首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
It has previously been shown that the denatured crude extract of Agelaia vicina wasp venom inhibits glutamate and GABA uptake in rat cerebral cortex synaptosomes. To identify the components responsible for these effects, the neurotoxin AvTx 7 (molecular weight of 1210 Da) was isolated from A. vicina venom and its effects on glutamate neurotransmission investigated. AvTx 7 inhibits glutamate uptake in a dose-dependent and uncompetitive manner. AvTx 7 was found to stimulate the glutamate release in the presence of calcium and sodium channel blockers, suggesting that its action is not mediated through these channels. AvTx 7 potentiates glutamate release in the presence of K(+) channel blockers tetraethylammonium and 4-aminopyridine, indicating that the toxin may act through these drugs-sensible K(+) channels. We suggest that AvTx 7 can be a valuable tool to enhance our understanding of K(+) channels' involvement in the release of glutamate.  相似文献   

2.
The wasp Agelaia pallipes pallipes is one of the most aggressive species from the neotropical region, causing many stinging accidents every year, characterized by severe envenoming reactions. The identification of peptides is important for understanding the envenoming process; however, the tiny amount of venom produced by these insects makes this task a challenge, using classical analytical approaches. Thus, the venom was previously fractionated, and the sequences were obtained through the use of electrospray ionization with a tridimensional ion-trap and time-of-flight mass analysis under CID conditions. This approach permitted the sequence assignment of nine peptides. The presence of type -d and -w ions generated from the fragmentation of the side chains was used to resolve I/L ambiguity. The distinction between K and Q residues was achieved through esterification of the α- and ε-amino groups in the peptides, followed by mass spectrometry analysis. Six of these peptides were short, linear and polycationic, while the three other peptides presented a single disulfide bridge. The use of reduction and alkylation protocols, followed by ESI-IT-TOF/MS analysis under CID conditions, permitted easy sequencing of the three peptides presenting this post-translational modification. These peptides presented activity related to mast cell degranulation, hemolysis, or even the chemotaxis of leukocytes.  相似文献   

3.
Fangchinoline, an active component of radix stephaniae tetrandrinea, has been shown to possess neuroprotective properties. It has been reported that excessive glutamate release has been proposed to be involved in the pathogenesis of several neurological diseases. The primary purpose of the present study was to investigate the effect of fangchinoline on glutamate release in rat cerebral cortex nerve terminals and to explore the possible mechanism. Fangchinoline inhibited the release of glutamate evoked by 4-aminopyridine (4-AP) in a concentration-dependent manner, and this phenomenon resulted from a reduction of vesicular exocytosis but not from an inhibition of Ca2+-independent efflux via glutamate transporter. Fangchinoline did not alter the resting synaptosomal membrane potential or 4-AP-mediated depolarization, but significantly reduced depolarization-induced increase in [Ca2+]C. Fangchinoline-mediated inhibition of glutamate release was significantly prevented by the N- and P/Q-type Ca2+ channel blocker ω-conotoxin MVIIC, and by the PKC inhibitors, GF109203X and Ro318220. In addition, the glutamate release mediated by direct Ca2+ entry with Ca2+ ionophore (ionomycin) was unaffected by fangchinoline, which suggests that the inhibitory effect of fangchinoline is not due to directly interfering with the release process at some point subsequent to Ca2+ influx. These results suggest that fangchinoline inhibits glutamate release from the rat cortical synaptosomes through the suppression of voltage-dependent Ca2+ channel activity and subsequent reduces Ca2+ entry into nerve terminals, rather than any upstream effect on nerve terminal excitability. This inhibition appears to involve the suppression of PKC signal transduction pathway. This finding may explain the neuroprotective effects of fangchinoline against neurotoxicity.  相似文献   

4.
Arthropod venoms are sources of molecules that may be useful tools to investigate molecular mechanisms of putative new medicines and laboratory drugs. Here we show the effects of the compound agelaiatoxin‐8 (AVTx8), isolated from Agelaia vicina venom, on γ‐aminobutyric acid (GABA) neurotransmission in rat brain synaptosomes. Analysis reveals that AvTx8 is composed by 14 amino acid residues with a molecular weight (MW) of 1567 Da. AvTx8 increased GABA release and inhibited GABA uptake in synaptosomes from rat cerebral cortex. AvTx8 inhibited GABA uptake and increased GABA release in the presence of Ca+, Na+, and K+ channel blockers, suggesting that it acts directly on GABA transporters. In addition, AvTx8 significantly decreases GABA binding in synaptic membranes from rat brain cortex, suggesting that it also modulates the activity of GABA receptors. Moreover, AvTx8 decreased GAT‐1– and GAT‐3–mediated GABA uptake in transfected COS‐7 cells. Accordingly, we suggest that AvTx8 modulates GABA neurotransmission and might provide a novel entry point for identifying a new class of GABA‐modulating neuroprotective drugs.  相似文献   

5.
L Surchev 《Acta anatomica》1987,128(3):210-213
Synaptosomes from rat cerebral cortex were studied using the freeze-etching technique. The intra-membranous structure of the pre- and postsynaptic membranes was examined. Particles with an electron-dense spot on their apex are reported from all fracture faces. Most probably these are related to transmembrane channels whose significance in the synaptic transmission is discussed.  相似文献   

6.
L-Glu is the most important and widespread excitatory neurotransmitter of the vertebrates. Four types of receptors for L-glu have been described. This neurotransmitter modulates several neuronal processes, and its dysfunction causes chronic and acute diseases. L-Glu action is terminated by five distinct transporters. Antagonists for these receptors and modulators of these transporters have anticonvulsant and neuroprotective potentials, as observed with the acylpoliamines and peptides isolated from spiders, solitary and social wasp venoms. On the other hand, the major inhibitory neurotransmitter in mammalian nervous tissue is the GABA. Drugs that enhance GABA neurotransmission comprise effective approaches to protecting the brain against neuronal injury. Is this study, we demonstrate for the first time the inhibition of the [3H]L-glu binding to its specific sites in synaptosomal membranes from rat cerebral cortex, produced by 0.027 U of Paratemnus elongatus venom (EC50). The venom of P. elongatus changes Km and Vmax into the high affinity uptake of the L-glu and decreases Km and Vmax into the parameters of the GABA uptake from rat synaptosomes. This leads us to speculate on the possible presence of selective and specific compounds in this venom that act in L-glu and GABA dynamics, and therefore, that can serve as tools and new drug models for understanding these neurotransmissions.  相似文献   

7.
8.
In this study, phosphatidic acid (PA) metabolization is found to generate diacylglycerol (DAG), monoacylglycerol (MAG) and glycerol by the sequential action of lipid phosphate phosphatase (LPP), diacylglycerol lipase (DAGL), and monoacylglycerol lipase (MAGL) in cerebral cortex (CC) synaptosomes. It is also demonstrated that PA is metabolized by phospholipases A (PLA)/lysophosphatidic acid phosphohydrolase (LPAPase) in synaptic endings. Age-related changes in the metabolization of PA have been observed in rat cerebral cortex synaptosomes in the presence of the alternative substrates for LPP, namely LPA, sphingosine 1-phosphate (S1P) and ceramide 1-phosphate (C1P). In addition, LPA and C1P up to concentrations of about 50 μM favor the metabolism in the direction of MAG and glycerol in aged and adult synaptosomes, respectively. At equimolecular concentrations with PA, LPA decreases DAG formation in adult and aged synaptosomes, whereas S1P decreases it and C1P increases it only in aged synaptosomes. Sphingosine (50 μM) or ceramide (100 μM) increase PA metabolism by the pathway that involves LPP/DAGL/MAGL action in aged membranes. Using RHC-80267, a DAGL inhibitor, we could observe that 50% and 33% of MAG are produced as a result of DAGL action in adult and aged synaptosomes, respectively. Taken together, our findings indicate that the ageing modifies the different enzymatic pathways involved in PA metabolization.  相似文献   

9.
10.
Zhu BG  Zhu DH  Chen YZ 《生理学报》1998,50(3):345-348
采用大鼠大脑皮层突触体,人神经母细胞瘤细胞2株SK-N-SH及人多形胶质瘤细胞株BT-325作氚标谷氨酸高亲和摄取实验,探讨蛋白激酶C及蛋白激酶A对于神经元性及胶质细胞性谷氨酸摄取的影响。  相似文献   

11.
A predominantly neurological presentation is common in patients with glutaric acidemia type I (GA-I). 3-hydroxyglutaric acid (3-OHGA), which accumulates in affected patients, has recently been demonstrated to play a central role in the neuropathogenesis of this disease. In the present study, we investigated the in vitro effects of 3-OHGA at concentrations ranging from 10 to 1000 microM on various parameters of the glutamatergic system, such as the basal and potassium-induced release of [3H]glutamate by synaptosomes, as well as on Na+-dependent [3H]glutamate uptake by synaptosomes and astrocytes and Na+-independent [3H]glutamate uptake by synaptic vesicles from cerebral cortex of 30-day-old Wistar rats. First, we observed that exposure of cultured astrocytes to 3-OHGA for 20 h did not reduce their viability. Furthermore, 3-OHGA significantly increased Na+-dependent [3H]glutamate uptake by astrocytes by up to 80% in a dose-dependent manner at doses as low as 30 microM. This effect was not dependent on the presence of the metabolite during the uptake assay, since it occurred even when 3-OHGA was withdrawn from the medium after cultured cells had been exposed to the acid for approximately 1 h. All other parameters investigated were not influenced by this organic acid, indicating a selective action of 3-OHGA on astrocyte transporters. Although the exact mechanisms involved in 3-OHGA-stimulatory effect on astrocyte glutamate uptake are unknown, the present findings contribute to the understanding of the pathophysiology of GA-I, suggesting that astrocytes may protect neurons against excitotoxic damage caused by 3-OHGA by increasing glutamate uptake and therefore reducing the concentration of this excitatory neurotransmitter in the synaptic cleft.  相似文献   

12.
The authors studied the engulfment of L-tryptophane-14C by gliacytes and synaptosomes of the rabbit cerebral cortex. The system of engulfment of the gliacytes was characterized by a high affinity to tryptophane (Km = 0.8 micrometer). Engulfment of tryptophane by synaptosomes had a lower affinity (Km = 50 micrometer). Psychotropic substances--chlorpromazine and imipramine produced an inhibitory influence on glial engulfment. The leading role of gliacytes in the trophic provision of the neurons and the normal course of neurodynamic processes is confirmed.  相似文献   

13.
It has been shown that single or multiple hydrocortisone and ACTH administrations to intact rats increased GABA content and its synthesis from glutamate and putrescine in synaptosomes of hypothalamus. The letter content was increased by single hormonal administration while multiple hormonal administration and adrenalectomy decreased it. Ornithine decarboxylase activity was increased by single hydrocortisone administration to intact animals, following adrenalectomy, and it was decreased by single hormonal administration to adrenalectomized rats. GABA synthesis in synaptosomes of hippocampus from putrescine was increased by single hydrocortisone and multiple hormonal administrations. GABA content was increased by multiple administration of both hormones and was decreased by adrenalectomy. Putrescine level was decreased by multiple hydrocortisone administration to intact and single administration to adrenalectomized rats; ornithine decarboxylase activity was decreased by multiple administration of both hormones.  相似文献   

14.
Phosphate-activated glutaminase (PAG) and glutamic acid decarboxylase (GAD) were assayed in homogenates and synaptosomes obtained from starved (48 hr or 120 hr) and diabetic (streptozotocin) rat brain cortex. Glutamine synthetase (GS) was assayed in homogenates, microsomal and soluble fractions, from brain cortex of similarly treated rats.l-Glutamate uptake and exit rates were determined in cortex slices and synaptosomes under the same conditions. The specific activity (s.a.) of PAG, a glutamate producing enzyme, decreased (50%) in the homogenate after 120-hr starvation. In synaptosomes it decreased (25%) only after 48-hr starvation. The s.a of GAD and GS, which are glutamate-consuming enzymes, were progressively increased with time of starvation, reaching 39% and 55% respectively after 120 hr. GS in the microsomes or the soluble fraction and GAD in the synaptosomes showed no change in s.a. under these conditions. Diabetes increased (40%) microsomal GS s.a. and decreased GAD s.a. (18%) in the homogenate. Thel-glutamate uptake rate was decreased (48%) by diabetes in slices but not in synaptosomes. It is suggested that a) enzymes of the glutamate system respond differently in different subcellular fractions towards diabetes or deprivation of food and b) diabetes may affect the uptake system in glial cells but not in neurons.Abbreviations used AET 2-aminoethylisourethonium bromide - GAD glutamic acid decarboxylase - GS glutamine synthetase - GSH glutathione - PAG phosphate-activated glutaminase - PLP pyridoxal phosphate - r.c.f. relative centrifugal force - s.a. specific activity  相似文献   

15.
Synaptosomal fractions were isolated from rat cerebral cortex immediately after decapitation and after 2 h and 4 h postmortem storage at room temperature. Uptake and release of [3H]GABA was compared between fresh and postmortem synaptosomal fractions. The results suggest that after a 2 h postmortem storage these functions are still comparable to those observed in fresh preparations, while a 4 h period of storage decreases them by about 50%. The present data are consistent with our previous findings that the 2 h postmortem fractions are comparable to freshly isolated fractions with respect to coupled respiration, potassium accumulation and capability of specific configurational changes.  相似文献   

16.
Carbachol stimulated phosphatidic acid synthesis in cholinergically enriched synaptosomes from rat cerebral cortex. Increasing concentrations of pirenzepine (10-1000 nM) produced parallel concentration-response curves to carbachol which were shifted to the right. A pA2 value for pirenzepine of 8.4 +/- 0.3 was obtained from Schild analysis. We hypothesize that high affinity pirenzepine binding to M1 receptors is coupled to phosphatidic acid synthesis in the rat cerebral cortex.  相似文献   

17.
The role of excitotoxicity in the cerebral damage of glutaryl-CoA dehydrogenase deficiency (GDD) is under intense debate. We therefore investigated the in vitro effect of glutaric (GA) and 3-hydroxyglutaric (3-OHGA) acids, which accumulate in GDD, on [(3)H]glutamate uptake by slices and synaptosomal preparations from cerebral cortex and striatum of rats aged 7, 15 and 30 days. Glutamate uptake was significantly decreased by high concentrations of GA in cortical slices of 7-day-old rats, but not in cerebral cortex from 15- and 30-day-old rats and in striatum from all studied ages. Furthermore, this effect was not due to cellular death and was prevented by N-acetylcysteine preadministration, suggesting the involvement of oxidative damage. In contrast, glutamate uptake by brain slices was not affected by 3-OHGA exposure. Immunoblot analysis revealed that GLAST transporters were more abundant in the cerebral cortex compared to the striatum of 7-day-old rats. Moreover, the simultaneous addition of GA and dihydrokainate (DHK), a specific inhibitor of GLT1, resulted in a significantly higher inhibition of [(3)H]glutamate uptake by cortical slices of 7-day-old rats than that induced by the sole presence of DHK. We also observed that both GA and 3-OHGA exposure did not alter the incorporation of glutamate into synaptosomal preparations from cerebral cortex and striatum of rats aged 7, 15 and 30 days. Finally, GA in vivo administration did not alter glutamate uptake into cortical slices from 7-day-old rats. Our findings may explain at least in part why cortical neurons are more vulnerable to damage at birth as evidenced by the frontotemporal cortical atrophy observed in newborns affected by GDD.  相似文献   

18.
19.
The effects of different concentrations of L-ascorbic acid (Asc) on Na+-dependent binding of 3H-GABA and 3H-DL-glutamic acid to rat brain cortical synaptosomes were studied. Asc, at a concentration nearly equal to brain extracellular one (3 X 10(-4) M), had no effect on specific and nonspecific 5H-GABA binding. At higher concentrations (10(-3) M) Asc strongly inhibited, and at lower concentrations (10(-6) M) considerably stimulated 3H-GABA binding. At a concentration of 10(-5)-10(-3) M Asc tended to decrease 3H-DL-glutamic acid binding.  相似文献   

20.
The in vitro effects of phenylalanine and some of its metabolites on ATP diphosphohydrolase (apyrase, EC 3.6.1.5) activity in synaptosomes from rat cerebral cortex were investigated. The enzyme activity in synaptosomes from rats subjected to experimental hyperphenylalaninemia (-methylphenylalanine plus phenylalanine) was also studied. In the in vitro studies, a biphasic effect of phenylalanine on both enzyme substrates (ATP and ADP) was observed, with maximal inhibition at 2.0 mM and maximal activation at 5.0 mM. Inhibition of the enzyme activity was not due to calcium chelation. Moreover, phenylpyruvate, when compared with phenylalanine showed opposite effects on the enzyme activity, suggesting that phenylalanine and phenylpyruvate bind to two different sites on the enzyme. The other tested phenylalanine metabolites (phenyllactate, phenylacetate and phenylethylamine) had no effect on ATP diphosphohydrolase activity. In addition, we found that ATP diphosphohydrolase activity in synaptosomes from cerebral cortex of rats with chemically induced hyperphenylalaninemia was significantly enhanced by acute or chronic treatment. Since it is conceivable that ATPase-ADPase activities play an important role in neurotransmitter (ATP) metabolism, it is tempting to speculate that our results on the deleterious effects of phenylalanine and phenylpyruvate on ATP diphosphohydrolase activity may be related to the neurological dysfunction characteristics of naturally and chemically induced hyperphenylalaninemia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号