首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In Myxococcus xanthus morphogenetic cell movements constitute the basis for the formation of spreading vegetative colonies and fruiting bodies in starving cells. M. xanthus cells move by gliding and gliding motility depends on two polarly localized engines, type IV pili pull cells forward, and slime extruding nozzle-like structures appear to push cells forward. The motility behaviour of cells provides evidence that the two engines are localized to opposite poles and that they undergo polarity switching. Several proteins involved in regulating polarity switching have been identified. The cell surface-associated C-signal induces the directed movement of cells into nascent fruiting bodies. Recently, the molecular nature of the C-signal molecule was elucidated and the motility parameters regulated by the C-signal were identified. From the effect of the C-signal on cell behaviour it appears that the C-signal inhibits polarity switching of the two motility engines. This establishes a connection between cell polarity, signalling by an intercellular signal and morphogenetic cell movements during fruiting body formation.  相似文献   

2.
Starving Myxococcus xanthus cells organize into two strikingly different spatio-temporal patterns, either rippling or aggregation of cells into fruiting bodies. Formation of both patterns depends on a cell-surface-associated, non-diffusible signal, the C-signal. A key motility parameter modulated by the C-signal during pattern formation is the frequency at which cells reverse their gliding direction, with low and high levels of C-signalling causing an increase and a decrease in the reversal frequency, respectively. Recently, a simple yet elegant mathematical model was proposed to explain the mechanism underlying the non-linear dependence of the reversal frequency on C-signalling levels. The mathematical solution hinges on the introduction of a negative feedback loop into the biochemical circuit that regulates the reversal frequency. This system displays an oscillatory behaviour in which the oscillation frequency depends in a non-monotonic manner on the level of C-signalling. Thus, the biochemical oscillator recapitulates the effect of the C-signal on the reversal frequency. The challenge for biologists now is to test the mathematical model experimentally.  相似文献   

3.
VGP is a major cell-surface glycoprotein present in vegetative cells of Myxococcus xanthus. Serological assays indicated that this protein was released from cells and accumulated in the medium during development, i.e., aggregation, fruiting body formation, and myxosporulation. Cells induced to form spores in the absence of aggregation retained VGP, indicating that loss of VGP was associated with developmental aggregation rather than myxosporulation. Anti-VGP antibodies inhibited vegetative cell gliding, suggesting the protein may also be required for motility.  相似文献   

4.
In Myxococcus xanthus, morphogenesis of multicellular fruiting bodies and sporulation are co-ordinated temporally and spatially. csgA mutants fail to synthesize the cell surface-associated C-signal and are unable to aggregate and sporulate. We report that csgA encodes two proteins, a 25 kDa species corresponding to full-length CsgA protein and a 17 kDa species similar in size to C-factor protein, which has been shown previously to have C-signal activity. By systematically varying the accumulation of the csgA proteins, we show that overproduction of the csgA proteins results in premature aggregation and sporulation, uncoupling of the two events and the formation of small fruiting bodies, whereas reduced synthesis of the csgA proteins causes delayed aggregation, reduced sporulation and the formation of large fruiting bodies. These results show that C-signal induces aggregation as well as sporulation, and that an ordered increase in the level of C-signalling during development is essential for the spatial co-ordination of these events. The results support a quantitative model, in which aggregation and sporulation are induced at distinct threshold levels of C-signalling. In this model, the two events are temporally co-ordinated by the regulated increase in C-signalling levels during development. The contact-dependent C-signal transmission mechanism allows the spatial co-ordination of aggregation and sporulation by coupling cell position and signalling levels.  相似文献   

5.
A great deal of progress has been made in the studies of fruiting body development and social gliding in Myxocococcus xanthus in the past few years. This includes identification of the bone fide C-signal and a receptor for type IV pili, and development of a model for the mechanism of adventurous gliding motility. It is anticipated that the next few years will see even more progress as the complete genome sequence is available and genomic and proteomic tools are applied to the study of M. xanthus social behaviors.  相似文献   

6.
7.
In response to starvation Myxococcus xanthus initiates a developmental program that culminates in fruiting body formation. There are two morphogenetic events in this program, aggregation and sporulation, which are temporally and spatially coordinated by the contact-dependent intercellular C-signal protein (p17). p17 is generated by proteolytic cleavage of the p25 precursor protein, which accumulates in the outer membrane of vegetative and starving cells. However, p17 generation is restricted to starving cells. Here we identify the subtilisin-like protease PopC that is directly responsible for cleavage of p25. PopC accumulates in the cytoplasm of vegetative cells but is selectively secreted during starvation coinciding with the generation of p17. Consequently, p25 and PopC only encounter each other in starving cells. Thus, restriction of p25 cleavage to starving cells occurs by a compartmentalization mechanism that depends on selective secretion of PopC during starvation. Our results provide evidence for regulated proteolysis via regulated secretion.  相似文献   

8.
Pattern formation: fruiting body morphogenesis in Myxococcus xanthus   总被引:2,自引:0,他引:2  
When Myxococcus xanthus cells are exposed to starvation, they respond with dramatic behavioral changes. The expansive swarming behavior stops and the cells begin to aggregate into multicellular fruiting bodies. The cell-surface-associated C-signal has been identified as the signal that induces aggregation. Recently, several of the components in the C-signal transduction pathway have been identified and behavioral analyses are beginning to reveal how the C-signal modulates cell behavior. Together, these findings provide a framework for understanding how a cell-surface-associated morphogen induces pattern formation.  相似文献   

9.
The espC null mutation caused accelerated aggregation and formation of tiny fruiting bodies surrounded by spores, which were also observed in the espA mutant and in CsgA-overproducing cells in Myxococcus xanthus. In addition, the espC mutant appeared to produce larger amounts of the complementary C-signal than the wild-type strain. These findings suggest that EspC is involved in controlling the timing of fruiting body development in M. xanthus.  相似文献   

10.
We describe an unusual hybrid histidine protein kinase, which is important for spatially coupling cell aggregation and sporulation during fruiting body formation in Myxococcus xanthus. A rodK mutant makes abnormal fruiting bodies and spores develop outside the fruiting bodies. RodK is a soluble, cytoplasmic protein, which contains an N-terminal sensor domain, a histidine protein kinase domain and three receiver domains. In vitro phosphorylation assays showed that RodK possesses kinase activity. Kinase activity is essential for RodK function in vivo. RodK is present in vegetative cells and remains present until the late aggregation stage, after which the level decreases in a manner that depends on the intercellular A-signal. Genetic evidence suggests that RodK may regulate multiple temporally separated events during fruiting body formation including stimulation of early developmental gene expression, inhibition of A-signal production and inhibition of the intercellular C-signal transduction pathway. We speculate that RodK undergoes a change in activity during development, which is reflected in changes in phosphotransfer to the receiver domains.  相似文献   

11.
12.
13.
Proteolytic cleavage of precursor proteins to generate intercellular signals is a common mechanism in all cells. In Myxococcus xanthus the contact-dependent intercellular C-signal is a 17 kDa protein (p17) generated by proteolytic cleavage of the 25 kDa csgA protein (p25), and is essential for starvation-induced fruiting body formation. p25 accumulates in the outer membrane and PopC, the protease that cleaves p25, in the cytoplasm of vegetative cells. PopC is secreted in response to starvation, therefore, restricting p25 cleavage to starving cells. We focused on identifying proteins critical for PopC secretion in response to starvation. PopC secretion depends on the (p)ppGpp synthase RelA and the stringent response, and is regulated post-translationally. PopD, which is encoded in an operon with PopC, forms a soluble complex with PopC and inhibits PopC secretion whereas the integral membrane AAA+ protease FtsH(D) is required for PopC secretion. Biochemical and genetic evidence suggest that in response to starvation, RelA is activated and induces the degradation of PopD thereby releasing pre-formed PopC for secretion and that FtsH(D) is important for PopD degradation. Hence, regulated PopC secretion depends on regulated proteolysis. Accordingly, p17 synthesis depends on a proteolytic cascade including FtsH(D) -dependent degradation of PopD and PopC-dependent cleavage of p25.  相似文献   

14.
The soil bacterium, Myxococcus xanthus initiates a developmental program when nutrients are limited. This results in the formation of a multicellular fruiting body structure filled with differentiated, environmentally resistant spores. At least four cell-cell signals, cell motility, and aggregation functions are required for the completion of fruiting body formation.  相似文献   

15.
Hendrata M  Yang Z  Lux R  Shi W 《PloS one》2011,6(7):e22169
Identifying essential factors in cellular interactions and organized movement of cells is important in predicting behavioral phenotypes exhibited by many bacterial cells. We chose to study Myxococcus xanthus, a soil bacterium whose individual cell behavior changes while in groups, leading to spontaneous formation of aggregation center during the early stage of fruiting body development. In this paper, we develop a cell-based computational model that solely relies on experimentally determined parameters to investigate minimal elements required to produce the observed social behaviors in M. xanthus. The model verifies previously known essential parameters and identifies one novel parameter, the active turning, which we define as the ability and tendency of a cell to turn to a certain angle without the presence of any obvious external factors. The simulation is able to produce both gliding pattern and spontaneous aggregation center formation as observed in experiments. The model is tested against several known M. xanthus mutants and our modification of parameter values relevant for the individual mutants produces good phenotypic agreements. This outcome indicates the strong predictive potential of our model for the social behaviors of uncharacterized mutants and their expected phenotypes during development.  相似文献   

16.
The gliding bacterium Myxococcus xanthus aggregates to form spore-filled fruiting bodies when nutrients are limiting. Defective fruiting-body formation and sporulation result from mutations in the sasA locus, which encodes the wzm wzt wbgA (formerly rfbABC ) lipopolysaccharide (LPS) O-antigen biosynthesis genes. Mutants carrying these same sasA mutations are defective in social motility and form small glossy colonies. We report here that the developmental and motility phenotypes of four mutants each containing different Tn 5 insertions in LPS O-antigen biosynthesis genes are similar to those of the original sasA locus mutants. All of the LPS O-antigen mutants tested exhibited defective developmental aggregation and sporulated at only 0.02–15% of the wild-type level. In addition, all of the LPS O-antigen mutants were determined by genetic analyses to be wild type for adventurous motility and defective in social motility, indicating that the LPS O-antigen is necessary for normal development and social motility. The two previously identified cell-surface components required for social motility, type IV pili and the protein-associated polysaccharide material termed fibrils, were detected on the surfaces of all of the LPS O-antigen mutants. This indicates that LPS O-antigen is a third cell-surface component required for social motility.  相似文献   

17.
Myxococcus xanthus is a bacterium that moves by gliding motility and exhibits multicellular development (fruiting body formation). The frizzy (frz) mutants aggregate aberrantly and therefore fail to form fruiting bodies. Individual frz cells cannot control the frequency at which they reverse direction while gliding. Previously, FrzCD was shown to exhibit significant sequence similarity to the enteric methyl-accepting chemotaxis proteins. In this report, we show that FrzCD is modified by methylation and that frzF encodes the methyltransferase. We also identify a new gene, frzG, whose predicted product is homologous to that of the cheB (methylesterase) gene from Escherichia coli. Thus, although M. xanthus is unflagellated, it appears to have a sensory transduction system which is similar in many of its components to those found in flagellated bacteria.  相似文献   

18.
Myxococcus xanthus requires gliding motility for swarming and fruiting body formation. It uses the Frz chemosensory pathway to regulate cell reversals. FrzCD is a cytoplasmic chemoreceptor required for sensing effectors for this pathway. NarX is a transmembrane sensor for nitrate from Escherichia coli. In this study, two NarX-FrzCD chimeras were constructed to investigate M. xanthus chemotaxis: NazD(F) contains the N-terminal sensory module of NarX fused to the C-terminal signalling domain of FrzCD; NazD(R) is similar except that it contains a G51R mutation in the NarX domain known to reverse the signalling output of a NarX-Tar chimera to nitrate. We report that while nitrate had no effect on the wild type, it decreased the reversal frequency of M. xanthus expressing NazD(F) and increased that of M. xanthus expressing NazD(R). These results show that directional motility in M. xanthus can be regulated independently of cellular metabolism and physiology. Surprisingly, the NazD(R) strain failed to adapt to nitrate in temporal assays as did the wild type to known repellents. The lack of temporal adaptation to negative stimuli appears to be a general feature in M. xanthus chemotaxis. Thus, the appearance of biased movements by M. xanthus in repellent gradients is likely due to the inhibition of net translocation by repellents.  相似文献   

19.
粘细菌是原核生物中的“高等生物”,具有特殊的运动能力以及类似真核生物的复杂的多细胞发育生活史,其多细胞发育过程的调控一直是粘细菌研究的热点。近年来,许多关于粘细菌研究的新理论、新学说不断涌现,给予粘细菌研究极大的启发。本文综述了模式菌株黄色粘球菌的运动类型、运动机制以及运动的调控系统,并对其多细胞发育过程的信号传递调控模式进行初步阐释,为更深一步的研究粘细菌复杂的生命调控过程奠定基础。  相似文献   

20.
Type IV pili (TFP) and exopolysaccharides (EPS) are important components for social behaviors in Myxococcus xanthus, including gliding motility and fruiting body formation. Although specific interactions between TFP and EPS have been proposed, there have as yet been no direct observations of these interactions under native conditions. In this study, we found that a truncated PilA protein (PilACt) containing only the C-terminal domain (amino acids 32-208) is sufficient for EPS binding in vitro. Furthermore, an enhanced green fluorescent protein (eGFP) and PilACt fusion protein were constructed and used to label the native EPS in M. xanthus. Under confocal laser scanning microscope, the eGFP-PilACt-bound fruiting bodies, trail structures and biofilms exhibited similar patterns as the wheat germ agglutinin lectin-labeled EPS structures. This study showed that eGFP-PilACt fusion protein was able efficiently to label the EPS of M. xanthus, providing evidence for the first time of the direct interaction between the PilA protein and EPS under native conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号