首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Influenza virus stimulates a vigorous cytolytic T lymphocyte (CTL) response in the mouse that is directed to several virion polypeptides. This report examines the fine specificity of a panel of murine influenza-specific CTL clones restricted by MHC class I products of the H-2d haplotype. Ten of 22 A/JAPAN/305/57-specific CTL clones analyzed were directed to the A/JAPAN/305/57 hemagglutinin protein as detected by using target cells infected with a recombinant vaccinia virus containing hemagglutinin gene. Based on their fine specificity of hemagglutinin recognition, these clones defined four functional epitopes on the hemagglutinin. The remaining 12 cytolytic clones exhibited cross-reactivity for type A influenza viruses of the major human subtypes, and approximately 60% of these clones were directed to the nucleocapsid protein. KJ16-133 monoclonal antibody analysis of the utilization of the T cell receptor V beta 8 gene segment subfamily revealed that members of this V beta gene subfamily are expressed by both hemagglutinin- and nucleocapsid-specific MHC class I-restricted CTL (and by influenza-specific MHC class II-restricted T lymphocytes as well). These results suggest that CTL detect several distinct antigenic sites on the hemagglutinin. In addition, these results reveal no direct correlation between viral antigenic specificity and V beta gene expression by these virus-specific CLT clones.  相似文献   

2.
Fine specificity analysis of human influenza-specific cloned cell lines   总被引:1,自引:0,他引:1  
Influenza-specific human-T-cell clones, proliferating in the presence of virus-infected cells with restriction by class II molecules and displaying class II-restricted CTL activity or specific helper activity in antibody synthesis, have been analyzed for antigenic specificities. All of them were obtained by in vitro stimulation against influenza A/Texas virus. In all cases the virus specificity appeared identical in cytolytic and proliferative responses. Three of the clones were broadly cross-reactive, recognizing all or almost all type A influenza strains. The three remaining clones were subtype specific when tested with human strains and recognized the surface glycoproteins of influenza virus. One of these lines reacted with an epitope of the neuraminidase N2 while the other two recognized the hemagglutinin H3. By using a large panel of mammalian and avian influenza strains, it can be demonstrated that hemagglutinin-specific human T cells can recognize a cross-reacting determinant shared by H3 and H4 subtypes of hemagglutinin which has never been detected with antibodies.  相似文献   

3.
To evaluate the replication of a highly virulent avian influenza A virus in a potential reservoir host, mallard ducks (Anas platyrhynchos) were inoculated with the virulent strain A/Ty/Ont/7732/66 (H5N9). Viruses recovered from the ducks were analyzed by hemagglutination inhibition (HI) and enzyme-linked immunosorbent assay (ELISA) and found to possess antigenically altered viral hemagglutinins. Plaque formation on the Madin-Darby Canine Kidney (MDCK) cell line and on primary chicken embryo cells was investigated, and isolates recovered from the ducks differed from the wild type by being unable to form plaques on MDCK cells without trypsin. This phenotype did not appear to be due to inefficient cleavage of the hemagglutinin by host cell proteases since hemagglutinin immunoprecipitated from cell lysates was cleaved. Although the plaquing phenotype suggested attenuation of the isolates from the ducks, they were not significantly altered in their virulence for chickens shown by infectivity studies in vivo. These results indicate that replication of influenza A/Ty/Ont/7732/66 virus in ducks can produce antigenic and phenotypic variants which are still highly virulent for domestic poultry.  相似文献   

4.
L cells expressing either the A/NT/60/68 nucleoprotein or the A/PR/8/34 (H1) hemagglutinin by DNA mediated gene transfer were used to investigate recognition by influenza A specific cytotoxic T lymphocytes (CTL). A subpopulation of CTL that recognized the H1 hemagglutinin was detected in mice primed with either A/PR/8/34 (H1N1) or A/JAP/305/57 (H2N2) influenza viruses. However, neither CTL from mice primed with A/NT/60/68 (H3N2) nor the recombinant virus X31 (H3N2) showed any activity on L cells expressing H1. These results showed that the majority of fully crossreactive CTL do not recognize the hemagglutinin molecule. A comparison between nucleoprotein and hemagglutinin transfected L cells reveals the nucleoprotein as the major target for CTL that are crossreactive on the three pandemic strains of human influenza A virus.  相似文献   

5.
Apoptosis: a mechanism of cell killing by influenza A and B viruses.   总被引:19,自引:4,他引:15       下载免费PDF全文
In previous studies, we observed that the virulent avian influenza A virus A/Turkey/Ontario/7732/66 (Ty/Ont) induced severe lymphoid depletion in vivo and rapidly killed an avian lymphocyte cell line (RP9) in vitro. In examining the mechanism of cell killing by this virus, we found that Ty/Ont induced fragmentation of the RP9 cellular DNA into a 200-bp ladder and caused ultrastructural changes characteristic of apoptotic cell death by 5 h after infection. We next determined that the ability to induce apoptosis was not unique to Ty/Ont. In fact, a variety of influenza A viruses (avian, equine, swine, and human), as well as human influenza B viruses, induced DNA fragmentation in a permissive mammalian cell line, Madin-Darby canine kidney (MDCK), and this correlated with the development of a cytopathic effect during viral infection. Since the proto-oncogene bcl-2 is a known inhibitor of apoptosis, we transfected MDCK cells with the human bcl-2 gene; these stably transfected cells (MDCKbcl-2) did not undergo DNA fragmentation after virus infection. In addition, cytotoxicity assays at 48 to 72 h after virus infection showed a high level of cell viability for MDCKbcl-2 compared with a markedly lower level of viability for MDCK cells. These studies indicate that influenza A and B viruses induce apoptosis in cell cultures; thus, apoptosis may represent a general mechanism of cell death in hosts infected with influenza viruses.  相似文献   

6.
The fine specificity of virus recognition by influenza A/PR8/34(H1N1)-specific cytolytic T lymphocyte (CTL) clones was analyzed with the use of a panel of syngeneic target cells infected with five heterologous influenza A strain viruses. Forty-five H-2 D-end-restricted CTL clones from B10.A(5R) responders (Dd,Ld) demonstrated 14 different patterns of recognition. Many of these clonotypes were able to distinguish between closely related viruses of the same subtype. Such discriminatory capacity, however, was often accompanied by cross-reactivity against a distantly related viral subtype. This supports the contention that virus-specific CTL see different structures than do virus-specific antibodies. A similar analysis of the fine specificity of 60 Db-restricted clones from C57BL/6 responders was performed. The vast majority of this response was composed of clonotypes not observed in the B10.A(5R) response. In addition, the hierarchy of relatedness between the virus strain used for immunization and the various heterologous viruses was different in C57BL/6 and B10.A(5R). In contrast, the D-end-restricted response of Balb/c (Dd,Ld) demonstrated clonotypes similar to those found in B10.A(5R). These data suggest that determinant recognition in an anti-viral CTL response is a function of the H-2 restricting elements, and this is discussed in the context of determinant selection by class I molecules.  相似文献   

7.
We have recently shown that murine target cells can be sensitized for lysis by class I-restricted influenza virus-specific cytotoxic T lymphocytes (CTL) using noninfectious influenza virus. Sensitization is dependent on inactivation of viral neuraminidase activity (which can be achieved by heating virus); and requires fusion of viral and cellular membranes. In the present study, we have examined recognition of antigens derived from heat-treated virus by cloned CTL lines induced by immunization with infectious virus. Target cells sensitized with heat-treated virus were recognized by all 11 CTL clones that were specific for internal virion proteins (nucleoprotein and basic polymerase 1), and by one of six clones specific for the major viral glycoprotein (the hemagglutinin). Immunization of mice with heat-treated virus primed their splenocytes for secondary in vitro CTL responses. CTL generated in this manner recognized target cells infected with recombinant vaccinia virus expressing cloned influenza virus gene products. These findings indicate that both integral membrane proteins and internal proteins that comprise virions can be processed by antigen-presenting cells for recognition by class I-restricted CTL. It also appears that not all hemagglutinin determinants recognized on virus-infected cells are presented by cells sensitized with heat-treated virus.  相似文献   

8.
Recently, an avian influenza A virus (A/Hong Kong/156/97, H5N1) was isolated from a young child who had a fatal influenza illness. All eight RNA segments were of avian origin. The H5 hemagglutinin is not recognized by neutralizing Abs present in humans as a result of infection with the human H1, H2, or H3 subtypes of influenza A viruses. Subsequently, five other deaths and several more human infections in Hong Kong were associated with this avian-derived virus. We investigated whether influenza A-specific human CD8+ and CD4+ T lymphocytes would recognize epitopes on influenza A virus strains derived from swine or avian species, including the 1997 H5N1 Hong Kong virus strains. Our results demonstrate that adults living in an urban area of the U.S. possess influenza A cross-serotype reactive CD8+ and CD4+ CTL that recognize multiple epitopes on influenza A viruses of other species. Bulk culture cytotoxicity was demonstrated against avian and human influenza A viruses. Enzyme-linked immunospot assays detected precursor CTL specific for both human CTL epitopes and the corresponding A/HK/97 viral sequences. We hypothesize that these cross-reactive CTL might provide partial protection to humans against novel influenza A virus strains introduced into humans from other species.  相似文献   

9.
Viral epitopes that are recognized by both HLA class I-restricted and class II-restricted T cells have been defined for a type A influenza virus nucleoprotein (NP) peptide. CD8+ and CD4+ CTL lines have been generated against a synthetic peptide encompassing residues 335 to 349 of NP that are restricted by HLA-B37 and HLA-DQw5, respectively. Both of these CTL populations were capable of specifically lysing influenza A virus-infected targets, indicating that a naturally processed NP peptide(s) was being mimicked by the NP (335-349) peptide. Amino acid residues that are critical for recognition of this NP determinant in the context of HLA-B37 and HLA-DQw5 were investigated by the use of panels of truncated and alanine-substituted NP peptides. The results demonstrate that: 1) truncations in the amino- or carboxy-terminal ends differentially affect CD8+ and CD4+ CTL recognition; 2) the NP (335-349) sequence contains two octapeptide epitopes that share a core of six amino acid residues (NP 338-343); and 3) alanine substitutions at five of these residues abrogated recognition by at least one of the CD8+ and CD4+ CTL lines. Thus, these class I- and class II-restricted CTL lines recognize similar but distinct epitopes, and different structural features of the NP peptide are required for presentation by HLA-B37 and HLA-DQw5. Comparison of the amino acid sequences of the NP peptide presented by HLA-B37 and HLA-DQw5 with other peptides known to be presented by both class I and class II molecules revealed a common motif among these peptides.  相似文献   

10.
Influenza H1 subtype-specific CTL can be induced by secondary stimulation of a hybrid protein of the first 81 amino acids of the viral NS1 non-structural protein and the HA2 subunit of A/Puerto Rico/8/34(H1N1) hemagglutinin. In addition, a derivative of this protein with 65 amino acids deleted from the N-terminal end of HA2 can also generate H1 subtype-specific CTL in bulk cultures. CTL clones established by stimulation with the derivative protein demonstrated cross-reactive lysis of target cells infected with virus strains of the H1 and H2 subtypes. Cold target competition experiments with CTL clones as effectors demonstrated that the Ag specificity between these two hybrid proteins is identical. Adoptive transfer of the CTL clone significantly reduced virus titers in the lungs of mice infected with the virus strains of the H1 or H2 subtype but not those infected with the H3 subtype virus in vivo, which reflects the in vitro CTL clone activity. These experiments demonstrate that an epitope on the hemagglutinin that is conserved on virus strains of the H1 and H2 subtypes induces a protective CTL response. These results suggest an alternative approach for developing influenza vaccines by using conserved antigenic sites on the hemagglutinin HA2 subunit to avoid the problem of frequent antigenic mutations of the HA1 subunit antibody binding sites.  相似文献   

11.
Class II-specific allogeneic cytolytic T lymphocytes (CTL) consist of two types of cells, i.e., Lyt-2+L3T4- and Lyt-2-L3T4 T cells. The Lyt-2+L3T4- class II-specific CTL population constitutes a conspicuous exception to the general correlation observed between the class of major histocompatibility complex antigen recognized and the type of accessory molecules expressed by T cells. In order to examine the specificity of such an exceptional T cell population, CTL clones were established by limiting dilution of a bulk CTL line developed in an I region incompatible combination of mouse strains, B10.QBR anti-B10.MBR. These CTL lines showed single genetic specificity indicating their clonal nature with respect to CTL activities. Lyt-2+L3T4- (2+4-), Lyt-2-L3T4+ (2-4+) and Lyt-2-L3T4- (2-4-) clones were obtained. Among many CTL clones showing a spectrum of genetic specificities, 2+4- and 2-4+ clones with apparent I-Ak-specificity, were studied further and four lines of evidence confirmed their class II specificity: 1) genes encoding the target antigen for these CTL clones were mapped within the I-A subregion by simple genetics; 2) an I-Ak-specific monoclonal antibody readily blocked specific cytolysis by these clones; 3) the clones failed to react with cells expressing mutated I-Ak antigens; and 4) a B cell tumor transfected with alpha- and beta-chain genes of I-Ak was specifically lysed by these CTL clones. These data therefore establish the existence of Lyt-2+ CTL with genuine class II specificity. All 2-4+ CTL were sensitive to the blocking effect of an antibody to L3T4, whereas none of the 2+4- class II-specific CTL were sensitive to blocking by an anti-Lyt-2 antibody, indicating that class II-specific CTL with "wrong phenotype" is not dependent on the function of the accessory molecule. Besides true class II-specific CTL clones, 2+4- clones with a spectrum of genetic specificities were obtained, including clones recognizing a combination of an I-Ak product and the Kb molecule. Two 2-4- clones were also specific for the combination of Kb + I-Ak. These clones most likely recognize an allogeneic class II antigen in the context of a class I antigen and therefore would more appropriately be included in the class I-restricted T cell population.  相似文献   

12.
To define the recognition site of cytotoxic T lymphocytes (CTLs) on influenza virus H5 hemagglutinin (HA), an H5 HA-specific CTL clone was examined for the ability to recognize monoclonal antibody-selected HA variants of influenza virus A/Turkey/Ontario/7732/66 (H5N9). On the basis of 51Cr release assays with the variants, a CTL epitope was located near residue 168 of H5 HA. To define the epitope more precisely, a series of overlapping peptides corresponding to this region was synthesized and tested for CTL recognition. The minimum peptide recognized by the CTL clone encompassed residues 158 to 169 of H5 HA. Relative to the H3 HA three-dimensional structure, this CTL epitope is located near the distal tip of the HA molecule, also known as a major B-cell epitope on H3 HA. A single mutation at residue 168 (Lys to Glu) in the H5 HA variants abolished CTL recognition; this same amino acid was shown previously to be critical for B-cell recognition (M. Philpott, C. Hioe, M. Sheerar, and V. S. Hinshaw, J. Virol. 64:2941-2947, 1990). Additionally, mutations within this region of the HA molecule were associated with attenuation of the highly virulent A/Turkey/Ontario/7732/66 (H5N9) (M. Philpott, B. C. Easterday, and V.S. Hinshaw, J. Virol. 63:3453-3458, 1989). When tested for recognition of other H5 viruses, the CTL clone recognized the HA of A/Turkey/Ireland/1378/83 (H5N8) but not that of A/Chicken/Pennsylvania/1370/83 (H5N2), even though these viruses contain identical HA amino acid 158-to-169 sequences. These results suggest that differences outside the CTL epitope affected CTL recognition of the intact HA molecule. The H5 HA site defined in these studies is, therefore, important in both CTL and B-cell recognition, as well as the pathogenesis of the virus.  相似文献   

13.
BALB/c-H-2dm2 mice (H-2KdI-AdI-EdDd), a congenic strain of BALB/c mice, have a deletion of the class I MHC Ag, H-2Ld. This gene encodes the exclusive class I MHC-restricting gene product for vesicular stomatitis virus-specific cytolytic T lymphocytes. When dm2 mice were immunized with infectious vesicular stomatitis virus, a specific CTL response was generated. These CTL lysed VSV-infected targets that expressed Iad gene products, but not VSV-infected Iad- targets. The CTL were used initially as long term cytolytic lines; 13 CTL clones were derived by limit dilution. All of the clones expressed the phenotype CD3+, CD4+, CD8-; some clones expressed TCR that are members of the V beta 8 family, others did not. The clones were restricted by class II MHC Ag, both I-Ad and I-Ed serving as restricting elements for individual clones of the panel. All of the clones derived from dm2 mice were specific for the immunizing serotype, Indiana, of VSV and did not lyse syngeneic cells infected with VSV of the New Jersey serotype. Studies using defective interfering virus particles, UV light-inactivated virus, and purified micelles of the viral glycoprotein indicated that infectious virus was not required for sensitization of target cells for immune recognition by the class II MHC-restricted CTL clones. Additional studies using recombinant vaccinia virus vectors to sensitize targets confirmed the specificity of the clones for the viral glycoprotein. These studies also demonstrated a cryptic population of class II-restricted CTL in BALB/c lines specific for VSV G. Naturally occurring variant viruses and mutant viruses, selected for escape from neutralization by mAb, were used in an effort to map the determinant(s) recognized; on the basis of patterns of target cell lysis, three groups of epitopes recognized by the clones were defined. Therefore, in the absence of the class I MHC Ag required for a CTL response to VSV, dm2 mice generated CTL with the CD4+ phenotype that recognized different epitopes on the viral glycoprotein, and lysed cells in a class II-MHC restricted, Ag-specific manner.  相似文献   

14.
The influenza A virus hemagglutinin (HA) is an integral membrane glycoprotein expressed in large quantities on infected cell surfaces and is known to serve as a target antigen for influenza virus-specific cytotoxic T lymphocytes (CTL). Despite the fact that HAs derived from different influenza A virus subtypes are serologically non-cross-reactive, the HA has been implicated by previous experiments to be a target antigen for the subset of T cells capable of lysing cells infected with any human influenza A subtype (cross-reactive CTL). To directly determine whether the HA is recognized by cross-reactive CTL, we used vaccinia virus recombinants containing DNA copies of the PR8 (A/Puerto Rico/8/34) (H1N1) or JAP (A/JAP/305) (H2N2) HA genes. When these viruses were used to stimulate HA-specific CTL and to sensitize target cells for lysis by HA-specific CTL, we found no evidence for HA recognition by cross-reactive CTL aside from a relatively small degree of cross-reactivity between H1 and H2 HAs. Results of unlabeled target inhibition studies were consistent with the conclusion that the HA is, at most, only a minor target antigen for cross-reactive CTL.  相似文献   

15.
The roles of Class II-restricted L3T4+ T cells and of accessory cells (AC) during the in vitro generation of Class I-restricted Lyt-2+ cytotoxic T cells (CTL) specific for a Class II-negative syngeneic tumor cell line, FBL, was examined. Treatment of responder FBL-immune spleen cells with alpha L3T4 plus complement before culture, as well as the direct addition of alpha L3T4 to cultures, diminished the generation of FBL-specific CTL. The contribution of L3T4+ cells could be completely replaced by the addition of exogenous cytokines. The data demonstrate that the optimal generation of FBL-specific Lyt-2+ CTL requires the presence of L3T4+ cells, presumably to provide necessary lymphokines. FBL-specific CTL could not be generated from purified FBL-immune T cells in the absence of AC. Syngeneic Ia+ macrophages (M phi), added at the initiation of culture, restored the response of purified T cells. Pretreatment of M phi with ammonium chloride or chloroquine, or the addition of monoclonal alpha I-Ab antibody at the initiation of culture, inhibited the ability of M phi to reconstitute the CTL response. Finally, the addition of exogenous helper factors could replace M phi and reconstitute the FBL-specific response of AC-depleted immune T cells. These results suggest that during the generation of Lyt-2+ CTL to a syngeneic tumor expressing only Class I MHC antigens, Ia+ AC are required to biochemically process antigen released from the tumor cells and present this modified antigen to Class II-restricted T helper cells.  相似文献   

16.
Antiviral HLA class II-restricted cytotoxic CD4+ clones have been relatively well characterized in vitro but their significance in the immune response remains unknown. Here anti-influenza A and anti-EBV CD4+ CTL have been studied by using permanent cell lines either untreated or depleted of CD8+ cells. In bulk cultures, HLA class I-restricted anti-viral CD8+ CTL account for all of the detectable killer cell activity, whereas after elimination of CD8+ cells an HLA class II-restricted killer activity mediated by CD4+/2H4-/4B4+ cells was consistently observed. The CD4+ CTL were fully differentiated in all of the cultures tested from the third in vitro passage because they could be demonstrated immediately after elimination of CD8+ cells. These CD4+ killer cells were equivalent to the CD8+ cells in terms of their lytic capacity. The absence of any class II-restricted antiviral activity in bulk cultures seems to be related to the very small numbers of CD4+ cells present in these antiviral cell lines. However, CD4+ cytolytic activity could not be detected during the first two in vitro passages, even when limiting dilution analysis of the CTL precursors were performed, showing that the killer function of Th cells differentiate only after several in vitro stimulations.  相似文献   

17.
N Ono  K K Ko  Y Hosaka 《Journal of virology》1990,64(5):2442-2447
Lysis of virus-infected L929 target cells transfected with the H-2 class II IAk gene by class II-restricted influenza virus-specific murine cytotoxic T lymphocyte (CTL) clones was studied by electron microscopy and compared with lysis of L929 cells by class I-restricted CTL clones. T lymphocytes predominantly approached the basal surface of target cells grown on a plastic dish and also approached uninfected L929 target cells, although virus maturation exhibited no polarity with respect to the cell surface site. After incubation for 30 min, the target cell nuclei began to change: chromatin became irregularly redistributed and aggregated, and the nuclei appeared swollen. Later, electron-dense and -light areas of nuclei became segregated, and the cytoplasm became disorganized with many vacuoles. The ultrastructural changes of target cells during lysis by class I- and class II-restricted CTL clones appeared to be similar. These findings and other cytotoxicity data of class I and class II CTLs are discussed.  相似文献   

18.
The specificity and function of two T-cell clones derived from A/Memphis/1/71 (H3) influenza virus (Mem 71)-immune BALB/c spleen cells have been compared. One clone, X-31 clone 1, was subtype specific, proliferating in response to influenza strains of the H3 subtype only. The other, Jap clone 3, cross-reacted in proliferation assays with heterologous subtypes of influenza A, but not type B. Both clones recognized the HA1 chain of the hemagglutinin (HA) molecule and their proliferation in response to detergent-disrupted virus could be specifically inhibited by monoclonal antibodies to the HA. The T-cell clones were of the L3T4+ phenotype. Both recognized antigen in association with I-Ed, as indicated by studies with H-2 recombinant strains of mice and by blocking with monoclonal anti-I-E antibody. In vivo, both clones elicited a delayed-type hypersensitivity (DTH) reaction when inoculated into mouse footpads together with virus, X-31 clone 1 again displaying subtype specificity and Jap clone 3 being cross-reactive. The clones were also able to provide factor-mediated help in vitro to virus-primed B cells in an anti-HA antibody response. The cross-reactive T-cell clone provided help not only for B cells primed with influenza A subtype H3 and responding to H3 virus in culture, but also for H2 virus-primed B cells making anti-H2 antibody.  相似文献   

19.
The transmembrane hydrophobic domain of the type A influenza A/JAPAN/305/57 (H2N2) hemagglutinin (HA) contains an immunodominant site encompassing amino acids 523-545 (J523-545) recognized by class I MHC-restricted cytolytic T lymphocytes (CTL). Class I CTL of two fine specificity subsets map to this transmembrane (TM) site. One of these CTL subpopulations is subtype specific. These T lymphocytes recognize the site generated during infection of target cells with A/JAPAN/305/57 virus (H2N2) but not target cells expressing the comparable TM site of the influenza A/PR/8/34 virus (H1N1) hemagglutinin (P527-549) after infection with this virus. The other CTL subpopulation is cross-reactive and recognizes the TM site of the A/JAPAN/305/57 HA and the A/PR/8/34 HA with similar efficiency. Analyses of the critical amino acids in the TM site necessary for CTL recognition with the use of synthetic peptides unexpectedly revealed reactivity for the A/PR/8 HA TM site by subtype-specific CTL. This reactivity was only observed with truncated peptides corresponding to a limited portion of the A/PR/8 HA TM site but also required peptide concentrations greater than 10(-7) M. These results suggested either that the endogenously processed A/PR/8 HA TM site generated during infection was larger than the site defined by the truncated cross-reactive peptides or that the concentration of endogenously processed TM site produced during infection was limiting. To distinguish between these possibilities, we expressed in target cells synthetic minigenes encoding only the portion of the A/PR/8 HA transmembrane sites defined by the synthetic peptides. Unlike the peptides, the "preprocessed" endogenous minigene products were not recognized by subtype-specific CTL. These data suggest that the level of available endogenously processed Ag rather than selectivity in the site of fragmentation of newly synthesized Ag may play a critical role in determining whether the complex of the antigenic moiety and class I MHC is efficiently presented to and recognized by class I CTL.  相似文献   

20.
The induction of class I and class II MHC-restricted CTL in response to different forms of A/JAP/57 influenza virus was compared. Splenocytes removed from influenza-immune BALB/c mice and stimulated in vitro with infected syngeneic splenocytes are mainly CD8+ (Lyt-2+) and specifically lyse infected Ia- and Ia+ target cells. To a lesser extent they also lyse non-infectious virus-pulsed Ia+ but not Ia- target cells. In contrast, syngeneic stimulators pulsed with non-infectious virus (exogenous Ag) induce effector T cells that specifically lyse both infected and non-infectious virus-pulsed Ia+ target cells. The cells present in this heterogeneous culture predominantly express the CD4 (L3T4) cell surface marker. Frequency analysis by limiting dilution of splenocytes derived directly from influenza-immune mice revealed a similar pattern of precursor induction: In vitro stimulation with infected splenocytes yielded primarily class I MHC-restricted CTL, whereas stimulation with non-infectious virus reciprocally induced primarily class II MHC-restricted CTL. Thus, the Ag form and consequently the intracellular route of viral Ag presentation profoundly influence the MHC restriction of CTL precursors induced.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号