首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
To enhance our understanding of GA metabolism in rice (Oryza sativa), we intensively screened and identified 29 candidate genes encoding the following GA metabolic enzymes using all available rice DNA databases: ent-copalyl diphosphate synthase (CPS), ent-kaurene synthase (KS), ent-kaurene oxidase (KO), ent-kaurenoic acid oxidase (KAO), GA 20-oxidase (GA20ox), GA 3-oxidase (GA3ox), and GA 2-oxidase (GA2ox). In contrast to the Arabidopsis genome, multiple CPS-like, KS-like, and KO-like genes were identified in the rice genome, most of which are contiguously arranged. We also identified 18 GA-deficient rice mutants at six different loci from rice mutant collections. Based on the mutant and expression analyses, we demonstrated that the enzymes catalyzing the early steps in the GA biosynthetic pathway (i.e. CPS, KS, KO, and KAO) are mainly encoded by single genes, while those for later steps (i.e. GA20ox, GA3ox, and GA2ox) are encoded by gene families. The remaining CPS-like, KS-like, and KO-like genes were likely to be involved in the biosynthesis of diterpene phytoalexins rather than GAs because the expression of two CPS-like and three KS-like genes (OsCPS2, OsCPS4, OsKS4, OsKS7, and OsKS8) were increased by UV irradiation, and four of these genes (OsCPS2, OsCPS4, OsKS4, and OsKS7) were also induced by an elicitor treatment.  相似文献   

2.
3.
4.
Gibberellins (GAs) are biosynthesized through a complex pathway that involves several classes of enzymes. To predict sites of individual GA biosynthetic steps, we studied cell type-specific expression of genes encoding early and late GA biosynthetic enzymes in germinating Arabidopsis seeds. We showed that expression of two genes, AtGA3ox1 and AtGA3ox2, encoding GA 3-oxidase, which catalyzes the terminal biosynthetic step, was mainly localized in the cortex and endodermis of embryo axes in germinating seeds. Because another GA biosynthetic gene, AtKO1, coding for ent-kaurene oxidase, exhibited a similar cell-specific expression pattern, we predicted that the synthesis of bioactive GAs from ent-kaurene oxidation occurs in the same cell types during seed germination. We also showed that the cortical cells expand during germination, suggesting a spatial correlation between GA production and response. However, promoter activity of the AtCPS1 gene, responsible for the first committed step in GA biosynthesis, was detected exclusively in the embryo provasculature in germinating seeds. When the AtCPS1 cDNA was expressed only in the cortex and endodermis of non-germinating ga1-3 seeds (deficient in AtCPS1) using the AtGA3ox2 promoter, germination was not as resistant to a GA biosynthesis inhibitor as expression in the provasculature. These results suggest that the biosynthesis of GAs during seed germination takes place in two separate locations with the early step occurring in the provasculature and the later steps in the cortex and endodermis. This implies that intercellular transport of an intermediate of the GA biosynthetic pathway is required to produce bioactive GAs.  相似文献   

5.
At least five genes of the gibberellin (GA) biosynthesis pathway are clustered on chromosome 4 of Gibberella fujikuroi; these genes encode the bifunctional ent-copalyl diphosphate synthase/ent-kaurene synthase, a GA-specific geranylgeranyl diphosphate synthase, and three cytochrome P450 monooxygenases. We now describe a fourth cytochrome P450 monooxygenase gene (P450-4). Gas chromatography-mass spectrometry analysis of extracts of mycelia and culture fluid of a P450-4 knockout mutant identified ent-kaurene as the only intermediate of the GA pathway. Incubations with radiolabeled precursors showed that the metabolism of ent-kaurene, ent-kaurenol, and ent-kaurenal was blocked in the transformants, whereas ent-kaurenoic acid was metabolized efficiently to GA(4). The GA-deficient mutant strain SG139, which lacks the 30-kb GA biosynthesis gene cluster, converted ent-kaurene to ent-kaurenoic acid after transformation with P450-4. The B1-41a mutant, described as blocked between ent-kaurenal and ent-kaurenoic acid, was fully complemented by P450-4. There is a single nucleotide difference between the sequence of the B1-41a and wild-type P450-4 alleles at the 3' consensus sequence of intron 2 in the mutant, resulting in reduced levels of active protein due to a splicing defect in the mutant. These data suggest that P450-4 encodes a multifunctional ent-kaurene oxidase catalyzing all three oxidation steps between ent-kaurene and ent-kaurenoic acid.  相似文献   

6.
ent-Kaurene is a tetracyclic hydrocarbon precursor for gibberellins (GAs) in plants and fungi. To address whether fungal GA biosynthesis enzymes function in plants, we generated transgenic Arabidopsis plants overexpressing ent-kaurene synthase (GfCPS/KS) from a GA-producing fungus Gibberella fujikuroi. GfCPS/KS catalyzes a two-step reaction corresponding to ent-copalyl diphosphate synthase (CPS) and ent-kaurene synthase (KS) activities in plants. When GfCPS/KS was overexpressed and targeted to plastids, a range of GA-deficient phenotypes of the ga1-3 and ga2-1 mutants (defective in CPS and KS, respectively) were restored to wild type. Unexpectedly, the transgenic lines overproducing GfCPS/KS emitted the GA precursor ent-kaurene into the headspace besides its accumulation in the plant body. When co-cultivated with the ent-kaurene overproducers in a closed environment, the airborne ent-kaurene was able to fully complement the dwarf phenotype of ga1-3 and ga2-1 mutants, but not that of the ga3-1 mutant (defective in ent-kaurene oxidase). These results suggest that ent-kaurene may be efficiently metabolized into bioactive GAs in Arabidopsis when supplied as a volatile. We also provide evidence that ent-kaurene is released in the headspace of wild-type Chamaecyparis obtusa and Cryptomeria japonica plants, suggesting the occurrence of this hydrocarbon GA precursor as a volatile in nature.  相似文献   

7.
The plant hormone, gibberellin (GA), regulates plant growth and development. It was first isolated as a superelongation-promoting diterpenoid from the fungus, Gibberella fujikuroi. G. fujikuroi uses different GA biosynthetic intermediates from those in plants to produce GA3. Another class of GA-producing fungus, Phaeosphaeria sp. L487, synthesizes GA1 by using the same intermediates as those in plants. A molecular analysis of GA biosynthesis in Phaeosphaeria sp. has revealed that diterpene cyclase and cytochrome P450 monooxygenases were involved in the plant-like biosynthesis of GA1. Fungal ent-kaurene synthase is a bifunctional cyclase. Subsequent oxidation steps are catalyzed by P450s, leading to biologically active GA1. GA biosynthesis in plants is divided into three steps involving soluble enzymes and membrane-bound cytochrome P450. The activation of plant GAs is catalyzed by soluble 2-oxoglutarate-dependent dioxygenases, which is in contrast to the catalysis of fungal GA biosynthesis. This difference suggests that the origin of fungal GA biosynthesis is evolutionally independent of that in plants.  相似文献   

8.
The genes for gibberellin (GA) biosynthesis are clustered in the fungus Gibberella fujikuroi. In addition to genes encoding a GA-specific geranylgeranyl diphosphate synthase and a bifunctional ent-copalyl diphosphate/ent-kaurene synthase, the cluster contains four cytochrome P450 monooxygenase genes (P450-1, -2, -3, -4). Recently it was shown that P450-4 and P450-1 encode multifunctional enzymes catalyzing the three oxidation steps from ent-kaurene to ent-kaurenoic acid and the four oxidation steps from ent-kaurenoic acid to GA14, respectively. Here we describe the functional analysis of the P450-2 gene by gene disruption and by expressing the gene in a mutant that lacks the entire GA biosynthesis gene cluster. Mutants in which P450-2 is inactivated by the insertion of a large piece of DNA accumulated GA14 and lacked biosynthetically more advanced metabolites, indicating that the gene encodes a 20-oxidase. This was confirmed by incubating lines containing P450-2 in the absence of the other GA biosynthesis genes with isotopically labeled substrates. The P450-2 gene product oxidized the 3beta-hydroxylated intermediate, GA14, and its non-hydroxylated analogue GA12 to GA4 and GA9, respectively. Expression of P450-2 is repressed by high amounts of nitrogen in the culture medium but is not affected by the presence of biosynthetically advanced GAs, i.e. there is no evidence for feedback regulation. The fact that the GA 20-oxidase is a cytochrome P450 monooxygenase in G. fujikuroi and not a 2-oxoglutarate-dependent dioxygenase as in plants, together with the significant differences in regulation of gene expression, are further evidence for independent evolution of the GA biosynthetic pathways in plants and fungi.  相似文献   

9.
Stevia rebaudiana Bertoni leaves accumulate a mixture of at least eight different glycosides derived from the tetracyclic diterpene steviol. These natural products taste intensely sweet and have similar biosynthetic origins to those of gibberellic acid (GA). The initial steps leading to the formation of GA result from the two-step cyclization of geranylgeranyl diphosphate (GGDP) to (-)-kaurene via the action of two terpene cyclases (-)-copalyl diphosphate synthase (CPS) and (-)-kaurene synthase (KS). Steviol biosynthesis probably uses the same mechanism although the genes and enzymes from S. rebaudiana that are involved in the cyclization of GGDP have not been characterized. We have isolated both the CPS and KS genes from S. rebaudiana and found that recombinant CPS and KS were catalytically active, suggesting that the CPS and KS genes participate in steviol biosynthesis. The genes coding for CPS and KS are usually present in single copies in most plant species and their expression is normally low and limited to rapidly growing tissues. The KS gene has been duplicated in the S. rebaudiana genome and both the KS and CPS genes are highly expressed in mature leaves, a pattern opposite to that found with GA biosynthesis. This pattern may, at least in part, lead to temporal and spatial separation of GA and steviol biosynthesis and probably helps to prevent over-expression from interfering with normal GA metabolism. Our results show that CPS and KS are part of the steviol glycoside biosynthetic pathway and that Stevia rebaudiana has recruited two genes to secondary metabolism from a highly regulated pathway involved in hormone biosynthesis.  相似文献   

10.
The two-step cyclization reaction of ent -kaurene synthesis from geranylgeranyl diphosphate is the first committed step in the biosynthetic pathway of the plant hormone gibberellin. Recent molecular cloning and characterization of the genes encoding the two corresponding enzymes, copalyl diphosphate synthase (CPS) and ent -kau-rene synthase (KS), have demonstrated that ent -kaurene synthesis is localized in the plastids and is highly regulated in specific tissues and cell types during plant development. In addition to occurring in actively growing tissues, ent -kaurene synthesis also takes place in fully expanded leaves. Therefore mature leaves may produce gibberellin intermediates or bioactive gibberellins for transport to responsive tissues. DNA sequence analyses have revealed a conserved aspartate-rich motif, D(I/V)DDTA among CPS and other protonation-initiated terpene cyclases, while KS contains a highly conserved DDXXD motif which was proposed to function as a divalent metal ion-diphos-phate complex binding site in ionization-initiated terpene cyclases and prenyltrans-ferases.  相似文献   

11.
We have used fusions of gibberellin biosynthesis enzymes to green fluorescent protein (GFP) to determine the subcellular localization of the early steps of the pathway. Gibberellin biosynthesis from geranylgeranyl diphosphate is catalysed by enzymes of the terpene cyclase, cytochrome P450 mono-oxygenase and 2-oxoglutarate-dependent dioxygenase classes. We show that the N-terminal pre-sequences of the Arabidopsis thaliana terpene cyclases copalyl diphosphate synthase (AtCPS1) and ent-kaurene synthase (AtKS1) direct GFP to chloroplasts in transient assays following microprojectile bombardment of tobacco leaves. The AtKS1-GFP fusion is also imported by isolated pea chloroplasts. The N-terminal portion of the cytochrome P450 protein ent-kaurene oxidase (AtKO1) directs GFP to chloroplasts in tobacco leaf transient assays. Chloroplast import assays with 35S-labelled AtKO1 protein show that it is targeted to the outer face of the chloroplast envelope. The leader sequences of the two ent-kaurenoic acid oxidases (AtKAO1 and AtKAO2) from Arabidopsis direct GFP to the endoplasmic reticulum. These data suggest that the AtKO1 protein links the plastid- and endoplasmic reticulum-located steps of the gibberellin biosynthesis pathway by association with the outer envelope of the plastid.  相似文献   

12.
Wang Q  Hillwig ML  Wu Y  Peters RJ 《Plant physiology》2012,158(3):1418-1425
All higher plants contain an ent-kaurene oxidase (KO), as such a cytochrome P450 (CYP) 701 family member is required for gibberellin (GA) phytohormone biosynthesis. While gene expansion and functional diversification of GA-biosynthesis-derived diterpene synthases into more specialized metabolism has been demonstrated, no functionally divergent KO/CYP701 homologs have been previously identified. Rice (Oryza sativa) contains five CYP701A subfamily members in its genome, despite the fact that only one (OsKO2/CYP701A6) is required for GA biosynthesis. Here we demonstrate that one of the other rice CYP701A subfamily members, OsKOL4/CYP701A8, does not catalyze the prototypical conversion of the ent-kaurene C4α-methyl to a carboxylic acid, but instead carries out hydroxylation at the nearby C3α position in a number of related diterpenes. In particular, under conditions where OsKO2 catalyzes the expected conversion of ent-kaurene to ent-kaurenoic acid required for GA biosynthesis, OsKOL4 instead efficiently reacts with ent-sandaracopimaradiene and ent-cassadiene to produce the corresponding C3α-hydroxylated diterpenoids. These compounds are expected intermediates in biosynthesis of the oryzalexin and phytocassane families of rice antifungal phytoalexins, respectively, and can be detected in rice plants under the appropriate conditions. Thus, it appears that OsKOL4 plays a role in the more specialized diterpenoid metabolism of rice, and our results provide evidence for divergence of a KO/CYP701 family member from GA biosynthesis. This further expands the range of enzymes recruited from the ancestral GA primary pathway to the more complex and specialized labdane-related diterpenoid metabolic network found in rice.  相似文献   

13.
14.
The pea gene LH encodes ent-kaurene oxidase   总被引:4,自引:0,他引:4       下载免费PDF全文
The pea (Pisum sativum) homolog, PsKO1, of the Arabidopsis GA3 gene was isolated. It codes for a cytochrome P450 from the CYP701A subfamily and has ent-kaurene oxidase (KO) activity, catalyzing the three step oxidation of ent-kaurene to ent-kaurenoic acid in the gibberellin (GA) biosynthetic pathway when expressed in yeast (Saccharomyces cerevisiae). PsKO1 is encoded by the LH gene because in three independent mutant alleles, lh-1, lh-2, and lh-3, PsKO1 has altered sequence, and the lh-1 allele, when expressed in yeast, failed to metabolize ent-kaurene. The lh mutants of pea are GA deficient and have reduced internode elongation and root growth. One mutant (lh-2) also causes a large increase in seed abortion. PsKO1 (LH) is expressed in all tissues examined, including stems, roots, and seeds, and appears to be a single-copy gene. Differences in sensitivity to the GA synthesis inhibitor, paclobutrazol, between the mutants appear to result from the distinct nature of the genetic lesions. These differences may also explain the tissue-specific differences between the mutants.  相似文献   

15.
The gibberellin (GA)-deficient dwarf na mutant in pea (Pisum sativum) has severely reduced internode elongation, reduced root growth, and decreased leaflet size. However, the seeds develop normally. Two genes, PsKAO1 and PsKAO2, encoding cytochrome P450 monooxygenases of the subfamily CYP88A were isolated. Both PsKAO1 and PsKAO2 had ent-kaurenoic acid oxidase (KAO) activity, catalyzing the three steps of the GA biosynthetic pathway from ent-kaurenoic acid to GA(12) when expressed in yeast (Saccharomyces cerevisiae). In addition to the intermediates ent-7alpha-hydroxykaurenoic acid and GA(12)-aldehyde, some additional products of the pea KAO activity were detected, including ent-6alpha,7alpha-dihydroxykaurenoic acid and 7beta-hydroxykaurenolide. The NA gene encodes PsKAO1, because in two independent mutant alleles, na-1 and na-2, PsKAO1 had altered sequences and the five-base deletion in PsKAO1 associated with the na-1 allele cosegregated with the dwarf na phenotype. PsKAO1 was expressed in the stem, apical bud, leaf, pod, and root, organs in which GA levels have previously been shown to be reduced in na plants. PsKAO2 was expressed only in seeds and this may explain the normal seed development and normal GA biosynthesis in seeds of na plants.  相似文献   

16.
Natural terpenoids have elaborate structures and various bioactivities, making difficult their synthesis and labeling with isotopes. We report here the enzymatic total synthesis of plant hormone gibberellins (GAs) with recombinant biosynthetic enzymes from stable isotope-labeled acetate. Mevalonate (MVA) is a key intermediate for the terpenoid biosynthetic pathway. 13C-MVA was synthesized from 13C-acetate via acetyl-CoA, using four enzymes or fermentation with a MVA-secreted yeast. The diterpene hydrocarbon, ent-kaurene, was synthesized from 13C-acetate and 13C-MVA with ten and six recombinant enzymes in one test tube, respectively. Four recombinant enzymes, P450 monooxygenases and soluble dioxygenases involved in the GA? biosynthesis from ent-kaurene via GA?? were prepared in yeast and Escherichia coli. All intermediates and the final product GA? were uniformly labeled with 13C without dilution by natural abundance when [U-13C?] acetate was used. The 13C-NMR and MS data for [U-13C??] ent-kaurene confirmed 13C-13C coupling, and no dilution with the 12C atom was observed.  相似文献   

17.
18.
The gibberellin biosynthesis pathway is well defined in Arabidopsis and features seven key enzymes including ent-copalyl diphosphate synthase (CPS), ent-kaurene synthase (KS), ent-kaurene oxidase (KO), ent-kaurenoic acid oxidase (KAO), GA 20-oxidase, GA 3-oxidase, and GA 2-oxidase. The Arabidopsis genes were used to identify their counterparts in wheat and the TaCPS, TaKS, TaKO, and TaKAO genes were cloned from Chinese Spring wheat. In order to determine their chromosome locations, expression patterns and feedback regulations, three TaCPS genes, three TaKS genes, three TaKO genes, and three TaKAO genes were cloned from Chinese Spring wheat. They are mainly located on chromosomes 7A, 7B, 7D and 2A, 2B and 2D. The expression patterns of TaCPS, TaKS, TaKO, and TaKAO genes in wheat leaves, young spikes, peduncles, the third and forth internodes were investigated using quantitative PCR. The results showed that all the genes were constitutively expressed in wheat, but their relative expression levels varied in different tissues. They were mainly transcribed in stems, secondly in leaves and spikes, and the least in peduncles. Feedback regulation of the TaCPS, TaKS, TaKO, and TaKAO genes was not evident. These results indicate that all the genes and their homologs may play important roles in the developmental processes of wheat, but each of the homologs may function differently in different tissues or during different developmental stages.  相似文献   

19.
The gibberellin (GA) biosynthetic pathway includes the three-step oxidation of ent-kaurene to ent-kaurenoic acid, catalyzed by the enzyme ent-kaurene oxidase (KO). Arabidopsis plants overexpressing the KO cDNA under the control of the cauliflower mosaic virus 35S promoter, with or without a translational fusion to a modified green fluorescent protein (GFP), are very similar to wild-type (WT) plants under normal growth conditions. In contrast, when WT and 35S:KO (or 35S:KO-GFP) seeds, seedlings or pollen tubes are grown in the presence of chemical inhibitors of KO, such as paclobutrazol and uniconazole, plants with increased KO expression are partially resistant to the effects of these inhibitors. In combination with the observation that decreased KO levels increase the sensitivity to KO inhibitors, the 35S:KO phenotypes demonstrate that the modification of KO enzyme levels could be used to create transgenic crop plants with altered KO inhibitor response. These results also suggest that the KO gene could be used as a selectable marker for plant regeneration based on resistance to KO inhibitors. Finally, the observation that pollen tubes expressing 35S:KO or 35S:KO-GFP have decreased sensitivity to KO inhibitors provides further evidence for a physiological role for GAs in pollen tube elongation.  相似文献   

20.
ent-Kaurene is a tetracyclic diterpene hydrocarbon and a biosynthetic intermediate of the plant hormone gibberellins. In flowering plants, ent-kaurene is biosynthesized from geranylgeranyl diphosphate (GGDP) by two distinct cyclases, ent-copalyl diphosphate synthase (CPS) and ent-kaurene synthase (KS). Recently, the moss Physcomitrella patens ent-kaurene biosynthetic gene was cloned and functionally characterized. The bifunctional ent-kaurene synthase [P. patens CPS/KS (PpCPS/KS)] produces both ent-kaurene and 16α-hydroxy-ent-kaurane from GGDP via ent-copalyl diphosphate. Here, we cloned and analyzed the function of a cDNA encoding bifunctional ent-kaurene synthase from the liverwort Jungermannia subulata [J. subulata CPS/KS (JsCPS/KS)]. JsCPS/KS catalyzes the cyclization reaction of GGDP to produce ent-kaurene but not 16α-hydroxy-ent-kaurane, even though the PpCPS/KS (881 amino acids) and JsCPS/KS (886 amino acids) sequences share 60% identity. To determine the regions and amino acids involved in 16α-hydroxy-ent-kaurane formation, we analyzed the enzymic functions of JsCPS/KS and PpCPS/KS chimeric proteins. When the C-terminal region of PpCPS/KS was exchanged with the JsCPS/KS C-terminal region, the chimeric cyclases produced only ent-kaurene. The replacement of PpCPS/KS Ala710 with Met or Phe produced a JsCPS/KS-type cyclase that converted GGDP to ent-kaurene as the sole product. In contrast, replacing Ala710 with Gly, Cys or Ser did not affect the PpCPS/KS product profile as much as replacement of Cys of JsCPS/KS by Ala. Thus, the hydrophobicity and size of the side chain residue at the PpCPS/KS amino acid 710 is responsible for quenching the ent-kauranyl cation by the addition of a water molecule.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号