首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
Dees WL  Hiney JK  Sower SA  Yu WH  McCann SM 《Peptides》1999,20(12):1503-1511
A highly specific antiserum against lamprey gonadotropin-releasing hormone (GnRH) was used to localize 1-GnRH in areas of the rat brain associated with reproductive function. Immunoreactive 1-GnRH-like neurons were observed in the ventromedial preoptic area (POA), the region of the diagonal band of Broca and the organum vasculosum lamina terminalis, with fiber projections to the rostral wall of the third ventricle and the organum vasculosum lamina terminalis. Another population of 1-GnRH-like neurons was localized in the dorsomedial and lateral POA, with nerve fibers projecting caudally and ventrally to terminate in the external layer of the median eminence. Other fibers apparently projected caudally and circumventrically to terminate around the cerebral aqueduct in the mid-brain central gray. By using a highly specific antiserum directed against mammalian luteinizing hormone-releasing hormone (m-LHRH), the localization of the LHRH neuronal system was compared to that of the 1-GnRH system. There were no LHRH neurons in the dorsomedial or the lateral region of the POA that contained the 1-GnRH neurons. As expected, there was a large population of LHRH neurons in the ventromedial POA associated with the diagonal band of Broca and organum vasculosum lamina terminalis. In both of these regions, there were many more LHRH neurons than 1-GnRH neurons and the LHRH neurons extended more dorsally and laterally than the 1-GnRH neurons. The LHRH neurons seemed to project to the median eminence in the same areas as those that were innervated by the 1-GnRH neurons. Absorption studies indicated that 1-GnRH cell bodies were eliminated by adding 1 microg of either 1-GnRH-I or 1-GnRH-III, but not m-LHRH to the antiserum before use. Fibers were largely eliminated by the addition of 1 microg 1-GnRH-III to the antiserum. No chicken GnRH-II neurons or nerve fibers could be visualized by immunostaining. Because the antiserum recognized GnRH-I and GnRH-III equally, we have visualized an 1-GnRH system in rat brain. The results are consistent with the presence of either one or both of these peptides within the rat hypothalamus. Because 1-GnRH-I has only weak nonselective gonadotropin-releasing activity, whereas 1-GnRH-III is a highly selective releaser of follicle-stimulating hormone, and because 1-GnRH neurons are located in areas known to control follicle-stimulating hormone release selectively, our results support the hypothesis that 1-GnRH-III, or a closely related peptide, may be mammalian follicle-stimulating hormone-releasing factor.  相似文献   

2.
The distribution of luteinizing hormone-releasing hormone (LHRH)-immunostained perikarya and processes was examined in the forebrains of six sexually mature female pigs by use of indirect biotin-avidin horseradish peroxidase immunocytochemistry. Two primary antisera (Drs. Y.F. Chen and V.D. Ramirez CRR11B73 and Miles-Yeda UZ-4) yielded positive staining. Adjacent sections treated either primary antiserum preabsorbed with LHRH or with normal rabbit serum substituted for primary antiserum lacked positive staining. The greatest proportion of LHRH-immunostained perikarya were found in the medial preoptic area adjacent to the organum vasculosum of the lamina terminalis. The LHRH-immunostained perikarya were also scattered rostrally in the diagonal band of Broca, and within the lateral hypothalamic area, paraventricular nucleus, periventricular zone, suprachiasmatic nucleus, and medial basal hypothalamus. LHRH-immunostained processes, which extended from the medial preoptic area, coursed either along the ventral surface to the median eminence or medially and ventrally along the third ventricular wall ventrally to the median eminence and caudally to the level of the mammillary bodies. Extrahypothalamic processes were located adjacent to the lateral ventricular floor and the third ventricle from the lateral septal area (stria terminalis) to the level of the habenular nucleus. LHRH-immunostained neurons were unipolar, bipolar, and multipolar. Close associations between individual LHRH-immunostained neurons were observed.  相似文献   

3.
The anatomical distribution of neurons and fibers containing Luteinizing Hormone Releasing Hormone-Immunoreactivity (LHRH-IR) in the brain of the Formosan Rock-Monkey was investigated employing immunohistochemical techniques. LHRH-IR neurons were observed in an area demarcated rostrally by the diagonal band of Broca and caudally by the mammillary area. The majority of these neurons were principally localized in the preoptic area, periventricular zone, and the arcuate nucleus. The supraoptic nucleus, septal area, triangular septal nucleus, nucleus of the diagonal band of Broca, suprachiasmatic nucleus, retrochiasmatic area, mammillary area, and the amygdala also exhibited neuronal LHRH immunoreactivity. LHRH-IR fibers appeared to originate in all of the above areas of the hypothalamus, project caudally, and subsequently terminate in the median eminence (ME). In addition to the above, LHRH-IR fibers were also detected in the organum vasculosum of the lamina terminalis (OVLT). A scattering of LHRH-IR fibers were also observed in several extrahypothalamic regions, notably the subfornical organ, indusium griseum, habenular complex, septohypothalamic nucleus, and amygdala.  相似文献   

4.
The anlages of the medial-basal hypothalamus (MBH), septopreoptic area (POA), Rathke's pouch, and the parietal cortex (CC) of rats (at 12.5, 14.5 and 16.5 days of gestation) were transplanted singly or in combination into the third ventricle of adult female rats, and the development of neurons in the grafts was investigated immunohistochemically with the use of antisera to tyrosine hydroxylase (TH), somatostatin (SRIH), ACTH, methionine enkephalin-Arg6-Gly7-Leu8 (Enk-8), rat corticotropin-releasing factor (rCRF), rat hypothalamic growth hormone-releasing factor (rhGRF), and luteinizing hormone-releasing hormone (LHRH). TH and all the peptides examined except LHRH were detected in distinct neurons in MBH grafts and in cografts of MBH plus Rathke's pouch from 12.5-day-old embryos. SRIH, rCRF, Enk-8, and TH were found in POA grafts from embryos of the same age. Although immunoreactive LHRH was first detected in neurons in POA grafts from 16.5-day-old embryos, it appeared in cografts of POA and MBH from 12.5-day-old embryos. The immunoreactive fibers developed in the grafts expressed the same characteristic behaviors as in intact brain; the fibers containing hormonal substances formed complexes with the vasculature like in the organum vasculosum laminae terminalis (OVLT) or in the median eminence, while the fibers containing neurotropic signals formed fiber networks surrounding other nerve cell bodies as if they synaptically associate. In CC grafts, the neurons contained TH, SRIH, rCRF, or Enk-8, and their axonal processes formed fiber networks. These findings suggest that all the hypothalamic neurons examined are committed by 12.5 days of gestation to develop maintaining transmitter phenotype and target recognition capacity.  相似文献   

5.
The preoptic/anterior hypothalamic area (POA/AH) is one of the most sexually dimorphic areas of the vertebrate brain and plays a pivotal role in regulating male sexual behavior. Vinclozolin is a fungicide thought to be an environmental antiandrogen, which disrupts masculine sexual behavior when administered to rabbits during development. In this study, we examined several characteristics of the rabbit POA/AH for sexual dimorphism and endocrine disruption by vinclozolin. Pregnant rabbits were dosed orally with vinclozolin (10 mg/kg body weight) or carrot paste vehicle once daily for 6 wk beginning at midgestation and continuing through nursing until Postpartum Week 4. At 6 wk, offspring were perfused with 4% paraformaldehyde and brains processed for immunocytochemical localization of tyrosine hydroxylase, calbindin, gonadotropin-releasing hormone (GnRH), or Nissl stain. There were significant sex differences in the distribution of calbindin in the POA/AH and the size of cells in the dorsal POA/AH (values greater in females than in males), but not in the number or distribution of tyrosine hydroxylase or GnRH neurons. In both sexes, exposure to vinclozolin significantly increased calbindin expression in the ventral POA/AH and significantly decreased number of GnRH neurons selectively in the region of the organum vasculosum of the lamina terminalis (OVLT) but not more caudally in the POA/AH. This is the first documentation of a sexually dimorphic region in the rabbit brain, and further supports the use of this species as a model for studying the influence of vinclozolin on reproductive development with potential application to human systems.  相似文献   

6.
Summary The distribution of luteinizing hormone-releasing hormone (LHRH)-immunoreactive perikarya and processes was examined, in the untreated rat, with the unlabeled antibody enzyme method of immunocytochemistry on thick 50 m vibratome sections. LHRH neurons were primarily observed in the preoptico-anterior hypothalamic and septal areas. Projections from these cell bodies to the median eminence form three distinct pathways, one laterally along the course of the optic tracts, one medially through the periventricular stratum of the third ventricle, and one through the tractus infundibularis. In addition, some of these cell bodies project to the organum vasculosum of the lamina terminalis (OVLT) and the subfornical organ (SFO). LHRH immunoreactive neurons were also noted in the anterior olfactory regions; they project along the medial olfactory tract to the olfactory bulb.  相似文献   

7.
The ontogenic development of some hypothalamic neuropeptides: luteinizing hormone releasing hormone (LHRH); somatostatin (SRIF) and neurophysin (NF) and their localization in the hypothalamus of fetuses in different stages of the fetal life were studied by immunoperoxidase method. It was found that differentiation of the neurons which produce the examined hormones begins in the midstage of pregnancy. LHRH is stored in the nerve terminals of the median eminence (ME) and organum vasculosum of the lamina terminalis (OVLT) since 72 day of gestation and its amount gradually increases with the development of the embryo. In this stage a few immunoreactive (ir) LHRH perikarya appear but they are most numerous in the last days of pregnancy (110 day). They are localized in the most anterior periventricular parts of the hypothalamus, area preoptica, diagonal band of Broca and very rare in the medial-basal hypothalamus. Somatostatin is produced in the separate neuronal system and appears in the last days of fetal life. Neurophysin is present in both magnocellular nuclei in 72 day-old fetuses, but at the end of gestation it is seen also in some preoptico-septal region.  相似文献   

8.
Summary The new opioid heptapeptide dermorphin, first isolated from frog skin, has been localized immunohistochemically in nerve cell bodies and nerve fibers of the arcuate-periarcuate region, around the organum vasculosum of the lamina terminalis (OVLT) and in the subfornical organ of the rat brain. A role of dermorphin in modulating LHRH release is suggested.  相似文献   

9.
The luteinizing hormone (LH)-releasing activities a pooled rat organum vasculosum lamina terminalis (OVLT) and median eminence (ME) tissues were evaluated for chromatographic and biologic similarity and compared to those of synthetic decapeptide LH-releasing hormone (LHRH). The LHRH detected in these extracts appeared similar chromatographically (Sephadex G-25) to synthetic LHRH. These extracts, as well as synthetic LHRH, were also capable of stimulating dose dependent gonadotropin release form cultures rat gonadotrophs. These findings suggest a physiological role of the LHRH present in the rat OVLT in the control of gonadotropin secretion.  相似文献   

10.
Using the immunoperoxidase method, luteinizing hormone releasing hormone (LHRH) and somatostatin (SRIF) were demonstrated in the hypothalamus of fetal sheep. Both hormones were found in the perikarya at about day 60 of fetal life, i.e., at the end of the first half of pregnancy. Immunoreactive LHRH (irLHRH) perikarya were situated in the vicinity of the organum vasculosum of the lamina terminalis (OVLT), i.e., in the medial preoptic nucleus and in the nucleus of the diagonal band of Broca. They were scattered and generally sparse in these areas. In the earliest stages of fetal life (60, 75, 90 days of gestation) irSRIF perikarya grouped in the ventromedial nucleus and in the lateral preoptic nucleus, were very numerous. In the oldest fetuses (120 and 135 days of gestation) they had disappeared from these nuclei but could be found in some extrahypothalamic regions--the amygdala, septo-olfactory area and sometimes in the anterior periventricular zone of the hypothalamus. Neither irLHRH nor irSRIF material were stored in the nerve terminals of the external layer of the median eminence (ME) before day 75 of gestation. In all developmental stages examined, irLHRH material in the ME was very scarce whereas irSRIF material very aboundant.  相似文献   

11.
Summary The distribution of gonadotropin-releasing hormone-immunoreactive neurons and processes was mapped in the female mink brain using coronal, horizontal and sagittal sections. Perikarya were found along a ventral continuum including the olfactory tubercle, the diagonal band of Broca, the lateral septum, the preoptic and anterior hypothalamic area and the mediobasal hypothalamus; 80% of the perikarya were counted in the mediobasal hypothalamus. Fibres were mainly observed in the organum vasculosum of the lamina terminalis and the median eminence. A few processes terminated in the ependymal cells lining the third and lateral ventricles. The total number of immunoreactive perikarya was the highest in the brains of females sacrificed in July; it then significantly decreased until December. This variation is discussed in relation to the annual breeding cycle.  相似文献   

12.
An antiserum raised against the synthetic tripeptide pyroglutamyl-histidyl-proline (free acid) was used to localize thyrotropin-releasing hormone (TRH) in the rat central nervous system (CNS) by immunocytochemistry. The distribution of TRH-immunoreactive structures was similar to that reported earlier; i.e., most of the TRH-containing perikarya were located in the parvicellular part of the hypothalamic paraventricular nucleus, the suprachiasmatic portion of the preoptic nucleus, the dorsomedial nucleus, the lateral basal hypothalamus, and the raphe nuclei. Several new locations for TRH-immunoreactive neurons were also observed, including the glomerular layer of the olfactory bulb, the anterior olfactory nuclei, the diagonal band of Broca, the septal nuclei, the sexually dimorphic nucleus of the preoptic area, the reticular thalamic nucleus, the lateral reticular nucleus of the medulla oblongata, and the central gray matter of the mesencephalon. Immunoreactive fibers were seen in the median eminence, the organum vasculosum of the lamina terminalis, the lateral septal nucleus, the medial habenula, the dorsal and ventral parabrachial nuclei, the nucleus of the solitary tract, around the motor nuclei of the cranial nerves, the dorsal vagal complex, and in the reticular formation of the brainstem. In the spinal cord, no immunoreactive perikarya were observed. Immunoreactive processes were present in the lateral funiculus of the white matter and in laminae V-X in the gray matter. Dense terminal-like structures were seen around spinal motor neurons. The distribution of TRH-immunoreactive structures in the CNS suggests that TRH functions both as a neuroendocrine regulator in the hypothalamus and as a neurotransmitter or neuromodulator throughout the CNS.  相似文献   

13.
Summary The corticotropin-releasing factor (CRF)-containing neurons were investigated in the brain of the domestic fowl by means of the peroxidase-antiperoxidase technique at the light-microscopic level. The detection of CRF-immunoreactivity was facilitated by silver intensification. CRF-containing perikarya were found in the paraventricular, preoptic and mammillary nuclei of the hypothalamus and in some extrahypothalamic areas (nuclei dorsomedialis and dorsolateralis thalami, nucleus accumbens septi, lobus parolfactorius, periaqueductal gray of the mesencephalon, nucleus oculomotorius ventralis). Immunoreactive nerve fibers and terminals were demonstrated in the external zone of the median eminence and the organum vasculosum of the lamina terminalis. These results indicate that an immunologically demonstrable CRF-neurosecretory system also exists in the avian central nervous system.  相似文献   

14.
Previously we have found that small lesions confined to the medial preoptic nucleus (MPN) or the suprachiasmatic nucleus (SCN) blocked the cyclic release of gonadotropins in the female rat, inducing a persistent estrous state. Since the MPN is located just caudal to the organum vasculosum of the lamina terminalis (OVLT) where LHRH cell bodies are most concentrated, we applied an immunocytochemical technique to examine the possibility that the lesions had simply disrupted LHRH neurons or fibers. Using a new anti-LHRH provided by Dr. V. D. Ramirez, we found that the distribution pattern of immunoreactive LHRH cell bodies and fibers was similar to that previously reported, although the staining was more intense and extensive with low background. There was no concentration of LHRH cell bodies and fibers in the MPN or SCN and, in fact, these nuclei generally showed a lower density of stained elements than did surrounding tissue. In persistent estrous animals with lesions confined to the MPN there was no detectable reduction of stained fibers in the median eminence. These results, along with the results of other workers, suggest that persistent estrus following lesions of the MPN or SCN is not due to reduction of LHRH neurons or fibers. Rather, they support the hypothesis that these nuclei are critical for triggering the ovulatory release of LHRH.  相似文献   

15.
Summary The distribution of luteinizing hormone-releasing hormone (LHRH) was studied in the rat and mouse brain by means of light and electron microscopic immunohistochemistry using the peroxidase-antiperoxidase method. An immunoreactive product to LHRH antiserum was found near the blood vessels of the vascular organ of the lamina terminalis. In the arcuate nucleus-median eminence region, an immunoreactive material occurred bilaterally in the hypothalamic tissue around the tuberoinfundibular sulci. Electron microscopy revealed that immunoreactive fibers observed light microscopically contain numerous granules 100–130 nm in diameter. No immunoreactive product was located in the tanycytes of the median eminence, the perikarya of hypothalamic neurons, and the parenchyma of several circumventricular organs (subfornical organ, subcommissural organ, pineal organ, area postrema).Supported by grants from the Ministry of Education of Japan and the Ford Foundation  相似文献   

16.
Immunocytochemical techniques are now being used to localize hypothalamic neurosecretory hormones and related peptides in the mammalian brain. The data are probably incomplete, due primarily to false negative results. A number of previous assumptions concerning these pathways have been confirmed while other unexpected results were obtained. As expected, vasopressin and oxytocin and their associated proteins, neurophysins, were found in the magnocellular cell bodies of the hypothalamus and in their axonal projections to the neural lobe of the pituitary. Gonadotropin-releasing hormone (Gn-RH), somatostatin, and thyrotropin-releasing hormone (TRH) were located in what appears to be parvicellular nerve terminals on portal capillaries. Gn-RH has been found in perikarya in the arcuate nucleus, which is considered a source of fibers to the portal capillary bed. An extensive network of cell bodies and fibers in the preoptic area was also found to contain Gn-RH, and others in the periventricular nucleus in the anterior hypothalamus reacted with antiserum to somatostatin. Unexpected was considerable evidence that vasopressin is secreted directly into hypophyseal portal blood. This hormone and its neurophysin were also found in parvicellular neurons in the suprachiasmatic nucleus of rodents. All the hormones were found in fibers in the organum vasculosum of the lamina terminalis and in the posterior pituitary gland.  相似文献   

17.
Utilizing an immunoperoxidase technique at the light microscope level, growth hormone-release-inhibiting hormone (somatostatin) was localized in the external zone of the median eminence, the subcommissural organ, the organum vasculosum of the lamina terminalis and the pineal gland. No positive reaction was detected in any other brain area.  相似文献   

18.
The localization of LHRH-containing perikarya and nerve fibers in the hypothalami of the domestic fowl and Japanese quail was investigated by means of the specific immunoperoxidase ABC method, using antisera against chicken LHRH-I ([Gln8]-LHRH), chicken GnRH-II ([His5-Trp7-Tyr8]-LHRH[2-10]) and mammalian LHRH ([Arg8]-LHRH). Chicken LHRH-I-immunoreactive perikarya were sparsely scattered in the nucleus preopticus periventricularis (POP), nucleus filiformis (FIL) and nucleus septalis medialis (SM), and in bilateral bands extending from these nuclei into the septal area in both species. A few reactive perikarya were also observed in the nucleus accumbens (Ac) and lobus parolfactorius (LPO). Numerous cLHRH-I-immunoreactive fibers were widely scattered in the preoptic, septal and tuberal areas, and were densely concentrated in the external layer of the median eminence and in organum vasculosum of the lamina terminalis (OVLT) in both species. Anti-mammalian LHRH serum cross-reacted weakly with perikarya and fibers immunoreactive to anti-cLHRH-I serum in normal chicken and quail. Anti-cGnRH-II[2-10] serum immunoreacted with magnocellular neurons distributed in the rostral end of the mesencephalon along the midline close to the nervus oculomotorius (N III). These perikarya were apparently different from cLHRH-I immunoreactive neurons. No immunoreactive cells and fibers against anti-cGnRH-II[2-10] were observed in the hypothalamus and median eminence of the chicken or quail. Anti-cGnRH-II[2-10] bound specifically with cGnRH-II.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
Neural structures containing luteinizing hormone-releasing hormone (LHRH) are characterized in adult ewe and female lamb brains. Three anti-LHRH antisera are used in an immunofluorescent or immunoperoxidase method. On our preparations, all three gave the same results, expressed as number of labelled cells (about 2500 in a whole brain). It was found that 95% of the LHRH-immunoreactive cells are located in the preoptico-hypothalamic area, where cell bodies are localized mainly (50%) in the area surrounding the organum vasculosum of the lamina terminalis (OVLT); they are also found in a more anterior section of the medial part of the olfactory tubercle and the medial septum (14%), in a more posterior situation in the anterior and lateral hypothalamus (16%), and in the mediobasal hypothalamus (15%). Fibres originating in various part of the whole preoptico-hypothalamic group reach the OVLT and the median eminence. The remaining cells (5%) and fibres are found in various tel-, di-, and mesencephalic areas.  相似文献   

20.
The distribution of proopiomelanocortin (POMC)-immunoreactive neurons was examined in the forebrains of nine sexually mature female pigs by indirect biotin-avidin horseradish peroxidase immunocytochemistry. Primary antiserum against ovine beta-endorphin (Bioflex #BF-EP-3-1) yielded positive staining of neuronal perikarya and processes. Adjacent control sections treated either with primary antiserum preabsorbed with beta-endorphin or substituted with normal rabbit serum lacked specific staining. POMC-immunoreactive cells were located in the anterior and intermediate lobe of the pituitary gland. POMC-immunoreactive perikarya were located in the arcuate nucleus and periarcuate area. The pituitary stalk/median eminence contained sparsely distributed POMC-immunoreactive fibers, which were confined to the zona interna. POMC-immunoreactive fibers were located in the arcuate nucleus and extended rostrally from the arcuate nucleus into the telencephalon coursing adjacent to the wall of the third ventricle as well as through the anterior hypothalamus, suprachiasmatic, supraoptic nuclei and preoptic areas to the nucleus accumbens, diagonal band of Broca, olfactory tubercle, bed nucleus of the stria terminalis and the ventro-lateral aspect of the septum. Caudal projections extended along the wall of the third ventricle to the level of the mammillary bodies and also coursed dorsally, passing through the periventricular, paraventricular, and dorsal medial nuclei of the hypothalamus to the midline thalamic nuclei and habenular nucleus. Lateral projections extended from the arcuate nucleus along the dorsal aspect of the optic tract and terminated in the amygdaloid complex. The distribution of POMC-immunoreactive perikarya and fibers is similar to that of the luteinizing hormone-releasing hormone (LHRH) fiber network. Therefore the opportunities exist, anatomically, for interactions between the POMC and the LHRH systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号