首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Autonomic oscillatory activities exist in almost every living thing and most of them are produced by rhythmic activities of the corresponding neural systems (locomotion, respiration, heart beat, etc.). This paper mathematically discusses sustained oscillations generated by mutual inhibition of the neurons which are represented by a continuous-variable model with a kind of fatigue or adaptation effect. If the neural network has no stable stationary state for constant input stimuli, it will generate and sustain some oscillation for any initial state and for any disturbance. Some sufficient conditions for that are given to three types of neural networks: lateral inhibition networks of linearly arrayed neurons, symmetric inhibition networks and cyclic inhibition networks. The result suggests that the adaptation of the neurons plays a very important role for the appearance of the oscillations. Some computer simulations of rhythic activities are also presented for cyclic inhibition networks consisting of a few neurons.  相似文献   

2.
Computational studies as well as in vivo and in vitro results have shown that many cortical neurons fire in a highly irregular manner and at low average firing rates. These patterns seem to persist even when highly rhythmic signals are recorded by local field potential electrodes or other methods that quantify the summed behavior of a local population. Models of the 30-80 Hz gamma rhythm in which network oscillations arise through 'stochastic synchrony' capture the variability observed in the spike output of single cells while preserving network-level organization. We extend upon these results by constructing model networks constrained by experimental measurements and using them to probe the effect of biophysical parameters on network-level activity. We find in simulations that gamma-frequency oscillations are enabled by a high level of incoherent synaptic conductance input, similar to the barrage of noisy synaptic input that cortical neurons have been shown to receive in vivo. This incoherent synaptic input increases the emergent network frequency by shortening the time scale of the membrane in excitatory neurons and by reducing the temporal separation between excitation and inhibition due to decreased spike latency in inhibitory neurons. These mechanisms are demonstrated in simulations and in vitro current-clamp and dynamic-clamp experiments. Simulation results further indicate that the membrane potential noise amplitude has a large impact on network frequency and that the balance between excitatory and inhibitory currents controls network stability and sensitivity to external inputs.  相似文献   

3.
Consciousness is an emergent property of the complex brain network. In order to understand how consciousness is constructed, neural interactions within this network must be elucidated. Previous studies have shown that specific neural interactions between the thalamus and frontoparietal cortices; frontal and parietal cortices; and parietal and temporal cortices are correlated with levels of consciousness. However, due to technical limitations, the network underlying consciousness has not been investigated in terms of large-scale interactions with high temporal and spectral resolution. In this study, we recorded neural activity with dense electrocorticogram (ECoG) arrays and used the spectral Granger causality to generate a more comprehensive network that relates to consciousness in monkeys. We found that neural interactions were significantly different between conscious and unconscious states in all combinations of cortical region pairs. Furthermore, the difference in neural interactions between conscious and unconscious states could be represented in 4 frequency-specific large-scale networks with unique interaction patterns: 2 networks were related to consciousness and showed peaks in alpha and beta bands, while the other 2 networks were related to unconsciousness and showed peaks in theta and gamma bands. Moreover, networks in the unconscious state were shared amongst 3 different unconscious conditions, which were induced either by ketamine and medetomidine, propofol, or sleep. Our results provide a novel picture that the difference between conscious and unconscious states is characterized by a switch in frequency-specific modes of large-scale communications across the entire cortex, rather than the cessation of interactions between specific cortical regions.  相似文献   

4.
Short Term Plasticity (STP) has been shown to exist extensively in synapses throughout the brain. Its function is more or less clear in the sense that it alters the probability of synaptic transmission at short time scales. However, it is still unclear what effect STP has on the dynamics of neural networks. We show, using a novel dynamic STP model, that Short Term Depression (STD) can affect the phase of frequency coded input such that small networks can perform temporal signal summation and determination with high accuracy. We show that this property of STD can readily solve the problem of the ghost frequency, the perceived pitch of a harmonic complex in absence of the base frequency. Additionally, we demonstrate that this property can explain dynamics in larger networks. By means of two models, one of chopper neurons in the Ventral Cochlear Nucleus and one of a cortical microcircuit with inhibitory Martinotti neurons, it is shown that the dynamics in these microcircuits can reliably be reproduced using STP. Our model of STP gives important insights into the potential roles of STP in self-regulation of cortical activity and long-range afferent input in neuronal microcircuits.  相似文献   

5.
The transformation of spatial patterns and their storage in short term memory by shunting neural networks are studied herein. Various mechanisms are described for real-time regulation of the amount of contrast with which a pattern will be stored. Parametric studies are described for the amount of contrast in the network responses to patterns presented at variable background or overall activity levels. Mechanisms for removing spurious peak splits and other disinhibitory responses are described. Furman's (1965) results on processing of patterns by shunting networks are generalized and reanalysed. Periodic responses (stable and unstable) corresponding to the time scale of slow cortical waves can be generated if a tonic input is set between two threshold activity levels. Their frequency as a function of tonic input size is unimodal. Order-preserving limit cycles are never found in STM; hence sustained slow oscillations as a mechanism for storing a pattern in STM are ruled out in favor of steady states (i.e., fast oscillations) with spatially graded activity levels. Such slow oscillations can, nonetheless, continuously retune the network's responsiveness to the patterns that perturb it.  相似文献   

6.
Coherent oscillations have been reported in multiple cortical areas. This study examines the characteristics of output spikes through computer simulations when the neural network model receives periodic/aperiodic spatiotemporal spikes with modulated/constant populational activity from two pathways. Synchronous oscillations which have the same period as the input are observed in response to periodic input patterns regardless of populational activity. The results confirm that the output frequency of synchrony is essentially determined by the period of the repeated input patterns. On the other hand, weak periodic outputs are observed when aperiodic spikes are input with modulated populational activity. In this case, higher firing rates are necessary to input for higher frequency oscillations. The spike-timing-dependent plasticity suppresses the spikes which do not contribute to the synchrony for periodic inputs. This effect corresponds to the experimental reports that learning sharpens the synchrony in the motor cortex. These results suggest that spatiotemporal spike patterns should be entrained on modulated populational activity to transmit oscillatory information effectively in the convergent pathway.  相似文献   

7.
The circuitry of cortical networks involves interacting populations of excitatory (E) and inhibitory (I) neurons whose relationships are now known to a large extent. Inputs to E- and I-cells may have their origins in remote or local cortical areas. We consider a rudimentary model involving E- and I-cells. One of our goals is to test an analytic approach to finding firing rates in neural networks without using a diffusion approximation and to this end we consider in detail networks of excitatory neurons with leaky integrate-and-fire (LIF) dynamics. A simple measure of synchronization, denoted by S(q), where q is between 0 and 100 is introduced. Fully connected E-networks have a large tendency to become dominated by synchronously firing groups of cells, except when inputs are relatively weak. We observed random or asynchronous firing in such networks with diverse sets of parameter values. When such firing patterns were found, the analytical approach was often able to accurately predict average neuronal firing rates. We also considered several properties of E-E networks, distinguishing several kinds of firing pattern. Included were those with silences before or after periods of intense activity or with periodic synchronization. We investigated the occurrence of synchronized firing with respect to changes in the internal excitatory postsynaptic potential (EPSP) magnitude in a network of 100 neurons with fixed values of the remaining parameters. When the internal EPSP size was less than a certain value, synchronization was absent. The amount of synchronization then increased slowly as the EPSP amplitude increased until at a particular EPSP size the amount of synchronization abruptly increased, with S(5) attaining the maximum value of 100%. We also found network frequency transfer characteristics for various network sizes and found a linear dependence of firing frequency over wide ranges of the external afferent frequency, with non-linear effects at lower input frequencies. The theory may also be applied to sparsely connected networks, whose firing behaviour was found to change abruptly as the probability of a connection passed through a critical value. The analytical method was also found to be useful for a feed-forward excitatory network and a network of excitatory and inhibitory neurons.  相似文献   

8.
 In this paper, we study the combined dynamics of the neural activity and the synaptic efficiency changes in a fully connected network of biologically realistic neurons with simple synaptic plasticity dynamics including both potentiation and depression. Using a mean-field of technique, we analyzed the equilibrium states of neural networks with dynamic synaptic connections and found a class of bistable networks. For this class of networks, one of the stable equilibrium states shows strong connectivity and coherent responses to external input. In the other stable equilibrium, the network is loosely connected and responds non coherently to external input. Transitions between the two states can be achieved by positively or negatively correlated external inputs. Such networks can therefore switch between their phases according to the statistical properties of the external input. Non-coherent input can only “rcad” the state of the network, while a correlated one can change its state. We speculate that this property, specific for plastic neural networks, can give a clue to understand fully unsupervised learning models. Received: 8 August 1999 / Accepted in revised form: 16 March 2000  相似文献   

9.
Fine-scale temporal organization of cortical activity in the gamma range (∼25–80Hz) may play a significant role in information processing, for example by neural grouping (‘binding’) and phase coding. Recent experimental studies have shown that the precise frequency of gamma oscillations varies with input drive (e.g. visual contrast) and that it can differ among nearby cortical locations. This has challenged theories assuming widespread gamma synchronization at a fixed common frequency. In the present study, we investigated which principles govern gamma synchronization in the presence of input-dependent frequency modulations and whether they are detrimental for meaningful input-dependent gamma-mediated temporal organization. To this aim, we constructed a biophysically realistic excitatory-inhibitory network able to express different oscillation frequencies at nearby spatial locations. Similarly to cortical networks, the model was topographically organized with spatially local connectivity and spatially-varying input drive. We analyzed gamma synchronization with respect to phase-locking, phase-relations and frequency differences, and quantified the stimulus-related information represented by gamma phase and frequency. By stepwise simplification of our models, we found that the gamma-mediated temporal organization could be reduced to basic synchronization principles of weakly coupled oscillators, where input drive determines the intrinsic (natural) frequency of oscillators. The gamma phase-locking, the precise phase relation and the emergent (measurable) frequencies were determined by two principal factors: the detuning (intrinsic frequency difference, i.e. local input difference) and the coupling strength. In addition to frequency coding, gamma phase contained complementary stimulus information. Crucially, the phase code reflected input differences, but not the absolute input level. This property of relative input-to-phase conversion, contrasting with latency codes or slower oscillation phase codes, may resolve conflicting experimental observations on gamma phase coding. Our modeling results offer clear testable experimental predictions. We conclude that input-dependency of gamma frequencies could be essential rather than detrimental for meaningful gamma-mediated temporal organization of cortical activity.  相似文献   

10.
The synchronization frequency of neural networks and its dynamics have important roles in deciphering the working mechanisms of the brain. It has been widely recognized that the properties of functional network synchronization and its dynamics are jointly determined by network topology, network connection strength, i.e., the connection strength of different edges in the network, and external input signals, among other factors. However, mathematical and computational characterization of the relationships between network synchronization frequency and these three important factors are still lacking. This paper presents a novel computational simulation framework to quantitatively characterize the relationships between neural network synchronization frequency and network attributes and input signals. Specifically, we constructed a series of neural networks including simulated small-world networks, real functional working memory network derived from functional magnetic resonance imaging, and real large-scale structural brain networks derived from diffusion tensor imaging, and performed synchronization simulations on these networks via the Izhikevich neuron spiking model. Our experiments demonstrate that both of the network synchronization strength and synchronization frequency change according to the combination of input signal frequency and network self-synchronization frequency. In particular, our extensive experiments show that the network synchronization frequency can be represented via a linear combination of the network self-synchronization frequency and the input signal frequency. This finding could be attributed to an intrinsically-preserved principle in different types of neural systems, offering novel insights into the working mechanism of neural systems.  相似文献   

11.
Recently evidence has accumulated that many neural networks exhibit self-organized criticality. In this state, activity is similar across temporal scales and this is beneficial with respect to information flow. If subcritical, activity can die out, if supercritical epileptiform patterns may occur. Little is known about how developing networks will reach and stabilize criticality. Here we monitor the development between 13 and 95 days in vitro (DIV) of cortical cell cultures (n = 20) and find four different phases, related to their morphological maturation: An initial low-activity state (≈19 DIV) is followed by a supercritical (≈20 DIV) and then a subcritical one (≈36 DIV) until the network finally reaches stable criticality (≈58 DIV). Using network modeling and mathematical analysis we describe the dynamics of the emergent connectivity in such developing systems. Based on physiological observations, the synaptic development in the model is determined by the drive of the neurons to adjust their connectivity for reaching on average firing rate homeostasis. We predict a specific time course for the maturation of inhibition, with strong onset and delayed pruning, and that total synaptic connectivity should be strongly linked to the relative levels of excitation and inhibition. These results demonstrate that the interplay between activity and connectivity guides developing networks into criticality suggesting that this may be a generic and stable state of many networks in vivo and in vitro.  相似文献   

12.
Neural processing occurs in parallel in distant cortical areas even for simple perceptual tasks. Associated cognitive binding is believed to occur through the interareal synchronization of rhythmic activity in the gamma (30-80 Hz) range. Such oscillations arise as an emergent property of the neuronal network and require conventional chemical neurotransmission. To test the potential role of gap junction-mediated electrical signaling in this network property, we generated mice lacking connexin 36, the major neuronal connexin. Here we show that the loss of this protein disrupts gamma frequency network oscillations in vitro but leaves high frequency (150 Hz) rhythms, which may involve gap junctions between principal cells (Schmitz et al., 2001), unaffected. Thus, specific connexins differentially deployed throughout cortical networks are likely to regulate different functional aspects of neuronal information processing in the mature brain.  相似文献   

13.
A scalable hardware/software hybrid module--called Ubidule--endowed with bio-inspired ontogenetic and epigenetic features is configured to run a neural networks simulation with developmental and evolvable capabilities. We simulated the activity of hierarchically organized spiking neural networks characterized by an initial developmental phase featuring cell death followed by spike timing dependent synaptic plasticity in presence of background noise. An upstream 'sensory' network received a spatiotemporally organized external input and downstream networks were activated only via the upstream network. Precise firing sequences, formed by recurrent patterns of spikes intervals above chance levels, were observed in all recording conditions, thus suggesting the build-up of a connectivity able to sustain temporal information processing. The activity of a Ubinet--a network of Ubidules--is analyzed by means of virtual electrodes that recorded neural signals similar to EEG. The analysis of these signals was compared with a small set of human recordings and revealed common patterns of shift in quadratic phase coupling. The results suggest some interpretations of changes and plasticity of functional interactions between cortical areas driven by external stimuli and by learning/cognitive  相似文献   

14.
Artificial neural networks are usually built on rather few elements such as activation functions, learning rules, and the network topology. When modelling the more complex properties of realistic networks, however, a number of higher-level structural principles become important. In this paper we present a theoretical framework for modelling cortical networks at a high level of abstraction. Based on the notion of a population of neurons, this framework can accommodate the common features of cortical architecture, such as lamination, multiple areas and topographic maps, input segregation, and local variations of the frequency of different cell types (e.g., cytochrome oxidase blobs). The framework is meant primarily for the simulation of activation dynamics; it can also be used to model the neural environment of single cells in a multiscale approach. Received: 9 January 1996 / Accepted in revised form: 24 July 1996  相似文献   

15.
Whole-brain neural communication is typically estimated from statistical associations among electromagnetic or haemodynamic time-series. The relationship between functional network architectures recovered from these 2 types of neural activity remains unknown. Here, we map electromagnetic networks (measured using magnetoencephalography (MEG)) to haemodynamic networks (measured using functional magnetic resonance imaging (fMRI)). We find that the relationship between the 2 modalities is regionally heterogeneous and systematically follows the cortical hierarchy, with close correspondence in unimodal cortex and poor correspondence in transmodal cortex. Comparison with the BigBrain histological atlas reveals that electromagnetic–haemodynamic coupling is driven by laminar differentiation and neuron density, suggesting that the mapping between the 2 modalities can be explained by cytoarchitectural variation. Importantly, haemodynamic connectivity cannot be explained by electromagnetic activity in a single frequency band, but rather arises from the mixing of multiple neurophysiological rhythms. Correspondence between the two is largely driven by MEG functional connectivity at the beta (15 to 29 Hz) frequency band. Collectively, these findings demonstrate highly organized but only partly overlapping patterns of connectivity in MEG and fMRI functional networks, opening fundamentally new avenues for studying the relationship between cortical microarchitecture and multimodal connectivity patterns.

What is the relationship between functional network architectures inferred from electromagnetic and haemodynamic data? This study shows that superposition of electromagnetic networks at canonical frequency bands manifests as highly structured patterns of haemodynamic functional connectivity in the human brain, reflecting systematic variation in cytoarchitecture.  相似文献   

16.
A homogeneous network of cellular automata, representing a two-dimensional model of neural tissue, was used for simulation of periodic processes generated by spreading cortical depression. The transitional function μ and the function of the output γ of each cellular automationA at the timet is explicitly determined by its state and the input signals from 4 adjacent cells at timet-1. Computer experiments (IBM 370-135) in networks consisting of 1000 or 7200 cells illustrated the development of periodic generators due to 1) reverberation around obstacles with the perimeter exceeding the wavelength of the process: 2) reverberation in intact tissue (with zero perimeter of the obstacle); 3) formation of a stable focus of periodic activity (deterministic-stochastic oscillator). Results of computer experiments are compared with electrophysiological observations.  相似文献   

17.
Microelectrode arrays (MEAs) provide a means to investigate the electrophysiological behavior of neuronal systems through the measurements from neuronal culture preparations. Changes in activity patterns of neuronal networks are usually detected by applying neural chemicals. Because of the difficulties of fabricating the arrays, and the delicate and less reliable properties of cortical neurons, MEA-based systems with cortical neuronal networks for neurophamacological applications are technically difficult, therefore restricting their utility. Here, we report a new approach to the development of such MEA-based system with sensitive and durable MEAs conveniently fabricated and the culture conditions optimized. Upon growth differentiation, cortical neurons, cultured directly on MEAs, reach a developmentally stable and reliable activity state. With this system, we monitored the global spontaneous activities of neuronal networks and demonstrated the fine discrimination for specific substances and unique property of cortical neurons, which validated both the applicability and necessity of such system in pharmacological bioassay.  相似文献   

18.
The aim of this study was to present a new training algorithm using artificial neural networks called multi-objective least absolute shrinkage and selection operator (MOBJ-LASSO) applied to the classification of dynamic gait patterns. The movement pattern is identified by 20 characteristics from the three components of the ground reaction force which are used as input information for the neural networks in gender-specific gait classification. The classification performance between MOBJ-LASSO (97.4%) and multi-objective algorithm (MOBJ) (97.1%) is similar, but the MOBJ-LASSO algorithm achieved more improved results than the MOBJ because it is able to eliminate the inputs and automatically select the parameters of the neural network. Thus, it is an effective tool for data mining using neural networks. From 20 inputs used for training, MOBJ-LASSO selected the first and second peaks of the vertical force and the force peak in the antero-posterior direction as the variables that classify the gait patterns of the different genders.  相似文献   

19.
在信息编码能提高联想记忆的存贮能力和脑内存在主动活动机制的启发下,提出一个主动联想记忆模型。模型包括两个神经网络,其一为输入和输出网络,另一个为在学习时期能自主产生兴奋模式的主动网络。两个网络的神经元之间有突触联系。由于自主产生的兴奋模式与输入无关,并可能接近于相互正交,因此,本模型有较高的存贮能力。初步分析和计算机仿真证明:本模型确有比通常联想记忆模型高的存贮能力,特别是在输入模式间有高度相关情况下、最后,对提出的模型与双向自联想记忆和光学全息存贮机制的关系作了讨论。  相似文献   

20.
A dynamic and recurrent artificial neural network was used to investigate the functional properties of firing patterns observed in the primary motor (M1) and the primary somatosensory (S1) cortex of the behaving monkey during control of precision grip force. In the behaving monkey it was found that neurons in M1 and in S1 increase their firing activity with increasing grip force, as do the intrinsic and extrinsic hand muscles implicated in the task. However, some neurons also decreased their activity as a function of increasing force. The functional implication of these latter neurons is not clear and has not been elucidated so far. In order to explore their functional implication, we therefore simulated patterns of neural activity in artificial neural networks that represent cortical, spinal and afferent neural populations and tested whether particular activity profiles would emerge as a function of the input and of the connectivity of these networks. The functional implication of units with emergent or imposed decreasing activity was then explored.Decreasing patterns of activity in M1 units did not emerge from the networks. However, the same networks generated decreasing activity if imposed as target patterns. As indicated by the emerging weight space, M1 projection units with decreasing patterns are functionally less involved in driving alpha motoneurons than units with increasing profiles. Furthermore, these units did not provide significant fusimotor drive, whereas those with increasing profiles did. Fusimotor drive was a function of the (imposed) form of muscle spindle afferent activity: with gamma (fusimotor) drive, muscle spindle afferents provided signals other than muscle length (as observed experimentally). The network solutions thus predict a functional dichotomy between increasing and decreasing M1 neurons: the former primarily drive alpha and gamma motoneurons, the latter only weakly alpha motoneurons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号