首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Temporal expectation is expectation with respect to the timing of an event such as the appearance of a certain stimulus. In this paper, temporal expectancy is investigated in the context of the theory of visual attention (TVA), and we begin by summarizing the foundations of this theoretical framework. Next, we present a parametric experiment exploring the effects of temporal expectation on perceptual processing speed in cued single-stimulus letter recognition with unspeeded motor responses. The length of the cue–stimulus foreperiod was exponentially distributed with one of six hazard rates varying between blocks. We hypothesized that this manipulation would result in a distinct temporal expectation in each hazard rate condition. Stimulus exposures were varied such that both the temporal threshold of conscious perception (t0 ms) and the perceptual processing speed (v letters s−1) could be estimated using TVA. We found that the temporal threshold t0 was unaffected by temporal expectation, but the perceptual processing speed v was a strikingly linear function of the logarithm of the hazard rate of the stimulus presentation. We argue that the effects on the v values were generated by changes in perceptual biases, suggesting that our perceptual biases are directly related to our temporal expectations.  相似文献   

2.
Neurons in the visual cortex are responsive to the presentation of oriented and curved line segments, which are thought to act as primitives for the visual processing of shapes and objects. Prolonged adaptation to such stimuli gives rise to two related perceptual effects: a slow change in the appearance of the adapting stimulus (perceptual drift), and the distortion of subsequently presented test stimuli (adaptational aftereffects). Here we used a psychophysical nulling technique to dissociate and quantify these two classical observations in order to examine their underlying mechanisms and their relationship to one another. In agreement with previous work, we found that during adaptation horizontal and vertical straight lines serve as attractors for perceived orientation and curvature. However, the rate of perceptual drift for different stimuli was not predictive of the corresponding aftereffect magnitudes, indicating that the two perceptual effects are governed by distinct neural processes. Finally, the rate of perceptual drift for curved line segments did not depend on the spatial scale of the stimulus, suggesting that its mechanisms lie outside strictly retinotopic processing stages. These findings provide new evidence that the visual system relies on statistically salient intrinsic reference stimuli for the processing of visual patterns, and point to perceptual drift as an experimental window for studying the mechanisms of visual perception.  相似文献   

3.
The relation of gamma-band synchrony to holistic perception in which concerns the effects of sensory processing, high level perceptual gestalt formation, motor planning and response is still controversial. To provide a more direct link to emergent perceptual states we have used holistic EEG/ERP paradigms where the moment of perceptual “discovery” of a global pattern was variable. Using a rapid visual presentation of short-lived Mooney objects we found an increase of gamma-band activity locked to perceptual events. Additional experiments using dynamic Mooney stimuli showed that gamma activity increases well before the report of an emergent holistic percept. To confirm these findings in a data driven manner we have further used a support vector machine classification approach to distinguish between perceptual vs. non perceptual states, based on time-frequency features. Sensitivity, specificity and accuracy were all above 95%. Modulations in the 30–75 Hz range were larger for perception states. Interestingly, phase synchrony was larger for perception states for high frequency bands. By focusing on global gestalt mechanisms instead of local processing we conclude that gamma-band activity and synchrony provide a signature of holistic perceptual states of variable onset, which are separable from sensory and motor processing.  相似文献   

4.
相邻性组织和相似性组织是两种极为重要的“知觉组织(perceptual organization)”.我们对前颞叶切除的患者CXY进行了相邻性组织与相似性组织的研究.利用由小图形组成的大图形来研究在相邻性组织与相似性组织中整体与局部之间的相互影响.研究中发现:在相邻性组织中,正常被试所体现的整体对局部的影响显著大于局部对整体的影响这一现象在CXY身上消失了,即CXY相邻性组织的自动加工出现了障碍;在相似性组织中,患者CXY的实验结果与正常被试没有任何差异.另外,在一致连通性(uniform connectedness, UC) 与相邻性组织及相似性组织之间的关系实验中,也发现CXY相邻性组织的自动加工出现了障碍.这些结果说明左前颞叶在相邻性组织、整体知觉以及对连通性的知觉中起到重要的作用.  相似文献   

5.

Background

The load theory of selective attention hypothesizes that distractor interference is suppressed after perceptual processing (i.e., in the later stage of central processing) at low perceptual load of the central task, but in the early stage of perceptual processing at high perceptual load. Consistently, studies on the neural correlates of attention have found a smaller distractor-related activation in the sensory cortex at high relative to low perceptual load. However, it is not clear whether the distractor-related activation in brain regions linked to later stages of central processing (e.g., in the frontostriatal circuits) is also smaller at high rather than low perceptual load, as might be predicted based on the load theory.

Methodology/Principal Findings

We studied 24 healthy participants using functional magnetic resonance imaging (fMRI) during a visual target identification task with two perceptual loads (low vs. high). Participants showed distractor-related increases in activation in the midbrain, striatum, occipital and medial and lateral prefrontal cortices at low load, but distractor-related decreases in activation in the midbrain ventral tegmental area and substantia nigra (VTA/SN), striatum, thalamus, and extensive sensory cortices at high load.

Conclusions

Multiple levels of central processing involving midbrain and frontostriatal circuits participate in suppressing distractor interference at either low or high perceptual load. For suppressing distractor interference, the processing of sensory inputs in both early and late stages of central processing are enhanced at low load but inhibited at high load.  相似文献   

6.

Background

High order cognitive processing and learning, such as reading, interact with lower-level sensory processing and learning. Previous studies have reported that visual perceptual training enlarges visual span and, consequently, improves reading speed in young and old people with amblyopia. Recently, a visual perceptual training study in Chinese-speaking children with dyslexia found that the visual texture discrimination thresholds of these children in visual perceptual training significantly correlated with their performance in Chinese character recognition, suggesting that deficits in visual perceptual processing/learning might partly underpin the difficulty in reading Chinese.

Methodology/Principal Findings

To further clarify whether visual perceptual training improves the measures of reading performance, eighteen children with dyslexia and eighteen typically developed readers that were age- and IQ-matched completed a series of reading measures before and after visual texture discrimination task (TDT) training. Prior to the TDT training, each group of children was split into two equivalent training and non-training groups in terms of all reading measures, IQ, and TDT. The results revealed that the discrimination threshold SOAs of TDT were significantly higher for the children with dyslexia than for the control children before training. Interestingly, training significantly decreased the discrimination threshold SOAs of TDT for both the typically developed readers and the children with dyslexia. More importantly, the training group with dyslexia exhibited significant enhancement in reading fluency, while the non-training group with dyslexia did not show this improvement. Additional follow-up tests showed that the improvement in reading fluency is a long-lasting effect and could be maintained for up to two months in the training group with dyslexia.

Conclusion/Significance

These results suggest that basic visual perceptual processing/learning and reading ability in Chinese might at least partially rely on overlapping mechanisms.  相似文献   

7.
Neural correlates of chromatic motion perception.   总被引:2,自引:0,他引:2  
A Thiele  K R Dobkins  T D Albright 《Neuron》2001,32(2):351-358
A variety of psychophysical and neurophysiological studies suggest that chromatic motion perception in the primate brain may be performed outside the classical motion processing pathway. We addressed this provocative proposal directly by assessing the sensitivity of neurons in motion area MT to moving colored stimuli while simultaneously determining perceptual sensitivity in nonhuman primate observers. The results of these studies demonstrate a strong correspondence between neuronal and perceptual measures. Our findings testify that area MT is indeed a principal component of the neuronal substrate for color-based motion processing.  相似文献   

8.
The weak central coherence hypothesis of Frith is one of the most prominent theories concerning the abnormal performance of individuals with autism on tasks that involve local and global processing. Individuals with autism often outperform matched nonautistic individuals on tasks in which success depends upon processing of local features, and underperform on tasks that require global processing. We review those studies that have been unable to identify the locus of the mechanisms that may be responsible for weak central coherence effects and those that show that local processing is enhanced in autism but not at the expense of global processing. In the light of these studies, we propose that the mechanisms which can give rise to 'weak central coherence' effects may be perceptual. More specifically, we propose that perception operates to enhance the representation of individual perceptual features but that this does not impact adversely on representations that involve integration of features. This proposal was supported in the two experiments we report on configural and feature discrimination learning in high-functioning children with autism. We also examined processes of perception directly, in an auditory filtering task which measured the width of auditory filters in individuals with autism and found that the width of auditory filters in autism were abnormally broad. We consider the implications of these findings for perceptual theories of the mechanisms underpinning weak central coherence effects.  相似文献   

9.
Connell L  Lynott D  Dreyer F 《PloS one》2012,7(3):e33321
Theories of embodied cognition suggest that conceptual processing relies on the same neural resources that are utilized for perception and action. Evidence for these perceptual simulations comes from neuroimaging and behavioural research, such as demonstrations of somatotopic motor cortex activations following the presentation of action-related words, or facilitation of grasp responses following presentation of object names. However, the interpretation of such effects has been called into question by suggestions that neural activation in modality-specific sensorimotor regions may be epiphenomenal, and merely the result of spreading activations from "disembodied", abstracted, symbolic representations. Here, we present two studies that focus on the perceptual modalities of touch and proprioception. We show that in a timed object-comparison task, concurrent tactile or proprioceptive stimulation to the hands facilitates conceptual processing relative to control stimulation. This facilitation occurs only for small, manipulable objects, where tactile and proprioceptive information form part of the multimodal perceptual experience of interacting with such objects, but facilitation is not observed for large, nonmanipulable objects where such perceptual information is uninformative. Importantly, these facilitation effects are independent of motor and action planning, and indicate that modality-specific perceptual information plays a functionally constitutive role in our mental representations of objects, which supports embodied assumptions that concepts are grounded in the same neural systems that govern perception and action.  相似文献   

10.
Seeing more than meets the eye: processing of illusory contours in animals   总被引:4,自引:0,他引:4  
This review article illustrates that mammals, birds and insects are able to perceive illusory contours. Illusory contours lack a physical counterpart, but monkeys, cats, owls and bees perceive them as if they were real borders. In all of these species, a neural correlate for such perceptual completion phenomena has been described. The robustness of neuronal responses and the abundance of cells argue that such neurons might indeed represent a neural correlate for illusory contour perception. The internal state of an animal subject (i.e., alert and behaving) seems to be an important factor when correlating neural activity with perceptual phenomena. The fact that the neural network necessary for illusory contour perception has been found in relatively early visual brain areas in all tested animals suggests that bottom-up processing is largely sufficient to explain such perceptual abilities. However, recent findings in monkeys indicate that feedback loops within the visual system may provide additional modulation. The detection of illusory contours by independently evolved visual systems argues that processing of edges in the absence of contrast gradients reflects fundamental visual constraints and not just an artifact of visual processing.  相似文献   

11.
Neuroscientific investigations regarding aspects of emotional experiences usually focus on one stimulus modality (e.g., pictorial or verbal). Similarities and differences in the processing between the different modalities have rarely been studied directly. The comparison of verbal and pictorial emotional stimuli often reveals a processing advantage of emotional pictures in terms of larger or more pronounced emotion effects evoked by pictorial stimuli. In this study, we examined whether this picture advantage refers to general processing differences or whether it might partly be attributed to differences in visual complexity between pictures and words. We first developed a new stimulus database comprising valence and arousal ratings for more than 200 concrete objects representable in different modalities including different levels of complexity: words, phrases, pictograms, and photographs. Using fMRI we then studied the neural correlates of the processing of these emotional stimuli in a valence judgment task, in which the stimulus material was controlled for differences in emotional arousal. No superiority for the pictorial stimuli was found in terms of emotional information processing with differences between modalities being revealed mainly in perceptual processing regions. While visual complexity might partly account for previously found differences in emotional stimulus processing, the main existing processing differences are probably due to enhanced processing in modality specific perceptual regions. We would suggest that both pictures and words elicit emotional responses with no general superiority for either stimulus modality, while emotional responses to pictures are modulated by perceptual stimulus features, such as picture complexity.  相似文献   

12.
Across many species, scream calls signal the affective significance of events to other agents. Scream calls were often thought to be of generic alarming and fearful nature, to signal potential threats, with instantaneous, involuntary, and accurate recognition by perceivers. However, scream calls are more diverse in their affective signaling nature than being limited to fearfully alarming a threat, and thus the broader sociobiological relevance of various scream types is unclear. Here we used 4 different psychoacoustic, perceptual decision-making, and neuroimaging experiments in humans to demonstrate the existence of at least 6 psychoacoustically distinctive types of scream calls of both alarming and non-alarming nature, rather than there being only screams caused by fear or aggression. Second, based on perceptual and processing sensitivity measures for decision-making during scream recognition, we found that alarm screams (with some exceptions) were overall discriminated the worst, were responded to the slowest, and were associated with a lower perceptual sensitivity for their recognition compared with non-alarm screams. Third, the neural processing of alarm compared with non-alarm screams during an implicit processing task elicited only minimal neural signal and connectivity in perceivers, contrary to the frequent assumption of a threat processing bias of the primate neural system. These findings show that scream calls are more diverse in their signaling and communicative nature in humans than previously assumed, and, in contrast to a commonly observed threat processing bias in perceptual discriminations and neural processes, we found that especially non-alarm screams, and positive screams in particular, seem to have higher efficiency in speeded discriminations and the implicit neural processing of various scream types in humans.

Human screams are more diverse in their communicative nature than those of other species, and are not limited to alarm signals of threat. This study shows that surprisingly, non-alarming screams, and positive screams in particular, have higher efficiency of their cognitive and neural processing than alarm screams.  相似文献   

13.
Psychophysiological evidence suggests that music and language are intimately coupled such that experience/training in one domain can influence processing required in the other domain. While the influence of music on language processing is now well-documented, evidence of language-to-music effects have yet to be firmly established. Here, using a cross-sectional design, we compared the performance of musicians to that of tone-language (Cantonese) speakers on tasks of auditory pitch acuity, music perception, and general cognitive ability (e.g., fluid intelligence, working memory). While musicians demonstrated superior performance on all auditory measures, comparable perceptual enhancements were observed for Cantonese participants, relative to English-speaking nonmusicians. These results provide evidence that tone-language background is associated with higher auditory perceptual performance for music listening. Musicians and Cantonese speakers also showed superior working memory capacity relative to nonmusician controls, suggesting that in addition to basic perceptual enhancements, tone-language background and music training might also be associated with enhanced general cognitive abilities. Our findings support the notion that tone language speakers and musically trained individuals have higher performance than English-speaking listeners for the perceptual-cognitive processing necessary for basic auditory as well as complex music perception. These results illustrate bidirectional influences between the domains of music and language.  相似文献   

14.
Ambiguous visual stimuli provide the brain with sensory information that contains conflicting evidence for multiple mutually exclusive interpretations. Two distinct aspects of the phenomenological experience associated with viewing ambiguous visual stimuli are the apparent stability of perception whenever one perceptual interpretation is dominant, and the instability of perception that causes perceptual dominance to alternate between perceptual interpretations upon extended viewing. This review summarizes several ways in which contextual information can help the brain resolve visual ambiguities and construct temporarily stable perceptual experiences. Temporal context through prior stimulation or internal brain states brought about by feedback from higher cortical processing levels may alter the response characteristics of specific neurons involved in rivalry resolution. Furthermore, spatial or crossmodal context may strengthen the neuronal representation of one of the possible perceptual interpretations and consequently bias the rivalry process towards it. We suggest that contextual influences on perceptual choices with ambiguous visual stimuli can be highly informative about the neuronal mechanisms of context-driven inference in the general processes of perceptual decision-making.  相似文献   

15.
In addition to those with savant skills, many individuals with autism spectrum conditions (ASCs) show superior perceptual and attentional skills relative to the general population. These superior skills and savant abilities raise important theoretical questions, including whether they develop as compensations for other underdeveloped cognitive mechanisms, and whether one skill is inversely related to another weakness via a common underlying neurocognitive mechanism. We discuss studies of perception and visual processing that show that this inverse hypothesis rarely holds true. Instead, they suggest that enhanced performance is not always accompanied by a complementary deficit and that there are undeniable difficulties in some aspects of perception that are not related to compensating strengths. Our discussion emphasizes the qualitative differences in perceptual processing revealed in these studies between individuals with and without ASCs. We argue that this research is important not only in furthering our understanding of the nature of the qualitative differences in perceptual processing in ASCs, but can also be used to highlight to society at large the exceptional skills and talent that individuals with ASCs are able to contribute in domains such as engineering, computing and mathematics that are highly valued in industry.  相似文献   

16.
Prolonged presentation of visually ambiguous figures leads to perceptual switching. Individual switching rates show great variability. The present study compares individuals with high versus low switching rates by investigating human scalp electroencephalogram and blink rates. Eight subjects viewed the Necker cube continuously and responded to perceptual switching by pressing a button. Frequent switchers showed characteristic occipital alpha and frontal theta band activity prior to a switch, whereas infrequent switchers did not. The alpha activity was specific to switching, the theta activity was generic to perceptual processing conditions. A negative correlation was observed between perceptual switching and blink rates. These results suggest that the ability to concentrate attentional effort on the task is responsible for the differences in perceptual switching rates  相似文献   

17.
A brain-damaged patient (D.F.) with visual form agnosia is described and discussed. D.F. has a profound inability to recognize objects, places and people, in large part because of her inability to make perceptual discriminations of size, shape or orientation, despite having good visual acuity. Yet she is able to perform skilled actions that depend on that very same size, shape and orientation information that is missing from her perceptual awareness. It is suggested that her intact vision can best be understood within the framework of a dual processing model, according to which there are two cortical processing streams operating on different coding principles, for perception and for action, respectively. These may be expected to have different degrees of dependence on top-down information. One possibility is that D.F.''s lack of explicit awareness of the visual cues that guide her behaviour may result from her having to rely on a processing system which is not knowledge-based in a broad sense. Conversely, it may be that the perceptual system can provide conscious awareness of its products in normal individuals by virtue of the fact that it does interact with a stored base of visual knowledge.  相似文献   

18.
Previous studies have shown that one’s prior beliefs have a strong effect on perceptual decision-making and attentional processing. The present study extends these findings by investigating how individual differences in paranormal and conspiracy beliefs are related to perceptual and attentional biases. Two field studies were conducted in which visitors of a paranormal conducted a perceptual decision making task (i.e. the face / house categorization task; Experiment 1) or a visual attention task (i.e. the global / local processing task; Experiment 2). In the first experiment it was found that skeptics compared to believers more often incorrectly categorized ambiguous face stimuli as representing a house, indicating that disbelief rather than belief in the paranormal is driving the bias observed for the categorization of ambiguous stimuli. In the second experiment, it was found that skeptics showed a classical ‘global-to-local’ interference effect, whereas believers in conspiracy theories were characterized by a stronger ‘local-to-global interference effect’. The present study shows that individual differences in paranormal and conspiracy beliefs are associated with perceptual and attentional biases, thereby extending the growing body of work in this field indicating effects of cultural learning on basic perceptual processes.  相似文献   

19.
Ding JR  Liao W  Zhang Z  Mantini D  Xu Q  Wu GR  Lu G  Chen H 《PloS one》2011,6(10):e26596
Exploring topological properties of human brain network has become an exciting topic in neuroscience research. Large-scale structural and functional brain networks both exhibit a small-world topology, which is evidence for global and local parallel information processing. Meanwhile, resting state networks (RSNs) underlying specific biological functions have provided insights into how intrinsic functional architecture influences cognitive and perceptual information processing. However, topological properties of single RSNs remain poorly understood. Here, we have two hypotheses: i) each RSN also has optimized small-world architecture; ii) topological properties of RSNs related to perceptual and higher cognitive processes are different. To test these hypotheses, we investigated the topological properties of the default-mode, dorsal attention, central-executive, somato-motor, visual and auditory networks derived from resting-state functional magnetic resonance imaging (fMRI). We found small-world topology in each RSN. Furthermore, small-world properties of cognitive networks were higher than those of perceptual networks. Our findings are the first to demonstrate a topological fractionation between perceptual and higher cognitive networks. Our approach may be useful for clinical research, especially for diseases that show selective abnormal connectivity in specific brain networks.  相似文献   

20.
Attentional modulation of perceptual stabilization   总被引:1,自引:0,他引:1  
Perceptual priming is generally regarded as a passive and automatic process, as it is obtained even without awareness of the prime. Recent studies have introduced a more active form of perceptual priming in which priming for a subsequent ambiguous stimulus is triggered by the subjective percept, that is, interpretation of a previous ambiguous stimulus. This phenomenon known as stabilization does not require a conscious effort to actively maintain one perceptual interpretation. In this study, we show that distraction of attention, during and even after the prime presentation, interferes with the build-up of perceptual memory for stabilization. This implies that despite the apparent automaticity, stabilization involves an active attentional process for encoding and retention. The disruption during the encoding can be attributed to the reduction in sensory signals for the prime. However, the disruption during the retention suggests that the implicit memory trace of the prime necessitates the attentional resource to fully develop. The active nature of the build-up of perceptual memory for stabilization is consistent with the idea that perceptual memory increases its strength gradually over a few seconds. These findings suggest that seemingly automatic and effortless cognitive processes can compete with online perceptual processing for common attentional resources.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号