首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The putative biosynthetic gene cluster for the alpha-glucosidase inhibitor acarbose was identified in the producer Actinoplanes sp. 50/110 by cloning a DNA segment containing the conserved gene for dTDP-D-glucose 4,6-dehydratase, acbB. The two flanking genes were acbA (dTDP-D-glucose synthase) and acbC, encoding a protein with significant similarity to 3-dehydroquinate synthases (AroB proteins). The acbC gene was overexpressed heterologously in Streptomyces lividans 66, and the product was shown to be a C7-cyclitol synthase using sedo-heptulose 7-phosphate, but not ido-heptulose 7-phosphate, as its substrate. The cyclization product, 2-epi-5-epi-valiolone ((2S,3S,4S,5R)-5-(hydroxymethyl)cyclohexanon-2,3,4,5-tetrol), is a precursor of the valienamine moiety of acarbose. A possible five-step reaction mechanism is proposed for the cyclization reaction catalyzed by AcbC based on the recent analysis of the three-dimensional structure of a eukaryotic 3-dehydroquinate synthase domain (Carpenter, E. P., Hawkins, A. R., Frost, J. W., and Brown, K. A. (1998) Nature 394, 299-302).  相似文献   

2.
The C7-cyclitol 2-epi-5-epi-valiolone is the first precursor of the cyclitol moiety of the -glucosidase inhibitor acarbose in Actinoplanes sp. SE50. The 2-epi-5-epi-valiolone becomes phosphorylated at C7 by the ATP dependent kinase AcbM prior to the next modifications. Preliminary data gave evidences that the AcbO protein could catalyse the first modification step of 2-epi-5-epi-valiolone-7-phosphate. Therefore, the AcbO protein, the encoding gene of which is also part of the acbKMLNOC operon, was overproduced and purified. Indeed the purified protein catalysed the 2-epimerisation of 2-epi-5-epi-valiolone-7-phosphate. The chemical structure of the purified reaction product was proven by nuclear magnetic resonance spectroscopy to be 5-epi-valiolone-7-phosphate.  相似文献   

3.
A gene cluster responsible for the biosynthesis of validamycin, an aminocyclitol antibiotic widely used as a control agent for sheath blight disease of rice plants, was identified from Streptomyces hygroscopicus subsp. jinggangensis 5008 using heterologous probe acbC, a gene involved in the cyclization of D-sedoheptulose 7-phosphate to 2-epi-5-epi-valiolone of the acarbose biosynthetic gene cluster originated from Actinoplanes sp. strain SE50/110. Deletion of a 30-kb DNA fragment from this cluster in the chromosome resulted in loss of validamycin production, confirming a direct involvement of the gene cluster in the biosynthesis of this important plant protectant. A sequenced 6-kb fragment contained valA (an acbC homologue encoding a putative cyclase) as well as two additional complete open reading frames (valB and valC, encoding a putative adenyltransferase and a kinase, respectively), which are organized as an operon. The function of ValA was genetically demonstrated to be essential for validamycin production and biochemically shown to be responsible specifically for the cyclization of D-sedoheptulose 7-phosphate to 2-epi-5-epi-valiolone in vitro using the ValA protein heterologously overexpressed in E. coli. The information obtained should pave the way for further detailed analysis of the complete biosynthetic pathway, which would lead to a complete understanding of validamycin biosynthesis.  相似文献   

4.
2-epi-5-epi-valiolone is a cyclization product of the C(7) sugar phosphate, sedoheptulose 7-phosphate, involved in the biosynthesis of the aminocyclitol moieties of acarbose, validamycin, and pyralomicin. As part of our investigation into the pathway from 2-epi-5-epi-valiolone to the valienamine moiety of acarbose, we prepared 1-epi-5-epi-(6-(2)H(2))valiolol [(6-(2)H(2))-6], 5-epi-(6-(2)H(2))valiolol [(6-(2)H(2))-17], 1-epi-2-epi-5-epi-(6-(2)H(2))valiolol [(6-(2)H(2))-12] and 2-epi-5-epi-(6-(2)H(2))valiolamine [(6-(2)H(2))-11]. Compounds (6-(2)H(2))-6 and (6-(2)H(2))-17 were synthesized from 2,3,4,6-tetra-O-benzyl-D-glucopyranose in 10 and seven steps, respectively, whereas (6-(2)H(2))-12 and (6-(2)H(2))-11 were synthesized from 2,3,4,6-tetra-O-benzyl-D-mannopyranose in eight and 10 steps, respectively.  相似文献   

5.
In the biosynthesis of the C7-cyclitol moiety, valienol, of the -glucosidase inhibitor acarbose in Actinoplanes sp. SE50/110 various cyclitol phosphates, such as 1-epi-valienol-7-phosphate, are postulated precursors. In the cell extracts of Actinoplanes SE50/110 we found a new kinase activity which specifically phosphorylates 1-epi-valienol; other C7-cyclitol analogs were only weakly or not phosphorylated. The purified product of the kinase reaction turned out to be 1-epi-valienol-7-phosphate in analyses by nuclear magnetic resonance spectroscopy. The enzyme seems not to be encoded by an acb gene and, therefore, plays a role in a salvage pathway rather than directly in the de novo biosynthesis of acarbose.  相似文献   

6.
Singh D  Seo MJ  Kwon HJ  Rajkarnikar A  Kim KR  Kim SO  Suh JW 《Gene》2006,376(1):13-23
The validamycin biosynthetic gene cluster was isolated from Streptomyces hygroscopicus var. limoneus KTCC 1715 (IFO 12704) using a pair of degenerated PCR primers designed from the sequence of AcbC, 2-epi-5-epi-valiolone synthase in the acarbose biosynthesis. The nucleotide sequence analysis of the 37-kb DNA region revealed 22 complete ORFs including vldA, the acbC ortholog. Located around vldA, vldB to K were predicted to encode adenyltransferase, kinase, ketoreductase (or epimerase/dehydratase), glycosyltransferase, aminotransferase, dehydrogenase, phosphatase/phosphomutase, glycosyl hydrolase, transport protein, and glycosyltransferase, respectively. Apparently absent were any regulatory components within the sequenced region. The disruption of vldA abolished the validamycin biosynthesis and the plasmid-based complementation with vldABC restored production to the vldA-mutant; this substantiated that vldABC are essential to validamycin biosynthesis. This finding enabled us to discover the complete validamycin biosynthetic cluster. The cosmid clone of pJWS3001 harboring the 37-kb DNA region conferred validamycin-accumulation to Streptomyces lividans, indicating that the entire gene cluster of validamycin biosynthesis had been isolated. Additionally, Streptomyces albus, transformed with pJWS3001, produced a high level of alpha-glucosidase inhibitory activity in a R2YE liquid culture, which highlights the portability of the cluster within Streptomyces. The product of vldI was characterized as a glucoamylase (kcat, 32 s(-1); K(m), 5 mg/ml of starch) that does not play any apparent role in the validamycin biosynthesis. In order to characterize the upstream region, a vldW knockout was achieved via gene-replacement. A phenotypic study of the resulting mutant revealed that vldW is not essential for the host's ability to control Pellicularia filamentosa growth. The current information suggests that vldA to vldH is the genetic region essential to validamycin biosynthesis. This promises excellent opportunities to elucidate biosynthetic route(s) to the validamycin complex and to engineer the pathway for industrial application.  相似文献   

7.
8.
An extracellular enzyme activity in the culture supernatant of the acarbose producer Actinoplanes sp. strain SE50 catalyzes the transfer of the acarviosyl moiety of acarbose to malto-oligosaccharides. This acarviosyl transferase (ATase) is encoded by a gene, acbD, in the putative biosynthetic gene cluster for the alpha-glucosidase inhibitor acarbose. The acbD gene was cloned and heterologously produced in Streptomyces lividans TK23. The recombinant protein was analyzed by enzyme assays. The AcbD protein (724 amino acids) displays all of the features of extracellular alpha-glucosidases and/or transglycosylases of the alpha-amylase family and exhibits the highest similarities to several cyclodextrin glucanotransferases (CGTases). However, AcbD had neither alpha-amylase nor CGTase activity. The AcbD protein was purified to homogeneity, and it was identified by partial protein sequencing of tryptic peptides. AcbD had an apparent molecular mass of 76 kDa and an isoelectric point of 5.0 and required Ca(2+) ions for activity. The enzyme displayed maximal activity at 30 degrees C and between pH 6.2 and 6.9. The K(m) values of the ATase for acarbose (donor substrate) and maltose (acceptor substrate) are 0.65 and 0.96 mM, respectively. A wide range of additional donor and acceptor substrates were determined for the enzyme. Acceptors revealed a structural requirement for glucose-analogous structures conserving only the overall stereochemistry, except for the anomeric C atom, and the hydroxyl groups at positions 2, 3, and 4 of D-glucose. We discuss here the function of the enzyme in the extracellular formation of the series of acarbose-homologous compounds produced by Actinoplanes sp. strain SE50.  相似文献   

9.
Zheng L  Zhou X  Zhang H  Ji X  Li L  Huang L  Bai L  Zhang H 《PloS one》2012,7(2):e32033
Validamycin A (Val-A) is an effective antifungal agent widely used in Asian countries as crop protectant. Validoxylamine A, the core structure and intermediate of Val-A, consists of two C(7)-cyclitol units connected by a rare C-N bond. In the Val-A biosynthetic gene cluster in Streptomyces hygroscopicus 5008, the ORF valL was initially annotated as a validoxylamine A 7'-phosphate(V7P) synthase, whose encoded 497-aa protein shows high similarity with trehalose 6-phosphate(T6P) synthase. Gene inactivation of valL abolished both validoxylamine A and validamycin A productivity, and complementation with a cloned valL recovered 10% production of the wild-type in the mutant, indicating the involvement of ValL in validoxylamine A biosynthesis. Also we determined the structures of ValL and ValL/trehalose complex. The structural data indicates that ValL adopts the typical fold of GT-B protein family, featuring two Rossmann-fold domains and an active site at domain junction. The residues in the active site are arranged in a manner homologous to that of Escherichia coli (E.coli) T6P synthase OtsA. However, a significant discrepancy is found in the active-site loop region. Also noticeable structural variance is found around the active site entrance in the apo ValL structure while the region takes an ordered configuration upon binding of product analog trehalose. Furthermore, the modeling of V7P in the active site of ValL suggests that ValL might have a similar SNi-like mechanism as OtsA.  相似文献   

10.
The organization of the 2-deoxystreptamine (DOS) biosynthetic gene cluster of Micromonospora echinospora has been determined. Sequencing of a 14.04 kb-region revealed twelve open reading frames (ORFs): four putative DOS biosynthetic genes (gtmA, B, C, and D), five amino sugars biosynthetic genes (gtmE, G, H, I, and gacB), two aminoglycoside resistance genes (gtmF and J) as well as a hypothetical ORF (gacA). One of the putative DOS biosynthetic genes, gtmA, was expressed in Escherichia coli, and the purified protein was shown to convert glucose-6-phosphate (G-6-P) to 2-deoxy-scyllo-inosose (DOI), a key step in DOS biosynthesis. In addition gtmJ was expressed in Streptomyces lividans and shown to confer gentamicin resistance. Thus gtmA and gtmJ are implicated in the biosynthesis of gentamicin and in resistance to it, respectively.  相似文献   

11.
A series of large chromosomal deletions in Streptomyces hygroscopicus 10-22 were aligned on the physical map of the wild-type strain and the mutants were assessed for their ability to produce the aminocyclitol antibiotic 5102-I (jinggangmycin). Twenty-eight mutants were blocked for jinggangmycin production and all of them were found to lack a 300 kb AseI-F fragment of the wild-type chromosome. An ordered cosmid library of the 300 kb AseI-F fragment was made and one of the cosmids conferred jinggangmycin productivity to Streptomyces lividans ZX1. Three of the overlapping cosmids (18G7, 5H3 and 9A2) also hybridized to the valA gene of the validamycin pathway from S. hygroscopicus 5008 as a probe. This gene resembles acbC from Actinoplanes sp. 50/110, which encodes a C7-cyclitol synthase that catalyses the transformation of sedoheptulose 7-phosphate into 2-5-epi-valiolone for acarbose biosynthesis. The valA/acbC-homolog (orf1) of S. hygroscopicus 10-22 was shown to be essential for jinggangmycin biosynthesis as an engineered mutant with a specific in-frame deletion removing a 609 bp sequence internal to orf1 completely abolished jinggangmycin production and the corresponding knock-out mutant (JXH4) could be complemented for jinggangmycin production by the introduction of an orf1-containing construct. Concurrently, the identities of the genes common to S. hygroscopicus strains 10-22 and 5008 prompted a comparison of the chemical structures of jinggangmycin and validamycin, which led to a clear demonstration that they are identical.The first two authors contributed equally to this study.  相似文献   

12.
The pseudo-glycosyltransferase VldE catalyzes non-glycosidic C-N coupling between an unsaturated cyclitol and a saturated aminocyclitol with the conservation of the stereochemical configuration of the substrates to form validoxylamine A 7′-phosphate, the biosynthetic precursor of the antibiotic validamycin A. To study the molecular basis of its mechanism, the three-dimensional structures of VldE from Streptomyces hygroscopicus subsp. limoneus was determined in apo form, in complex with GDP, in complex with GDP and validoxylamine A 7′-phosphate, and in complex with GDP and trehalose. The structure of VldE with the catalytic site in both an “open” and “closed” conformation is also described. With these structures, the preferred binding of the guanine moiety by VldE, rather than the uracil moiety as seen in OtsA could be explained. The elucidation of the VldE structure in complex with the entirety of its products provides insight into the internal return mechanism by which catalysis occurs with a net retention of the stereochemical configuration of the donated cyclitol.  相似文献   

13.
将含有硫霉素环化酶基因的重组质粒p6BCl2转化变铅青链霉菌(Streptomyceslividans)TK24,含有p6BCl2的转化子细胞抽提液分别与琉霉素生物合成阻断变株Y,发酵液以及纯化的Y。中间产物经过体外共培养可产生活性物质.化学分析表明与Y,发酵液混合后产生的是硫霉素,与纯化的Y。中间产物混合产生的是一种不稳定的活性物质。说明硫霉素环化酶基因在S.lividans TK24中得到了表达,其产物以Y。中间产物为底物并弥补了Y,中的缺陷。对p6Bcl2中4.5kb外源片段进行了限制酶酶切分析,建立了酶切图谱.利用含硫霉素环化酶基因的S.Lividans TK24转化子体外转化Y,的应用体系,将硫霉素环化酶基因定位在0.9kb Hinc I—Pst I片段上,并证明了硫霉紊环化酶的活性与IPNS同源片段无关。以上实验为进一步研究琉霉素环化酶基因的结构打下了基础。  相似文献   

14.
Abstract

The α-glucosidase inhibitor acarbose produced by Actinoplanes sp. SE50/110 is a pseudotetrasaccharide, which consists of an unsaturated cyclitol (carba-sugar), 4-amino-4,6-dideoxyglucose and maltose. The cyclitol (valienol) and the 4-amino-4,6-dideoxyglucose are linked via an N-glycosidic (imino) bond, forming the so-called acarviosyl moiety, which is primarily responsible for the inhibitory effect on α-glucosidases. The gene cluster encoding the biosynthetic genes for the synthesis of acarbose (acb-genes) was sequenced and 25 open reading frames belonging to the acb-gene cluster were identified. Based on the analysis of the enzymes encoded by the acb-cluster, the biosynthesis and ecological role of acarbose is described. The gene cluster includes genes which encode: proteins for the synthesis of the cyclitol; the enzymes for the synthesis of dTDP-4-amino-4,6-dideoxyglucose; glycosyltransferases for the condensation reactions; ATP-dependent exporters and importers; extracellular starch degrading enzymes; and intracellular acarbose modifying enzymes. Acarbose has a dual role for the producer: it inhibits α-glucosidic enzymes of competitors and functions as a carbophor for the uptake of glucose or starch molecules.  相似文献   

15.
Streptomyces viridochromogenes Tü494 produces the antibiotic phosphinothricin tripeptide (PTT). In the postulated biosynthetic pathway, one reaction, the isomerization of phosphinomethylmalate, resembles the aconitase reaction of the tricarboxylic acid (TCA) cycle. It was speculated that this reaction is carried out by the corresponding enzyme of the primary metabolism (C. J. Thompson and H. Seto, p. 197-222, in L. C. Vining and C. Stuttard, ed., Genetics and Biochemistry of Antibiotic Production, 1995). However, in addition to the TCA cycle aconitase gene, a gene encoding an aconitase-like protein (the phosphinomethylmalate isomerase gene, pmi) was identified in the PTT biosynthetic gene cluster by Southern hybridization experiments, using oligonucleotides which were derived from conserved amino acid sequences of aconitases. The deduced protein revealed high similarity to aconitases from plants, bacteria, and fungi and to iron regulatory proteins from eucaryotes. Pmi and the S. viridochromogenes TCA cycle aconitase, AcnA, have 52% identity. By gene insertion mutagenesis, a pmi mutant (Mapra1) was generated. The mutant failed to produce PTT, indicating the inability of AcnA to carry out the secondary-metabolism reaction. A His-tagged protein (Hispmi*) was heterologously produced in Streptomyces lividans. The purified protein showed no standard aconitase activity with citrate as a substrate, and the corresponding gene was not able to complement an acnA mutant. This indicates that Pmi and AcnA are highly specific for their respective enzymatic reactions.  相似文献   

16.
A lignin peroxidase gene was cloned from Streptomyces viridosporus T7A into Streptomyces lividans TK64 in plasmid pIJ702. BglII-digested genomic DNA (4-10 kb) of S. viridosporus was shotgun-cloned into S. lividans after insertion into the melanin (mel+) gene of pIJ702. Transformants expressing pIJ702 with insert DNA were selected based upon the appearance of thiostrepton resistant (tsrr)/mel-colonies on regeneration medium. Lignin peroxidase-expressing clones were isolated from this population by screening of transformants on a tsr-poly B-411 dye agar medium. In the presence of H2O2 excreted by S. lividans, colonies of lignin peroxidase-expressing clones decolorized the dye. Among 1000 transformants screened, 2 dye-decolorizing clones were found. One, pIJ702/TK64.1 (TK64.1), was further characterized. TK64.1 expressed significant extracellular 2,4-dichlorophenol (2.4-DCP) peroxidase activity (= assay for S. viridosporus lignin peroxidase). Under the cultural conditions employed, plasmidless S. lividans TK64 had a low background level of 2.4-DCP oxidizing activity. TK64.1 excreted an extracellular peroxidase not observed in S. lividans TK64, but similar to S. viridosporus lignin peroxidase ALip-P3, as shown by activity stain assays on nondenaturing polyacrylamide gels. The gene was located on a 4 kb fragment of S. viridosporus genomic DNA. When peroxidase-encoding plasmid, pIJ702.LP, was purified and used to transform three different S. lividans strains (TK64, TK23, TK24), all transformants tested decolorized poly B-411. When grown on lignocellulose in solid state processes, genetically engineered S. lividans TK64.1 degraded the lignocellulose slightly better than did S. lividans TK64. This is the first report of the cloning of a bacterial gene coding for a lignin-degrading enzyme.  相似文献   

17.
Mevalonate is a ubiquitous biosynthetic intermediate of terpenoids and is used as a moisturizer in cosmetics and a chemical for biochemical research. In this study, we have achieved a heterologous production of this useful compound by expression in Streptomyces lividans TK23 of 3-hydroxy-3-methylglutaryl-CoA synthase and 3-hydroxy-3-methylglutaryl-CoA reductase genes, which were cloned from Streptomyces sp. strain CL190.  相似文献   

18.
The biosynthesis of the diterpene 8alpha-acetoxy-13alpha-hydroxy-5-oxo-13-epi- neoverrucosane in the arctic liverwort Fossombronia alaskana was studied by incorporation experiments using [1-(13)C]- and [U-(13)C(6)]glucose as precursors. The (13)C-labeling patterns of acetyl-CoA, pyruvate, and phosphoenolpyruvate in intermediary metabolism were reconstructed from the (13)C NMR data of biosynthetic amino acids (leucine, alanine, phenylalanine) and were used to predict hypothetical labeling patterns for isopentenyl pyrophosphate formed via the mevalonate pathway and the deoxyxylulose pathway. The labeling patterns observed for the neoverrucosane diterpene were consistent with the intermediate formation of geranyllinaloyl pyrophosphate assembled from dimethylallyl pyrophosphate and three molecules of isopentenyl pyrophosphate generated predominantly or entirely via 1-deoxyxylulose 5-phosphate. The experimental data can be integrated into a detailed biosynthetic scheme involving a 1,5-hydride shift. The postulated involvement of the 1,5-hydride shift was confirmed by an incorporation experiment with [6,6-(2)H(2)]glucose.  相似文献   

19.
The tetrahedral intermediate formed at the active site of 5-enolpyruvoylshikimate-3-phosphate synthase by reaction of shikimate 3-phosphate with phosphoenolpyruvate was isolated, and its properties in solution and in reaction with enzyme were examined. The intermediate was moderately stable at pH 7.0, with a half-life of 45 min, and showed increasing lifetimes with increasing pH (t1/2 greater than 48 h at pH greater than or equal to 12). The intermediate bound to the enzyme rapidly, with a second order rate constant of 5 x 10(7) M-1 s-1. Upon binding to the enzyme, it reacted to form both products (5-enolpyruvoylshikimate 3-phosphate, Pi) and substrates (shikimate 3-phosphate, phosphoenolpyruvate) in proportions predicted by the rate constants defined previously for reactions occurring at the active enzyme site (Anderson, K.S. Sikorski, J.A., and Johnson, K. A. (1988b) Biochemistry 27, 7395-7406). The kinetics of binding and dissociation of stable phosphonate analogs of the tetrahedral intermediate (Alberg, D., and Bartlett, P.A. (1989) J. Am. Chem. Soc. 111, 2337) were also examined. In comparison to the intermediate, the analogs bound to the enzyme 300-10,000 fold more slowly and at least 300-20,000 times mroe weakly. These results clarify the definitions for kinetic competence of enzyme intermediates and call into question the significance of the slow binding of analogs of transition states or enzyme intermediates.  相似文献   

20.
We examined the expression of choB, encoding cholesterol oxidase of Brevibacterium sterolicum ATCC 21387, in Escherichia coli JM105 and Streptomyces lividans TK23 using various deletion DNA fragments within the 5'-flanking region. The enzyme activity could be detected intracellularly in E. coli only when the 5'-flanking region was reduced to less than 256-bp and choB was transcribed by the lac promoter. A large amount of the enzyme were produced as inactive inclusion bodies when ChoB protein was fused with the NH2-terminal portion of LacZ protein. In contrast, choB with more than 256-bp of the 5'-flanking region was efficiently expressed in S. lividans TK23, and about 85 times as much of the active enzyme (170 U/ml) was secreted into the culture filtrate as with B. sterolicum in flask culture. These results suggest that the promoter of choB exist within 256-bp of the 5'-flanking region and can be efficiently recognized by the RNA polymerase of S. lividans. The characteristics of the enzyme purified from the culture filtrate of the S. lividans transformant and that of B. sterolicum were identical although the NH2-terminal amino acid sequence of the enzyme from the S. lividans transformant was 6 amino acids shorter than that from B. sterolicum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号