首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Using MG-63 cells as a model system capable of partial osteoblastic differentiation, we have examined the effect of growth on extracellular matrix. MG-63 cell matrix and purified type I collagen induced a morphological change characterized by long cytoplasmic processes reminiscent of those seen in osteocytes. Concurrent biochemical changes involving bone marker proteins included increased specific activity of cell-associated alkaline phosphatase and increased secretion of osteonectin (up to 2.5-fold for each protein); all changes occurred without alterations in the growth kinetics of the MG-63 cells. The increase in alkaline phosphatase activity was maximal on days 6-8 following seeding; increased osteonectin secretion was most prominent immediately following seeding; all changes decreased as cells reached confluence. Growing cells on type I collagen resulted in an increased induction of alkaline phosphatase activity by 1,25(OH)2D3 (with little change in the 1,25(OH)2D3 induction of osteonectin and osteocalcin secretion), and increased TGF-beta induction of alkaline phosphatase activity as well (both TGF-beta 1 and TGF-beta 2). Both the 1,25(OH)2D3 and TGF-beta effects appeared to be synergistic with growth on type I collagen. These studies support the hypothesis that bone extracellular matrix may play an important role in osteoblastic differentiation and phenotypic expression.  相似文献   

2.
The 1,25 dihydroxyvitamin D3 [1,25(OH)2D3]-induced differentiation of osteoblasts comprises the sequential induction of cell cycle arrest at G0/G1 and the expression of bone matrix proteins. Reports differ on the effects of IGF binding protein (IGFBP)-5 on bone cell growth and osteoblastic function. IGFBP-5 can be growth stimulatory or inhibitory and can enhance or impair osteoblast function. In previous studies, we have shown that IGFBP-5 localizes to the nucleus and interacts with the retinoid receptors. We now show that IGFBP-5 interacts with nuclear vitamin D receptor (VDR) and blocks retinoid X receptor (RXR):VDR heterodimerization. VDR and IGFBP-5 were shown to colocalize to the nuclei of MG-63 and U2-OS cells and coimmunoprecipitate in nuclear extracts from these cells. Induction of osteocalcin promoter activity and alkaline phosphatase activity by 1,25(OH)2D3 were significantly enhanced when IGFBP-5 was down-regulated in U2-OS cells. Moreover, we found IGFBP-5 increased basal alkaline phosphatase activity and collagen alpha1 type 1 expression, and that 1,25(OH)2D3 was unable to further induce the expression of these bone differentiation markers in MG-63 cells. Expression of IGFBP-5 inhibited MG-63 cell growth and caused cell cycle arrest at G0/G1 and G2/M. Furthermore, IGFBP-5 reduced the effects of 1,25(OH)2D3 in blocking cell cycle progression at G0/G1 and decreased the expression of cyclin D1. These results demonstrate that IGFBP-5 can interact with VDR to prevent RXR:VDR heterodimerization and suggest that IGFBP-5 may attenuate the 1,25(OH)2D3-induced expression of bone differentiation markers while having a modest effect on the 1,25(OH)2D3-mediated inhibition of cell cycle progression in bone cells.  相似文献   

3.
Synthesis of type I and III collagens has been examined in MG-63 human osteosarcoma cells after treatment with the steroid hormone, 1,25-dihydroxyvitamin D3 (1,25-(OH)2D3). Analysis of total [3H]proline-labeled proteins and pepsin-derived collagens revealed that 1,25-(OH)2D3 selectively stimulated synthesis of alpha 1I and alpha 2I components of type I collagen after 6-12 h. Consistent with previous reports (Franceschi, R. T., Linson, C. J., Peter, T. C., and Romano, P. R. (1987) J. Biol. Chem. 262, 4165-4171), parallel increases in fibronectin synthesis were also observed. Hormonal effects were maximal (2- to 2.5-fold versus controls) after 24 h and persisted for at least 48 h. In contrast, synthesis of the alpha 1III component of type III collagen was not appreciably affected by hormone treatment. Of several vitamin D metabolites (1,25-(OH)2D3, 25-dihydroxyvitamin D3, and 24R,25-dihydroxyvitamin D3) tested for activity in stimulating type I collagen synthesis, 1,25-(OH)2D3 was found to be the most active. Analysis of collagen mRNA abundance by Northern blot hybridization indicated that both types I and III procollagen mRNAs were increased 4-fold after a 24-h exposure to 1,25-(OH)2D3. Pro alpha 1I mRNA remained elevated through the 48-h time point while pro alpha 2I and pro alpha 1III mRNAs returned to control values. These results indicate that the regulation of collagen synthesis by 1,25-(OH)2D3 is complex and may involve changes in translational efficiency as well as mRNA abundance. 1,25-(OH)2D3 also caused at least a 20-fold increase in levels of the bone-specific calcium-binding protein, osteocalcin. These results are consistent with the hypothesis that 1,25-(OH)2D3 is stimulating partial differentiation to the osteoblast phenotype in MG-63 cells.  相似文献   

4.
5.
Previous studies have shown 1,25-dihydroxyvitamin D3 (1,25-(OH)2D3)-responsive alkaline phosphatase in cultured growth zone cartilage chondrocytes is localized in extracellular matrix vesicles (MV). Since osteoblast-like cells also have 1,25-(OH)2D3-responsive alkaline phosphatase, this study determined whether the 1,25-(OH)2D3-responsive enzyme activity is localized to MV produced by these cells as well. Osteoblast-like cells from rat (ROS 17/2.8), mouse (MC 3T3), human (MG 63), and rat growth zone cartilage were cultured in Dulbecco's modified Eagle's medium containing 10(-7)-10(-12) M 1,25-(OH)2D3. Alkaline phosphatase total activity and specific activity were measured in the cell layer, MV, and plasma membrane (PM) fractions. MV and PM purity were verified by electron microscopy and MV alkaline phosphatase specific activity compared to PM (MV versus PM: ROS 17/2.8 6 x; MG 63, 5.5 x; MC 3T3, 33 x; GC, 2 x). There was a dose-dependent stimulation of MV alkaline phosphatase (5- to 15-fold increase at 10(-7)-10(-9) M) in all cell types in response to the 1,25-(OH)2D3. The PM enzyme was stimulated in a parallel fashion in the osteoblast cultures. No effect of 1,25-(OH)2D3 was observed in growth cartilage PM. Although MV accounted for less than 20% of the total activity they contributed 50% of the increase in alkaline phosphatase activity in the cell layer in response to 1,25-(OH)2D3 and MV specific activity was enriched 10 times over that of the cell layer. These are common features of MV produced by cells which calcify their matrix and suggest that hormonal regulation of MV enzymes may be important in primary calcification.  相似文献   

6.
We have examined the ability of dexamethasone, retinoic acid, and vitamin D3 to induce osteogenic differentiation in rat marrow stromal cell cultures by measuring the expression of mRNAs associated with the differentiated osteoblast phenotype as well as analyzing collagen secretion and alkaline phosphatase activity. Marrow cells were cultured for 8 days in primary culture and 8 days in secondary culture, with and without 10 nM dexamethasone or 1 microM retinoic acid. Under all conditions, cultures produced high levels of osteonectin mRNA. Cells grown with dexamethasone in both primary and secondary culture contained elevated alkaline phosphatase mRNA and significant amounts of type I collagen and osteopontin mRNA. Addition of 1,25-dihydroxyvitamin D3 to these dexamethasone-treated cultures induced expression of osteocalcin mRNA and increased osteopontin mRNA. The levels of alkaline phosphatase, osteopontin, and osteocalcin mRNAs in Dex/Dex/VitD3 cultures were comparable to those of 1,25-dihydroxyvitamin D3-treated ROS 17/2.8 osteosarcoma cells. Omitting dexamethasone from either primary or secondary culture resulted in significantly less alkaline phosphatase mRNA, little osteopontin mRNA, and no osteocalcin mRNA. Retinoic acid increased alkaline phosphatase activity to a greater extent than did dexamethasone but did not have a parallel effect on the expression of alkaline phosphatase mRNA and induced neither osteopontin or osteocalcin mRNAs. In all conditions, marrow stromal cells synthesized and secreted a mixture of type I and III collagens. However, dexamethasone-treated cells also synthesized an additional collagen type, provisionally identified as type V. The synthesis and secretion of collagens type I and III was decreased by both dexamethasone and retinoic acid. Neither dexamethasone nor retinoic acid induced mRNAs associated with the chondrogenic phenotype. We conclude that dexamethasone, but not retinoic acid, promotes the expression of markers of the osteoblast phenotype in cultures of rat marrow stromal fibroblasts.  相似文献   

7.
It has been previously shown that transforming growth factor beta (TGF beta) is capable of stimulating fibroblast collagen and fibronectin biosynthesis. The purpose of this study was to examine the mechanisms involved in TGF beta stimulation of fibroblast biosynthetic activity. Our results indicate that TGF beta causes a marked enhancement of the production of types I and III collagens and fibronectin by cultured normal human dermal fibroblasts. The rate of collagen production by fibroblasts exposed to TGF beta was 2-3-fold greater than that of control cells. These effects were associated with a 2-3-fold increase in the steady-state amounts of types I and III collagen mRNAs and a 5-8-fold increase in the amounts of fibronectin mRNAs as determined by dot-blot hybridization with specific cloned cDNA probes. In addition, the increased production of collagen and fibronectin and the increased amounts of their corresponding mRNAs remained elevated for at least 72 h after removal of TGF beta. These findings suggest that TGF beta may play a major role in the normal regulation of extracellular matrix production in vivo and may contribute to the development of pathological states of fibrosis.  相似文献   

8.
Surface micron-scale and submicron scale features increase osteoblast differentiation and enhance responses of osteoblasts to 1,25-dihydroxyvitamin D(3) [1alpha,25(OH)(2)D(3)]. beta(1) integrin expression is increased in osteoblasts grown on Ti substrates with rough microarchitecture, and it is regulated by 1alpha,25(OH)(2)D(3) in a surface-dependent manner. To determine if beta(1) has a role in mediating osteoblast response, we silenced beta(1) expression in MG63 human osteoblast-like cells using small interfering RNA (siRNA). In addition, MG63 cells were treated with two different monoclonal antibodies to human beta(1) to block ligand binding. beta(1)-silenced MG63 cells grown on a tissue culture plastic had reduced alkaline phosphatase activity and levels of osteocalcin, transforming growth factor beta(1), prostaglandin E(2), and osteoprotegerin in comparison with control cells. Moreover, beta(1)-silencing inhibited the effects of surface roughness on these parameters and partially inhibited effects of 1alpha,25(OH)(2)D(3). Anti beta(1) antibodies decreased alkaline phosphatase but increase osteocalcin; effects of 1alpha,25(OH)(2)D(3) on cell number and alkaline phosphatase were reduced and effects on osteocalcin were increased. These findings indicate that beta(1) plays a major and complex role in osteoblastic differentiation modulated by either surface microarchitecture or 1alpha,25(OH)(2)D(3). The results also show that beta(1) mediates, in part, the synergistic effects of surface roughness and 1alpha,25(OH)(2)D(3).  相似文献   

9.
Using selective media and complement-mediated lysis of primary cultures of a fetal rat calvarial cell population, we have developed a cell line (OBCK6) that exhibits osteoblastic characteristics. OBCK6 cells demonstrated enhanced parathyroid hormone (PTH)-stimulated adenylate cyclase activity relative to the primary calvarial population, production of alkaline phosphatase activity and type 1 collagen, and the capacity to form mineralized nodules in unsupplemented medium after prolonged (22-26 day) culture. Two sublines, CFK1 and CFK2, which were isolated by dilution cloning, differed morphologically and with respect to growth rate. CFK1 cells demonstrated high PTH and prostaglandin E2-stimulated adenylate cyclase activity, whereas only low PTH-stimulated activity was observed in CFK2 cells. Retinoic acid and 1,25-dihydroxyvitamin D3 [1,25(OH)2D3] each reduced PTH-stimulated adenylate cyclase activity in both the cell types. Retinoic acid and dexamethasone reduced and 1,25(OH)2D3 enhanced alkaline phosphatase activity in these cells. PTH significantly augmented alkaline phosphatase activity to a much greater extent in CFK1 than in CFK2 cells. Both CFK1 and CFK2 cells expressed type I but type III collagen, and neither expressed osteocalcin. Strong Alcian blue staining of CFK2 cells was suggestive of a cartilaginous phenotype. These three cell lines, therefore, demonstrated discrete characteristics of skeletal cell function and should provide important models for evaluation of mechanisms of mineralization and for control of skeletal cell growth and mesenchymal differentiation in vitro.  相似文献   

10.
《Bone and mineral》1994,24(1):1-16
We present evidence that 17β-estradiol (17β-E2) regulates 1,25(OH)2D3-induced alkaline phosphatase synthesis and osteocalcin secretion by the human osteosarcoma cell line MG-63. When cells were pre-treated with 17β-E2 for 48 h prior to treatment with 1,25(OH)2D3 (50 nM) for another 48 h, alkaline phosphatase activity increased by 40% (P < 0.025) with 2 nM 17β-E2 and plateaued at levels of 20 and 200 nM 17β-E2. Under the same experimental conditions, osteocalcin secretion was enhanced by 37% (P < 0.005) with 2 nM E2. However, 17β-E2 had no effect on basal alkaline phosphatase or on osteocalcin secretion. Moreover, simultaneous addition of 17β-E2 and 1,25(OH)2D3 to cells did not result in any additional effect over l,25(OH)2D3 treatment alone. Tamoxifen (10 nM) inhibited 17β-E2-induced activities in l,25(OH)2D3-treated cells while not affecting control cells. Dexamethasone pretreat-ment (100 nM, 48 h) also stimulated alkaline phosphatase activity in MG-63 cells. Moreover, dexamethasone pretreatment followed by treatment with 17β-E2 and l,25(OH)2D3 gave an additive effect for alkaline phosphatase activity. 17α-Estradiol (17α-E2), a less active form of estrogen, failed to modify, at low concentrations, control or l,25(OH)2D3-induced alkaline phosphatase synthesis and osteocalcin secretion. In fact, a 100–1000-fold higher concentration of 17α-E2 was necessary to reproduce the effects of 17β-E2 on osteocalcin secretion. The addition of insulin-like growth factor I (IGF-I) for 24 h (1–50 ng/ml) to MG-63 cells did not modify 1,25(OH)2D3-induced osteocalcin release from these cells. However, longer incubations with 50 ng/ml IGF-I did reproduce some of the effects observed with 17β-E2. Thus, the effects of 17β-E2 are probably not related to IGF-I production in MG-63 cells since under these conditions the addition of IGF-I alone should have produced a response at shorter incubation times and in the presence of lower concentrations of IGF-I. Since 17β-E2 pretreatment was necessary to observe any effects on l,25(OH)2D3-induced activities, we hypothesized that 17β-E2 regulated 1,25(OH)2D3 receptors in MG-63 cells. When cells were treated with 100 nM 17β-E2 for 48 h, the binding affinity was unchanged: 37.3 ± 1.9 versus 35.1 ± 0.4 pM for cells whether treated or not with l7β-E2, respectively. In contrast, a significant increase in binding capacity (Bmax) was noted (15 ± 3.5%; P < 0.025). These results suggest that the estrogen analogue 17β-E2 induces the differentiation of MG-63 cells into a more osteoblastic-like phenotype while 17α-E2 is without physiological effect. They also suggest that estrogens may regulate bone remodeling by modulating hormonal-induction of proteins involved in bone mineralization. This effect is indirect since it does not modify basal activities, but involves a regulation of 1,25(OH)2D3 receptor levels in these MG-63 cells.  相似文献   

11.
The ability of the hormonally active vitamin D metabolite, 1 alpha, 25-dihydroxyvitamin D3, to affect cell growth, morphology and fibronectin production has been examined using the MG-63 human osteosarcoma cell line. Hormone treatment reduced cell growth rate, saturation density and [3H]thymidine incorporation. Inhibition was specific for 1 alpha, 25-dihydroxyvitamin D3 relative to other vitamin D metabolites (1 alpha, 25-dihydroxyvitamin D3 greater than 25-dihydroxyvitamin D3 greater than 24R,25-dihydroxyvitamin D3 greater than D3), antagonized by high concentrations of serum and readily reversed by removal of 1 alpha, 25-dihydroxyvitamin D3 from the culture medium. Hormone treatment also increased cell associated alkaline phosphatase activity up to twofold and altered morphology such that treated cells were more spread out on the culture dish and contained more cytoplasmic processes. Significantly, 1 alpha, 25-dihydroxyvitamin D3 increased cellular and medium concentrations of fibronectin, a glycoprotein known to be involved in cellular adhesiveness. MG-63 cells contain a specific 1 alpha, 25-dihydroxyvitamin D3 receptor which may mediate these responses.  相似文献   

12.
Transforming growth factor-beta (TGF-beta) induces a marked decrease in adhesion of MG-63 human osteosarcoma cells to laminin-coated surfaces, but does not significantly alter adhesion to fibronectin- or collagen-coated surfaces. We provide evidence that this effect is due to a switch in the repertoire of cell adhesion receptors in response to TGF-beta. MG-63 cells express high levels of alpha 3 beta 1-integrin, which is a polyspecific laminin/collagen/fibronectin receptor, and low levels of alpha 2 beta 1- and alpha 5 beta 1-integrins, which are collagen and fibronectin receptors, respectively. No other integrins of the beta 1-class could be detected in MG-63 cells. Treatment with TGF-beta 1 induces a marked (approximately 60%) decrease in the level of expression of alpha 3-integrin subunit mRNA and protein and a concomitant 8-fold increase in alpha 2-subunit expression. These responses become maximal 7-12 h after addition of TGF-beta 1 to the cells. Expression of alpha 5- and beta 1-integrin subunits also increases in response to TGF-beta 1, but to a lesser extent than alpha 2-subunit expression. Thus, as a result of TGF-beta action, the alpha 2 beta 1-collagen and alpha 5 beta 1-fibronectin receptors replace the alpha 3 beta 1-laminin/collagen/fibronectin receptor as the predominant integrins of the beta 1-class in MG-63 cells. These results suggest that one of the effects of TGF-beta is to modify the adhesive behavior of certain tumor cells by changing the binding specificity of the complement of integrins that they express.  相似文献   

13.
We recently reported that the steroid hormone, 1 alpha,25-dihydroxyvitamin D3 (1,25-(OH)2D3) can inhibit growth, alter morphology, and increase cell associated and medium concentrations of fibronectin (FN) in MG-63 human osteosarcoma cells (Franceschi, R. T., James, W., and Zerlauth, G. (1985) J. Cell. Physiol. 123, 401-409). In the present study, we have tested the hypothesis that 1,25-(OH)2D3 increases cellular adhesion by stimulating FN synthesis. Hormone treatment altered cell morphology and increased cell/substratum adhesion in MG-63 cells, effects which could be mimicked by exogenously added FN. 1,25-(OH)2D3-dependent increases in FN production were due to a rapid (within 12 h) increase in FN synthesis. Maximal (2 to 5-fold) stimulation was observed after 48 h. Hormone treatment did not alter apparent FN stability or distribution during this time. The FN response was specific to 1,25-(OH)2D3 when compared with other vitamin D metabolites. In contrast, triamcinolone acetonide, another known inducer of FN synthesis in certain cells, was only slightly stimulatory up to a concentration of 1 microM. FN mRNA, as measured by Northern blot hybridization, increased within 6 h of 1,25-(OH)2D3 addition with maximal (5-fold) induction seen at 24 h. 1,25-(OH)2D3 also stimulated FN synthesis in several other transformed cell lines (TE-85 human osteosarcomas, SW-480 human colon carcinomas, and HL-60 myeloid leukemia cells). These results may be related to known actions of 1,25-(OH)2D3 on cell differentiation and tumor metastasis.  相似文献   

14.
Zhong Q  Ding KH  Mulloy AL  Bollag RJ  Isales CM 《Peptides》2003,24(4):611-616
Glucose-dependent insulinotropic peptide (GIP) is known to modulate alkaline phosphatase activity and collagen type I message in osteoblastic-like cells. GIP effects on cell proliferation are not known. We report that GIP dose dependently stimulated 3H-thymidine incorporation in the osteoblastic-like cell line MG-63. Furthermore, GIP increased message and secretion of transforming growth factor beta (TGF-beta), an agent known to regulate osteoblastic proliferation and differentiation. However, when GIP was added to MG-63 cells concurrently with a TGF-beta neutralizing antibody, there was no effect on 3H-thymidine incorporation in these cells. These data demonstrate that GIP stimulates osteoblastic-like cell proliferation but that this effect is not mediated by TGF-beta.  相似文献   

15.
Alkaline phosphatase activity appears to be altered when chondrocyte cultures are incubated with 1,25-dihydroxyvitamin D3 (1,25-(OH)2D3). This study examined whether the hormone-responsive enzyme activity is associated with alkaline phosphatase-enriched extracellular membrane organelles called matrix vesicles. Confluent, third passage cultures of rat costochondral growth cartilage (GC) or resting zone chondrocytes (RC) were incubated with 1,25-(OH)2D3 or 24,25-dihydroxyvitamin D3 (24,25-(OH)2D3) and enzyme specific activity was assayed in the cell layer or in isolated matrix vesicle and plasma membrane fractions. Alkaline phosphatase-specific activity in the matrix vesicles was enriched at least 2-fold over that of the plasma membrane and 10-fold over that of the cell layer. Matrix vesicle alkaline phosphatase was stimulated by 1,25-(OH)2D3 in GC cultures and by 24,25-(OH)2D3 in RC cultures. The cell layer failed to reveal these subtle differences. 1,25-(OH)2D3 increased GC enzyme activity but the effect was one-half that observed in the matrix vesicles alone. No effect of 1,25-(OH)2D3 on enzyme activity of the RC cell layer or of 24,25-(OH)2D3 on either GC or RC cell layers was detected. Thus, response to the metabolites is dependent on chondrocytic differentiation and is site specific: the matrix vesicle fraction is targeted and not the cells per se.  相似文献   

16.
Several mesenchymally derived cells, including osteoblasts, secrete hepatocyte growth factor (HGF). 1alpha,25(OH)(2)-vitamin D(3) [1,25(OH)(2)D(3)] inhibits proliferation and induces differentiation of MG-63 osteoblastic cells. Here we show that MG-63 cells secrete copious amounts of HGF and that 1,25(OH)(2)D(3) inhibits HGF production. MG-63 cells also express HGF receptor (c-Met) mRNA, suggesting an autocrine action of HGF. Indeed, although exogenous HGF failed to stimulate cellular proliferation, neutralizing endogenous HGF with a neutralizing antibody inhibited MG-63 cell proliferation; moreover, inhibiting HGF synthesis with 1,25(OH)(2)D(3) followed by addition of HGF rescued hormone-induced inhibition of proliferation. Nonneutralized cells displayed constitutive phosphorylation of c-Met and the mitogen-activated protein kinases mitogen/extracellular signal-regulated kinase (MEK) 1 and extracellular signal-regulated kinase (Erk) 1/2, which were inhibited by anti-HGF antibody. Constitutive phosphorylation of Erk1/2 was also abolished by 1,25(OH)(2)D(3). Addition of HGF to MG-63 cells treated with neutralizing HGF antibody induced rapid phosphorylation of c-Met, MEK1, and Erk1/2. Thus endogenous HGF induces a constitutively active, autocrine mitogenic loop in MG-63 cells. The known antiproliferative effect of 1,25(OH)(2)D(3) on MG-63 cells can be accounted for by the concomitant 1,25(OH)(2)D(3)-induced inhibition of HGF production.  相似文献   

17.
1,25-Dihydroxyvitamin D3 (1,25D) is involved in the regulation of proliferation and differentiation of a variety of cell types including cancer cells. In recent years, numerous new vitamin D3 analogs have been developed in order to obtain favorable therapeutic properties. The effects of a new 20-epi analog, CB1093 (20-epi-22-ethoxy-23-yne-24a,26a,27a-trihomo-1α,25(OH)2D3), on the proliferation and differentiation of human MG-63 osteosarcoma cell line were compared here with those of the parent compound 1,25D. Proliferation of the MG-63 cells was inhibited similarly by 22%, 50% and 59% after treatment with 0.1 μM 1,25D or CB1093 for 48 h, 96 h, and 144 h, respectively. In transfection experiments, the compounds were equipotent in stimulating reporter gene activity under the control of human osteocalcin gene promoter. In cell culture experiments, however, CB1093 was more potent than 1,25D at low concentrations and more effective for a longer period of time in activating the osteocalcin gene expression at mRNA and protein levels. Also, a 6-h pretreatment and subsequent culture for up to 120 h without 1,25D or CB1093 yielded higher osteocalcin mRNA and protein levels with analog-treated cells than with 1,25D-treated cells. The electrophoretic mobility shift assay (EMSA) revealed stronger VDR-VDRE binding with analog-treated MG-63 cells than with 1,25D-treated cells. The differences in the DNA binding of 1,25D-bound vs. analog-bound VDR, however, largely disappeared when the binding reactions were performed with recombinant hVDR and hRXRβ proteins. These results demonstrate that the new analog CB1093 was equally or even more effective than 1,25D in regulating all human osteosarcoma cell functions ranging from growth inhibition to marker gene expression and that the differences in effectivity most probably resulted from interactions of the hVDR:hRXRβ-complex with additional nuclear proteins. J. Cell. Biochem. 70:414–424, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

18.
Kuo PL 《Life sciences》2005,77(23):2964-2976
The survival of osteoblast cells is one of the determinants of the development of osteoporosis in patients with inflamed synovium, such as in rheumatoid arthritis (RA). By means of alkaline phosphatase (ALP) activity and osteocalcin ELISA assay, I have shown that myricetin exhibits a significant induction of differentiation in the human osteoblast-like cell line MG-63. In addition, I also assessed whether myricetin affects inflammatory cytokines-mediated apoptosis in osteoblast cells. TNF-alpha or IL-1beta enhances apoptotic DNA fragmentation in anti-Fas IgM-treated MG-63 cells by increasing Fas receptor expression. However, TNF-alpha or IL-1beta treatment alone does not induce apoptosis. Treatment of MG-63 cells with myricetin not only inhibited anti-Fas IgM-induced apoptosis, but also blocked the synergetic effect of anti-Fas IgM with TNF-alpha or IL-1beta on cell death. The apoptotic inhibition of myricetin is associated with inhibition of TNF-alpha and IL-1beta-mediated Fas expression and enhancement of FLIP expression, resulting in a decrease of caspase-8 and caspase-3 activation. These results indicate a potential use of myricetin in preventing osteoporosis by inhibiting inflammatory cytokines-mediated apoptosis in osteoblast cells.  相似文献   

19.
Seventeen day chicken embryonic osteoblasts treated over a 30-day period with 1,25(OH)2 D3 showed a 2–10-fold decrease in collagen, osteopontin and osteocalcin protein accumulation, alkaline phosphatase enzyme activity, and mineral deposition. Comparable inhibition in the steady state mRNA levels for α1(I) and α2(I) collagen, osteocalcin, and osteopontin were observed, and the inhibitory action of the hormone was shown to be specific for only the late release populations of cells from sequential enzyme digestions of the chick calvaria. In order to determine whether the continuous hormone treatment blocked osteoblast differentiation, the cells were acutely treated for 24 h with 1,25(OH)2 D3 at culture periods when the cells proliferate (day 5), a culture period when the cells cease further cell division and are increasing in the expression of their differentiated functions (day 17), and a culture period when the cells are encapsulated within a mineralized extracellular matrix (day 30). Inhibition of the expression of collagen, osteocalcin, and osteopontin were observed at days 17 and 30, while no effect could be detected for the 5-day cultures. To further define whether the inhibitory effect was specific for cells expressing their differentiated phenotype, 1,25(OH)2 D3 treatment was initiated at day 17 and continued to day 30 after the cells have established their collagenous matrix. In these experiments further collagenous matrix deposition, mineral deposition, alkaline phosphatase activity, and osteocalcin synthesis were also inhibited after the hormone treatment was initiated. These results, in summary, show that 1,25(OH)2 D3 in primary avian osteoblast cultures derived from 17-day embryonic calvaria inhibits the expression of several genes associated with differentiated osteoblast function and inhibit extracellular matrix mineral deposition.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号