–3 normalized counterpart of C i - C i mol·m–3 concentration of substrate A i - C i,0 mol·m–3 initial concentration of substrate A i - C i,0 normalized counterpart of C i,0 - D ap,i m2·s–1 apparent diffusivity of substrate A i - k i s–1 pseudo-first order rate constant - K m,i mol·m–3 Michaelis-Menten constant associated with substrate A i - L m half-thickness of the catalyst slab - N number of monomeric subunits of the largest substrate molecule - Th Thiele modulus - V i mol·m–3·s–1 rate of rection of substrate A i - Vmax,i mol·m–3·s–1 maximum rate of reaction under saturating conditions of substrate A i - x m longitudinal coordinate - S i,i+1 selectivity of enzyme with respect to substrates with consecutive numbers of monomeric subunits Greek Symbols i ratio of maximum rates of reaction - i ratio of apparent diffusivities  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号